Davies-trees in infinite combinatorics

Dániel T. Soukup
University of Toronto

UTM MCS Seminar, October 162014

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- list your objectives/obstacles,
- life is hard = infinitely many obstacles,
- solve one after the other using induction.
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- list your objectives/obstacles,
- life is hard $=$ infinitely many obstacles,
- solve one after the other using induction.
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- list your objectives/obstacles,
- life is hard $=$ infinitely many obstacles,
- solve one after the other using induction.
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- list your objectives/obstacles,
- life is hard = infinitely many obstacles,
- solve one after the other using induction.
- it can be crucial how you enumerate: use Davies-trees.

Introduction

Topic: infinite combinatorics.

- simple results (no background in set theory needed),
- common feature: the proofs are smart inductions:
- list your objectives/obstacles,
- life is hard = infinitely many obstacles,
- solve one after the other using induction.
- it can be crucial how you enumerate: use Davies-trees.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset A of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- (D. Milovich, 2008) Base properties of compact spaces.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset A of \mathbb{R}^{2}.
which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- (D. Milovich, 2008) Base properties of compact spaces.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset A of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- I.e. each rotation A^{\prime} of A tiles the plane:

- (D. Milovich, 2008) Base properties of compact spaces.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset A of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- I.e. each rotation A^{\prime} of A tiles the plane:

$$
\mathbb{R}^{2}=\bigsqcup_{(n, m) \in \mathbb{Z} \times \mathbb{Z}} A^{\prime}+(n, m) .
$$

- (D. Milovich, 2008) Base properties of compact spaces.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset A of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- I.e. each rotation A^{\prime} of A tiles the plane:

$$
\mathbb{R}^{2}=\bigsqcup_{(n, m) \in \mathbb{Z} \times \mathbb{Z}} A^{\prime}+(n, m) .
$$

- (D. Milovich, 2008) Base properties of compact spaces.

A little bit about infinities

- smallest infinite sets: $\mathbb{N}, \mathbb{Q}, \ldots$ countable sets,
- larger infinite sets: $\mathcal{P}(\mathbb{N}), \mathbb{R}, \mathcal{P}^{\prime}(\mathbb{R}) \ldots$ uncountable sets,
- size of \mathbb{R} is called the
continuum,
- Continuum Hypothesis (CH):
the successor of $|\mathbb{N}|$ is the
continuum,
- the continuum can be the $2 n d$,
$3 r d, \ldots 24$ th \ldots successor of $|\mathbb{N}|$.

A little bit about infinities

- smallest infinite sets: $\mathbb{N}, \mathbb{Q}, \ldots$ countable sets,
- larger infinite sets: $\mathcal{P}(\mathbb{N}), \mathbb{R}, \mathcal{P}(\mathbb{R}) \ldots$ uncountable sets,
- size of \mathbb{R} is called the
continuum,
- Continuum Hypothesis (CH):
the successor of $|\mathbb{N}|$ is the
continuum,
- the continuum can be the $2 n d$,

3rd, ... 24th ... successor of $|\mathbb{N}|$

A little bit about infinities

- smallest infinite sets: $\mathbb{N}, \mathbb{Q}, \ldots$ countable sets,
- larger infinite sets: $\mathcal{P}(\mathbb{N}), \mathbb{R}, \mathcal{P}(\mathbb{R})$... uncountable sets,
- size of \mathbb{R} is called the
continuum,
- Continuum Hypothesis (CH):
the successor of $|\mathbb{N}|$ is the
continuum,
- the continuum can be the $2 n d$, $3 r d, \ldots 24$ th \ldots successor of $|\mathbb{N}|$

A little bit about infinities

- smallest infinite sets: $\mathbb{N}, \mathbb{Q}, \ldots$ countable sets,
- larger infinite sets: $\mathcal{P}(\mathbb{N}), \mathbb{R}, \mathcal{P}(\mathbb{R})$... uncountable sets,
- size of \mathbb{R} is called the continuum,
- Continuum Hypothesis (CH) the successor of $|\mathbb{N}|$ is the continuum,
- the continuum can be the $2 n d$, $3 r d, \ldots 24$ th.. successor of $|\mathbb{N}|$

