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Introduction

Topic: infinite combinatorics.
@ simple results (no background in set theory needed),

@ common feature: the proofs are smart inductions:
o list your objectives/obstacles,

o life is hard = infinitely many obstacles,
@ solve one after the other using induction.

@ it can be crucial how you enumerate: use Davies-trees.
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The first applications

@ (R. O. Davies, 1962) R? is covered by countably many rotated
graphs of functions.

o (S. Jackson, R. D. Mauldin, 2002) There is a subset A of R?
which intersects each isometric copy of Z X Z in exactly one point.

o l.e. each rotation A’ of A tiles the plane:
R? = |_| A"+ (n, m).

(n,m)ELXZ

o (D. Milovich, 2008) Base properties of compact spaces.
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A little bit about infinities

@ smallest infinite sets: N, Q, ... countable sets,

@ larger infinite sets: P(N), R, P(R) ... uncountable sets,

@ size of R is called the
continuum,

@ Continuum Hypothesis (CH):
the successor of |N| is the
continuum,

@ the continuum can be the 2nd,
3rd, ... 24th ... successor of |NJ|.
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Disjoint and almost disjoint families

There is an infinite family A of pairwise disjoint infinite sets in N:

A; = {p¥ : k € N} where p; is the ith prime.

@ Are there uncountably many? No.
@ What if we suppose only that AN B is finite for all A,B € A?
@ Why not?!

o But how...
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Uncountable almost disjoint families

A is almost disjoint if AN B is finite for all A, B € A.

Hint: we can look at Q instead of N:

o let Ay C Q be a convergent sequence with limit x for each x € R,

@ {A.: x € R} is almost disjoint and has size continuum.
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Degrees of disjointness

Definition

A family A is n-almost disjoint iff AN B has size < n for all A, B € A.

@ Are there uncountable n-almost disjoint families in N?

Definition

A family A is essentially disjoint iff there are finite F4 C A such that
{A\ Fa : A€ A} is pairwise disjoint.

@ There are no uncountable essentially disjoint families in N.

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 7 /22



Essentially disjoint families

A is essentially disjoint iff there are finite F4 C A such that {A\ Fa: A€ A} is
pairwise disjoint..

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 8 /22



Essentially disjoint families

A is essentially disjoint iff there are finite F4 C A such that {A\ Fa: A€ A} is
pairwise disjoint..

o essentially disjoint and n-almost disjoint implies almost disjoint,

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 8 /22



Essentially disjoint families

A is essentially disjoint iff there are finite F4 C A such that {A\ Fa: A€ A} is
pairwise disjoint..

o essentially disjoint and n-almost disjoint implies almost disjoint,

Theorem (P. Komjath, 1984)

Every n-almost disjoint family A is essentially disjoint (for any n € N).

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 8 /22



Essentially disjoint families

A is essentially disjoint iff there are finite F4 C A such that {A\ Fa: A€ A} is
pairwise disjoint..

o essentially disjoint and n-almost disjoint implies almost disjoint,

Theorem (P. Komjath, 1984)

Every n-almost disjoint family A is essentially disjoint (for any n € N).

@ if A is countable then easy: Fa; = AiN U;.;AiforjeN,

i<j

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 8 /22



Essentially disjoint families

A is essentially disjoint iff there are finite F4 C A such that {A\ Fa: A€ A} is
pairwise disjoint..

o essentially disjoint and n-almost disjoint implies almost disjoint,

Theorem (P. Komjath, 1984)

Every n-almost disjoint family A is essentially disjoint (for any n € N).

@ if A is countable then easy: Fa; = AiN U;.;AiforjeN,

i<j

@ if A is uncountable... one has to be smart about the enumeration.

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 8 /22



A famous open problem

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 9 /22



A famous open problem

@ We have no real recursive constructions for almost disjoint families.

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 9 /22



A famous open problem

@ We have no real recursive constructions for almost disjoint families.

Problem (J. Steprans)

Is there an almost disjoint family A on N such that for every f : Q — N
there is A € A with f~1(A) somewhere dense?

D. T. Soukup (U of T) Davies-trees in infinite combinatorics UTM 2014 9 /22



A famous open problem

@ We have no real recursive constructions for almost disjoint families.

Problem (J. Steprans)

Is there an almost disjoint family A on N such that for every f : Q — N
there is A € A with f~1(A) somewhere dense?

@ Yes, if CH holds.
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Definition

The chromatic number of a graph G, denoted by Chr(G), is the least
number k such that the vertices of G can be covered by x many
independent sets.
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The chromatic number

Definition

The chromatic number of a graph G, denoted by Chr(G), is the least
number k such that the vertices of G can be covered by x many
independent sets.

