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Disjoint and almost disjoint familiesThere is an in�nite family A of pairwise disjoint in�nite sets in N:Ai = {pki : k ∈ N} where pi is the ith prime.Are there un
ountably many? No.What if we suppose only that A ∩ B is �nite for all A,B ∈ A?Why not?!But how...
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Un
ountable almost disjoint families
A is almost disjoint if A ∩ B is �nite for all A,B ∈ A.Hint: we 
an look at Q instead of N:let Ax ⊆ Q be a 
onvergent sequen
e with limit x for ea
h x ∈ R,

D. T. Soukup (U of T) Davies-trees in in�nite 
ombinatori
s UTM 2014 6 / 22



Un
ountable almost disjoint families
A is almost disjoint if A ∩ B is �nite for all A,B ∈ A.Hint: we 
an look at Q instead of N:let Ax ⊆ Q be a 
onvergent sequen
e with limit x for ea
h x ∈ R,

D. T. Soukup (U of T) Davies-trees in in�nite 
ombinatori
s UTM 2014 6 / 22



Un
ountable almost disjoint families
A is almost disjoint if A ∩ B is �nite for all A,B ∈ A.Hint: we 
an look at Q instead of N:let Ax ⊆ Q be a 
onvergent sequen
e with limit x for ea
h x ∈ R,

D. T. Soukup (U of T) Davies-trees in in�nite 
ombinatori
s UTM 2014 6 / 22



Un
ountable almost disjoint families
A is almost disjoint if A ∩ B is �nite for all A,B ∈ A.Hint: we 
an look at Q instead of N:let Ax ⊆ Q be a 
onvergent sequen
e with limit x for ea
h x ∈ R,

b

b

b b

bbbbbb

b b bb

Axx
yAy R

D. T. Soukup (U of T) Davies-trees in in�nite 
ombinatori
s UTM 2014 6 / 22



Un
ountable almost disjoint families
A is almost disjoint if A ∩ B is �nite for all A,B ∈ A.Hint: we 
an look at Q instead of N:let Ax ⊆ Q be a 
onvergent sequen
e with limit x for ea
h x ∈ R,

b

b

b b

bbbbbb

b b bb

Axx
yAy R

{Ax : x ∈ R} is almost disjoint and has size 
ontinuum.D. T. Soukup (U of T) Davies-trees in in�nite 
ombinatori
s UTM 2014 6 / 22



Degrees of disjointnessDe�nitionA family A is n-almost disjoint i� A ∩ B has size < n for all A,B ∈ A.Are there un
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h that
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Essentially disjoint families
A is essentially disjoint i� there are �nite FA ⊆ A su
h that {A \ FA : A ∈ A} ispairwise disjoint..

essentially disjoint and n-almost disjoint implies almost disjoint,Theorem (P. Komjáth, 1984)Every n-almost disjoint family A is essentially disjoint (for any n ∈ N).if A is 
ountable then easy: FAj = Aj ∩⋃i<j Ai for j ∈ N,if A is un
ountable... one has to be smart about the enumeration.D. T. Soukup (U of T) Davies-trees in in�nite 
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A famous open problem
We have no real re
ursive 
onstru
tions for almost disjoint families.Problem (J. Steprans)Is there an almost disjoint family A on N su
h that for every f : Q → Nthere is A ∈ A with f −1(A) somewhere dense?Yes, if CH holds.
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The 
hromati
 number
De�nitionThe 
hromati
 number of a graph G, denoted by Chr(G ), is the leastnumber κ su
h that the verti
es of G 
an be 
overed by κ manyindependent sets.How does large 
hromati
 number a�e
t the subgraph stru
ture?
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The �rst results
W. Tutte, 1954: There are
△-free graphs of arbitrary large�nite 
hromati
 number.P. Erd®s, 1959: There aregraphs with arbitrary largegirth and �nite 
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Un
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Three 
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Theorem (P. Komjáth, 2001)The following are equivalent:1 the plane is 
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louds,2 the Continuum Hypothesis is true.
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An open problem
A subset A ⊆ R2 is a star if there is a point a ∈ R2 su
h that everyline L through a interse
ts A in an interval 
ontaining a.Problem (J. Ginsburg, V. Linek)Can we 
over R2 with three stars?Yes, if CH holds (as every 
loud is 
overed by a star).
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Thank you very mu
h for your attention!
�The in�nite we do now, the �nitewill have to wait a little.�P. Erd®s
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