A little bit about infinities

- smallest infinite sets: $\mathbb{N}, \mathbb{Q}, \ldots$ countable sets,
- larger infinite sets: $\mathcal{P}(\mathbb{N}), \mathbb{R}, \mathcal{P}(\mathbb{R})$... uncountable sets,
- size of \mathbb{R} is called the continuum,
- Continuum Hypothesis (CH): the successor of $|\mathbb{N}|$ is the continuum,
- the continuum can be the 2 nd , 3rd, ... 24th ... successor of $|\mathbb{N}|$

A little bit about infinities

- smallest infinite sets: $\mathbb{N}, \mathbb{Q}, \ldots$ countable sets,
- larger infinite sets: $\mathcal{P}(\mathbb{N}), \mathbb{R}, \mathcal{P}(\mathbb{R})$... uncountable sets,
- size of \mathbb{R} is called the continuum,
- Continuum Hypothesis (CH): the successor of $|\mathbb{N}|$ is the continuum,
- the continuum can be the 2nd, 3rd, ... 24th ... successor of $|\mathbb{N}|$.

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many?
- What if we supnose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many?
- What if we suppose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many?
- What if we supnose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many?
- What if we suppose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many? No.
- What if we suppose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many? No.
- What if we suppose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?
- Why not?!
- But how..

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many? No.
- What if we suppose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?
- Why not?!
- But how.

Disjoint and almost disjoint families

There is an infinite family \mathcal{A} of pairwise disjoint infinite sets in \mathbb{N} :

$$
A_{i}=\left\{p_{i}^{k}: k \in \mathbb{N}\right\} \text { where } p_{i} \text { is the ith prime. }
$$

- Are there uncountably many? No.
- What if we suppose only that $A \cap B$ is finite for all $A, B \in \mathcal{A}$?
- Why not?!
- But how...

Uncountable almost disjoint families

\mathcal{A} is almost disjoint if $A \cap B$ is finite for all $A, B \in \mathcal{A}$.

Hint: we can look at \mathbb{Q} instead of \mathbb{N} :

- let $A_{\times} \subset \mathbb{D}$ be a convergent sequence with limit x for each $x \in \mathbb{R}$,

Uncountable almost disjoint families

\mathcal{A} is almost disjoint if $A \cap B$ is finite for all $A, B \in \mathcal{A}$.

Hint: we can look at \mathbb{Q} instead of \mathbb{N} :

- let $A_{x} \subseteq \mathbb{Q}$ be a convergent sequence with limit x for each $x \in \mathbb{R}$,

Uncountable almost disjoint families

\mathcal{A} is almost disjoint if $A \cap B$ is finite for all $A, B \in \mathcal{A}$.

Hint: we can look at \mathbb{Q} instead of \mathbb{N} :

- let $A_{x} \subseteq \mathbb{Q}$ be a convergent sequence with limit x for each $x \in \mathbb{R}$,

Uncountable almost disjoint families

\mathcal{A} is almost disjoint if $A \cap B$ is finite for all $A, B \in \mathcal{A}$.

Hint: we can look at \mathbb{Q} instead of \mathbb{N} :

- let $A_{x} \subseteq \mathbb{Q}$ be a convergent sequence with limit x for each $x \in \mathbb{R}$,

Uncountable almost disjoint families

\mathcal{A} is almost disjoint if $A \cap B$ is finite for all $A, B \in \mathcal{A}$.

Hint: we can look at \mathbb{Q} instead of \mathbb{N} :

- let $A_{x} \subseteq \mathbb{Q}$ be a convergent sequence with limit x for each $x \in \mathbb{R}$,

- $\left\{A_{x}: x \in \mathbb{R}\right\}$ is almost disjoint and has size continuum.

Degrees of disjointness

Definition

A family \mathcal{A} is n-almost disjoint iff $A \cap B$ has size $<n$ for all $A, B \in \mathcal{A}$.

- Are there uncountable n-almost disjoint families in \mathbb{N} ?

Definition

A family \mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left.A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint.

- There are no uncountable essentially disjoint families in \mathbb{N}.

Degrees of disjointness

Definition
 A family \mathcal{A} is n-almost disjoint iff $A \cap B$ has size $<n$ for all $A, B \in \mathcal{A}$.

- Are there uncountable n-almost disjoint families in \mathbb{N} ?

Definition

A famil., Λ is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left.A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint.

- There are no uncountable essentially disjoint families in \mathbb{N}.