How does large chromatic number affect the subgraph structure?
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The first results

o W. Tutte, 1954: There are
A-free graphs of arbitrary large
finite chromatic number.

thotograph by J. A Bood

Two giants of combinatorics share a passion: Erd8s and William T. Tutte
play “Go” at Tutte’s home in Westmontrose, Ontario, 1985, Another favorite
game of Erd6s’s was Ping-Pong.
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The first results

o W. Tutte, 1954: There are
A-free graphs of arbitrary large
finite chromatic number.

@ P. ErdGs, 1959: There are
graphs with arbitrary large
girth and finite chromatic
number.

thotograph by J. A Bood

Two giants of combinatorics share a passion: Erd8s and William T. Tutte
play “Go” at Tutte’s home in Westmontrose, Ontario, 1985, Another favorite
game of Erd6s’s was Ping-Pong.
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Uncountable chromatic number

What graphs must occur as subgraph of uncountably chromatic graphs?

o P. Erdés, R. Rado, 1959:
There are /\-free graphs with
size and chromatic number «
for each infinite .

o P. Erd6s, A. Hajnal, 1966:
If Chr(G) is uncountable then
Kn.» embeds into G for each
n e w.

In particular, cyles of length 4
embed into G.
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[P. Erdés, A. Hajnal, 1966] K, , embeds into G if Chr(G) is uncountable.

Kpn,n is n-connected, hence the question: suppose that Chr(G) is
uncountable, is there

© an infinitely connected subgraph?
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Chromatic number and connectivity

[P. Erdés, A. Hajnal, 1966] K, , embeds into G if Chr(G) is uncountable.

Kpn,n is n-connected, hence the question: suppose that Chr(G) is
uncountable, is there

© an infinitely connected subgraph?

© an n-connected subgraph with uncountable chromatic number?
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Chromatic number and connectivity

Given that G has large chromatic number, are there highly connected subgraphs
with large chromatic number?

@ We don't know if one can always find infinitely connected
subgraphs.

o [P. Komjath, 1986]
If Chr(G) is uncountable then
there is an n-connected
subgraph of G with
uncountable chromatic
number for each n € w.
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If Chr(G) is uncountable then there is an n-connected subgraph of G with un-
countable chromatic number for each n € w.

How would the proof go?

@ suppose that every n-connected subgraph H has a good colouring
g with countably many colours,

@ the n-connected subgraphs basically cover G,
@ list the n-connected subgraphs,
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Chromatic number and connectivity

If Chr(G) is uncountable then there is an n-connected subgraph of G with un-
countable chromatic number for each n € w.

How would the proof go?

@ suppose that every n-connected subgraph H has a good colouring
g with countably many colours,

@ the n-connected subgraphs basically cover G,
@ list the n-connected subgraphs,

@ use the colourings gy to inductively construct a good colouring of
G,

@ the enumeration must satisfy certain conditions — apply
Davies-trees.
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Clouds above the plane

We will cover the plane R? with seemingly small sets.

Definition

A set A C R? is a cloud around a point a € R? iff A intersects every line
L through a in a finite set.

How many clouds can cover the plane?
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How many clouds?

A set A C R? is a cloud around a point a € R? iff AN L is finite for every line L
through a.

One or two clouds maybe? No.

A

L
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Three clouds maybe?

We don’t have the same problem:

A
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The following are equivalent:
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Three clouds may cover the plane

Theorem (P. Komjath, 2001)

The following are equivalent:
© the plane is covered by three clouds,

© the Continuum Hypothesis is true.
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Why three??

Three clouds cover the plane iff CH holds.

CH: the continuum is the first successor of |N|.

Theorem (P. Komjath, 2001; J. Schmerl, 2003)

The following are equivalent:

© the plane is covered by n + 2 clouds,
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Three clouds cover the plane iff CH holds.

CH: the continuum is the first successor of |NJ|.

Theorem (P. Komjath, 2001; J. Schmerl, 2003)

The following are equivalent:

© the plane is covered by n + 2 clouds,
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Why three??

Three clouds cover the plane iff CH holds.

CH: the continuum is the first successor of |NJ|.

Theorem (P. Komjath, 2001; J. Schmerl, 2003)

The following are equivalent:

© the plane is covered by n + 2 clouds,

© the continuum is the < n" successor of |N|.

Applying Davies-trees in the proof explains the n+2.
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An open problem

o A subset A C R? is a star if there is a point a € R? such that every
line L through a intersects A in an interval containing a.
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An open problem

o A subset A C R? is a star if there is a point a € R? such that every
line L through a intersects A in an interval containing a.

Problem (J. Ginsburg, V. Linek)

Can we cover R? with three stars?

@ Yes, if CH holds (as every cloud is covered by a star).
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Thank you very much for your attention!

“The infinite we do now, the finite
will have to wait a little.”

P. Erdés
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