Degrees of disjointness

Definition
 A family \mathcal{A} is n-almost disjoint iff $A \cap B$ has size $<n$ for all $A, B \in \mathcal{A}$.

- Are there uncountable n-almost disjoint families in \mathbb{N} ?

Definition

A family A is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that

- There are no uncountable essentially disjoint families in \mathbb{N}

Degrees of disjointness

Definition

A family \mathcal{A} is n-almost disjoint iff $A \cap B$ has size $<n$ for all $A, B \in \mathcal{A}$.

- Are there uncountable n-almost disjoint families in \mathbb{N} ?

Definition

A family \mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint.

- There are no uncountable essentially disjoint families in \mathbb{N}.

Degrees of disjointness

Definition

A family \mathcal{A} is n-almost disjoint iff $A \cap B$ has size $<n$ for all $A, B \in \mathcal{A}$.

- Are there uncountable n-almost disjoint families in \mathbb{N} ?

Definition

A family \mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint.

- There are no uncountable essentially disjoint families in \mathbb{N}.

Essentially disjoint families

\mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint..

- essentially disjoint and n-almost disjoint implies almost disjoint,

Theorem (P. Komjáth, 1984)

Every n-almost disjoint family \mathcal{A} is essentially disjoint (for any $n \in \mathbb{N}$).

- if \mathcal{A} is countable then easy: $F_{A_{j}}=A_{j} \cap \bigcup_{i<j} A_{i}$ for $j \in \mathbb{N}$,
- if \mathcal{A} is uncountable... one has to be smart about the enumeration.

Essentially disjoint families

\mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint..

- essentially disjoint and n-almost disjoint implies almost disjoint, Theorem (P. Komjáth, 1984) Every n-almost disjoint family \mathcal{A} is essentially disjoint (for any $n \in \mathbb{N}$).
- if \mathcal{A} is countable then easy: $F_{A_{j}}=A_{j} \cap \bigcup_{i<j} A_{i}$ for $j \in \mathbb{N}$,
- if \mathcal{A} is uncountable... one has to be smart about the enumeration.

Essentially disjoint families

\mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint..

- essentially disjoint and n-almost disjoint implies almost disjoint, Theorem (P. Komjáth, 1984)
Every n-almost disjoint family \mathcal{A} is essentially disjoint (for any $n \in \mathbb{N}$).
- if \mathcal{A} is countable then easy: $F_{A_{j}}=A_{j} \cap \bigcup_{i<j} A_{i}$ for $j \in \mathbb{N}$
- if \mathcal{A} is uncountable... one has to be smart about the enumeration.

Essentially disjoint families

\mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint..

- essentially disjoint and n-almost disjoint implies almost disjoint, Theorem (P. Komjáth, 1984)
Every n-almost disjoint family \mathcal{A} is essentially disjoint (for any $n \in \mathbb{N}$).
- if \mathcal{A} is countable then easy: $F_{A_{j}}=A_{j} \cap \bigcup_{i<j} A_{i}$ for $j \in \mathbb{N}$,
- if \mathcal{A} is uncountable... one has to be smart about the enumeration.

Essentially disjoint families

\mathcal{A} is essentially disjoint iff there are finite $F_{A} \subseteq A$ such that $\left\{A \backslash F_{A}: A \in \mathcal{A}\right\}$ is pairwise disjoint..

- essentially disjoint and n-almost disjoint implies almost disjoint, Theorem (P. Komjáth, 1984)
Every n-almost disjoint family \mathcal{A} is essentially disjoint (for any $n \in \mathbb{N}$).
- if \mathcal{A} is countable then easy: $F_{A_{j}}=A_{j} \cap \bigcup_{i<j} A_{i}$ for $j \in \mathbb{N}$,
- if \mathcal{A} is uncountable... one has to be smart about the enumeration.

A famous open problem

- We have no real recursive constructions for almost disjoint families.

Problem (J. Steprans)

Is there an almost disjoin family \mathcal{A} on \mathbb{N} such that for every there is $A \in \mathcal{A}$ with $f^{-1}(A)$ somewhere dense?

- Yes, if CH holds.

A famous open problem

- We have no real recursive constructions for almost disjoint families.

Problem (J. Steprans)

Is there an almost disioint family \mathcal{A} on \mathbb{N} such that for every there is $A \in \mathcal{A}$ with $f^{-1}(A)$ somewhere dense?

- Yes, if CH holds.

A famous open problem

- We have no real recursive constructions for almost disjoint families.

Problem (J. Steprans)

Is there an almost disjoint family \mathcal{A} on \mathbb{N} such that for every $f: \mathbb{Q} \rightarrow \mathbb{N}$ there is $A \in \mathcal{A}$ with $f^{-1}(A)$ somewhere dense?

- Yes, if CH holds.

A famous open problem

- We have no real recursive constructions for almost disjoint families.

Problem (J. Steprans)

Is there an almost disjoint family \mathcal{A} on \mathbb{N} such that for every $f: \mathbb{Q} \rightarrow \mathbb{N}$ there is $A \in \mathcal{A}$ with $f^{-1}(A)$ somewhere dense?

- Yes, if CH holds.

The chromatic number

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The first results

- W. Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- P. Erdős, 1959: There are graphs with arbitrary large girth and finite chromatic number.

The first results

- W. Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- P. Erdős, 1959: There are graphs with arbitrary large girth and finite chromatic

Two giants of combinatorics share a passion: Erdös and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdos's was Ping-Pong.

The first results

- W. Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- P. Erdős, 1959: There are graphs with arbitrary large girth and finite chromatic number.

Two giants of combinatorics share a passion: Erdös and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdos's was Ping-Pong.

Uncountable chromatic number

What graphs must occur as subgraph of uncountably chromatic graphs?

- P. Erdős, R. Rado, 1959:

There are \triangle-free graphs with
size and chromatic number k
for each infinite κ.

- P. Erdős, A. Hajnal, 1966:

If $\operatorname{Chr}(G)$ is uncountable then $K_{n, n}$ embeds into G for each $n \in \omega$.

In particular, cyles of length 4 embed into G.

Uncountable chromatic number

What graphs must occur as subgraph of uncountably chromatic graphs?

- P. Erdős, R. Rado, 1959:

There are \triangle-free graphs with size and chromatic number κ for each infinite κ.

- P. Erdős, A. Hajnal, 1966: If $\operatorname{Chr}(G)$ is uncountable then $K_{n, n}$ embeds into G for each

In particular, cyles of length 4
embed into G.

Uncountable chromatic number

What graphs must occur as subgraph of uncountably chromatic graphs?

- P. Erdős, R. Rado, 1959:

There are \triangle-free graphs with size and chromatic number κ for each infinite κ.

- P. Erdős, A. Hajnal, 1966: If $\operatorname{Chr}(G)$ is uncountable then $K_{n, n}$ embeds into G for each $n \in \omega$.

In particular, cyles of length 4

embed into G

Uncountable chromatic number

What graphs must occur as subgraph of uncountably chromatic graphs?

- P. Erdős, R. Rado, 1959:

There are \triangle-free graphs with size and chromatic number κ for each infinite κ.

- P. Erdős, A. Hajnal, 1966: If $\operatorname{Chr}(G)$ is uncountable then $K_{n, n}$ embeds into G for each $n \in \omega$.

In particular, cyles of length 4
 embed into G.

Chromatic number and connectivity

[P. Erdős, A. Hajnal, 1966] $K_{n, n}$ embeds into G if $\operatorname{Chr}(G)$ is uncountable.

$K_{n, n}$ is n-connected, hence the question: suppose that $\operatorname{Chr}(G)$ is uncountable, is there

(1) an infinitely connected subgraph?
(2) an n-connected subgraph with uncountable chromatic number?

Chromatic number and connectivity

[P. Erdős, A. Hajnal, 1966] $K_{n, n}$ embeds into G if $\operatorname{Chr}(G)$ is uncountable.
$K_{n, n}$ is \mathbf{n}-connected, hence the question: suppose that $\operatorname{Chr}(G)$ is uncountable, is there
(1) an infinitely connected subgraph?
(ㅇ) an n-connected subgraph with uncountable chromatic number?

Chromatic number and connectivity

[P. Erdős, A. Hajnal, 1966] $K_{n, n}$ embeds into G if $\operatorname{Chr}(G)$ is uncountable.
$K_{n, n}$ is n-connected, hence the question: suppose that $\operatorname{Chr}(G)$ is uncountable, is there
(1) an infinitely connected subgraph?
(ㅇ) an n-connected subgraph with uncountable chromatic number?

Chromatic number and connectivity

[P. Erdős, A. Hajnal, 1966] $K_{n, n}$ embeds into G if $\operatorname{Chr}(G)$ is uncountable.
$K_{n, n}$ is n-connected, hence the question: suppose that $\operatorname{Chr}(G)$ is uncountable, is there
(1) an infinitely connected subgraph?
(2) an n-connected subgraph with uncountable chromatic number?

Chromatic number and connectivity

[P. Erdős, A. Hajnal, 1966] $K_{n, n}$ embeds into G if $\operatorname{Chr}(G)$ is uncountable.
$K_{n, n}$ is n -connected, hence the question: suppose that $\operatorname{Chr}(G)$ is uncountable, is there
(1) an infinitely connected subgraph?
(2) an n-connected subgraph with uncountable chromatic number?

Chromatic number and connectivity

Given that G has large chromatic number, are there highly connected subgraphs with large chromatic number?

- We don't know if one can always find infinitely connected
subgraphs.
- [P. Komjáth, 1986]

If $\operatorname{Chr}(G)$ is uncountable then
there is an n-connected
subgraph of G with
uncountable chromatic
number for each $n \in \omega$.

Chromatic number and connectivity

Given that G has large chromatic number, are there highly connected subgraphs with large chromatic number?

- We don't know if one can always find infinitely connected subgraphs.

Chromatic number and connectivity

Given that G has large chromatic number, are there highly connected subgraphs with large chromatic number?

- We don't know if one can always find infinitely connected subgraphs.
- [P. Komjáth, 1986]

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- sunnose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of G,
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- suppose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of G
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- suppose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of
\square
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- suppose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of
\square
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- suppose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of
\square
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- suppose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of G,
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Chromatic number and connectivity

If $\operatorname{Chr}(G)$ is uncountable then there is an n-connected subgraph of G with uncountable chromatic number for each $n \in \omega$.

How would the proof go?

- suppose that every n-connected subgraph H has a good colouring g_{H} with countably many colours,
- the n-connected subgraphs basically cover G,
- list the n-connected subgraphs,
- use the colourings g_{H} to inductively construct a good colouring of G,
- the enumeration must satisfy certain conditions \rightarrow apply Davies-trees.

Clouds above the plane

We will cover the plane \mathbb{R}^{2} with seemingly small sets.

Definition

How many clouds can cover the plane?

Clouds above the plane

We will cover the plane \mathbb{R}^{2} with seemingly small sets.

Definition
 A set $A \subseteq \mathbb{R}^{2}$ is a cloud around a point a $\in \mathbb{R}^{2}$ iff A intersects every line
 L through a in a finite set.

How many clouds can cover the plane?

Clouds above the plane

We will cover the plane \mathbb{R}^{2} with seemingly small sets.

Definition
 A set $A \subseteq \mathbb{R}^{2}$ is a cloud around a point $a \in \mathbb{R}^{2}$ iff A intersects every line L through a in a finite set.

How many clouds can cover the plane?

Clouds above the plane

We will cover the plane \mathbb{R}^{2} with seemingly small sets.

Definition
 A set $A \subseteq \mathbb{R}^{2}$ is a cloud around a point $a \in \mathbb{R}^{2}$ iff A intersects every line L through a in a finite set.

How many clouds can cover the plane?

How many clouds?

A set $A \subseteq \mathbb{R}^{2}$ is a cloud around a point $a \in \mathbb{R}^{2}$ iff $A \cap L$ is finite for every line L through a.

One or two clouds maybe? No.

How many clouds?

A set $A \subseteq \mathbb{R}^{2}$ is a cloud around a point $a \in \mathbb{R}^{2}$ iff $A \cap L$ is finite for every line L through a.

One or two clouds maybe?

How many clouds?

A set $A \subseteq \mathbb{R}^{2}$ is a cloud around a point $a \in \mathbb{R}^{2}$ iff $A \cap L$ is finite for every line L through a.

One or two clouds maybe? No.

Three clouds maybe?

We don't have the same problem:

Three clouds maybe?

We don't have the same problem:

Three clouds may cover the plane

Theorem (P. Komjáth, 2001)

The following are equivalent:

Three clouds may cover the plane

Theorem (P. Komjáth, 2001)
The following are equivalent:
(3) the plane is covered by three clouds,
(2) the Continuum Hypothesis is true.

Three clouds may cover the plane

Theorem (P. Komjáth, 2001)
The following are equivalent:
(1) the plane is covered by three clouds,
(2) the Continuum Hypothesis is true.

Three clouds may cover the plane

Theorem (P. Komjáth, 2001)
The following are equivalent:
(1) the plane is covered by three clouds,
(2) the Continuum Hypothesis is true.

Why three??

Three clouds cover the plane iff $\mathbf{C H}$ holds.

CH : the continuum is the first successor of $|\mathbb{N}|$.

Theorem (P. Komjáth, 2001; J. Schmerl, 2003)

The following are equivalent:

Applying Davies-trees in the proof explains the $n+2$.

Why three??

Three clouds cover the plane iff $\mathbf{C H}$ holds.

CH : the continuum is the first successor of $|\mathbb{N}|$.

Theorem (P. Komjáth, 2001; J. Schmerl, 2003)

The following are equivalent:

Applying Davies-trees in the proof explains the $n+2$.

Why three??

Three clouds cover the plane iff $\mathbf{C H}$ holds.

CH : the continuum is the first successor of $|\mathbb{N}|$.

Theorem (P. Komjáth, 2001; J. Schmerl, 2003)
The following are equivalent:

the plane is covered by $n+2$ clouds,the continuum is the $\leq n^{\text {th }}$ successor of $|\mathbb{N}|$.

Applying Davies-trees in the proof explains the $n+2$.

Why three??

Three clouds cover the plane iff $\mathbf{C H}$ holds.

CH : the continuum is the first successor of $|\mathbb{N}|$.

Theorem (P. Komjáth, 2001; J. Schmerl, 2003)

The following are equivalent:
(1) the plane is covered by $n+2$ clouds,
\square the continuum is the $\leq n^{\text {th }}$ successor of $|\mathbb{N}|$.

Applying Davies-trees in the proof explains the $n+2$.

Why three??

Three clouds cover the plane iff $\mathbf{C H}$ holds.

CH : the continuum is the first successor of $|\mathbb{N}|$.

Theorem (P. Komjáth, 2001; J. Schmerl, 2003)

The following are equivalent:
(1) the plane is covered by $n+2$ clouds,
(2) the continuum is the $\leq n^{\text {th }}$ successor of $|\mathbb{N}|$.

Applying Davies-trees in the proof explains the $n+2$.

Why three??

Three clouds cover the plane iff $\mathbf{C H}$ holds.

CH : the continuum is the first successor of $|\mathbb{N}|$.

Theorem (P. Komjáth, 2001; J. Schmerl, 2003)

The following are equivalent:
(1) the plane is covered by $n+2$ clouds,
(2) the continuum is the $\leq n^{\text {th }}$ successor of $|\mathbb{N}|$.

Applying Davies-trees in the proof explains the $\mathbf{n}+2$.

An open problem

- A subset $A \subseteq \mathbb{R}^{2}$ is a star if there is a point $a \in \mathbb{R}^{2}$ such that every line L through a intersects A in an interval containing a.

Problem (J. Ginsburg, V. Linek)

Can we cover \mathbb{R}^{2} with three stars?

- Yes, if CH holds (as every cloud is covered by a star).

An open problem

- A subset $A \subseteq \mathbb{R}^{2}$ is a star if there is a point $a \in \mathbb{R}^{2}$ such that every line L through a intersects A in an interval containing a.

Problem (J. Ginsburg, V. Linek)

Can we cover \mathbb{R}^{2} with three stars?

- Yes, if CH holds (as every cloud is covered by a star).

An open problem

- A subset $A \subseteq \mathbb{R}^{2}$ is a star if there is a point $a \in \mathbb{R}^{2}$ such that every line L through a intersects A in an interval containing a.

Problem (J. Ginsburg, V. Linek)

Can we cover \mathbb{R}^{2} with three stars?

- Yes, if CH holds (as every cloud is covered by a star)

An open problem

- A subset $A \subseteq \mathbb{R}^{2}$ is a star if there is a point $a \in \mathbb{R}^{2}$ such that every line L through a intersects A in an interval containing a.

Problem (J. Ginsburg, V. Linek)

Can we cover \mathbb{R}^{2} with three stars?

- Yes, if CH holds (as every cloud is covered by a star).

Thank you very much for your attention!

"The infinite we do now, the finite will have to wait a little."
P. Erdős

