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1. Answer the following short questions on limits.

(a) (3 points) Find lim
t→π

ln(sin(t)− cos(t)).

Solution: Note that the function f(x) = ln(x) is continuous at x = 1. Furthermore
lim
t→π

sin(t) = 0 and lim
t→π

cos(t) = −1. Hence lim
t→π

ln(sin(t)− cos(t)) = ln(1) = 0.

(b) (3 points) Give an example of a function f(x) such that lim
x→1−

f(x) > lim
x→1+

f(x).

Solution: You can take the function f(x) =
1− x

|1− x|
. Another way to write this function is

f(x) =

{
1 when x < 1,

−1 when x > 1.

(c) (4 points) Find the following limit lim
x→0

e2x − 1

x
(Hint: express the limit as a derivative).

Solution: Let f(x) = e2x Then lim
x→0

e2x − 1

x
= lim

x→0

f(x)− f(0)

x
= f ′(0) = 2.

( Note that f ′(x) = 2e2x by Chain Rule)
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(d) (5 points) Find lim
x→∞

√
x4 + 1− (x2 + 1).

Solution: lim
x→∞

√
x4 + 1− (x2 + 1) = lim

x→∞
(
√
x4 + 1− (x2 + 1))

√
x4 + 1 + (x2 + 1)√
x4 + 1 + (x2 + 1)

= lim
x→∞

x4 + 1− (x2 + 1)2√
x4 + 1 + (x2 + 1)

= lim
x→∞

−2√
1 + x−2 + 1 + x−2

= −1

(e) (5 points) Find lim
α→0

sin(α)

3α+ tan(α)
.

Solution: We now that

lim
α→0

sin(α)

α

and also

lim
α→0

tan(α)

α
= 1.

So

lim
α→0

sin(α)

3α+ tan(α)
= lim

α→0

sin(α)
α

3 + tan(α)
α

=
1

3 + 1
=

1

4
.
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2. Answer the following short questions on derivatives.

(a) (3 points) Find d
dx tan(x2 + 1).

Solution: Using Chain Rule we get

d

dx
tan(x2 + 1) = sec2(x2 + 1)2x.

(b) (3 points) Find d
dx

(
sin(x)
x2

)
.

Solution: We apply the quotient rule:

d

dx

(
sin(x)

x2

)
=

cos(x)x2 − 2x sin(x)

x4
.

(c) (3 points) Are there any horizontal tangent lines to f(x) = x ln(x)?

Solution: We need to find all points where f ′(x) = 0. Note that f ′(x) = 1 · ln(x) + x 1
x =

ln(x) + 1. This implies that ln(x) = −1 so x = e−1 = 1
e .
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(d) (3 points) Find d
dx

(
cos2(x) sin(x)

)
.

Solution: d
dx

(
cos2(x) sin(x)

)
= 2 cos(x)(− sin(x)) sin(x) + cos2(x) cos(x)

= −2 cos(x) sin2(x) + cos3(x).

(e) (3 points) What is the 13th derivative of x12 − x2 + 1?

Solution: Note that f ′(x) = 12x11 − 2x and f (2)(x) = (12)(11)x12 − 2 and one can see that
f (12)(x) = (12)(11)...(3)(2)(1) is constant. Therefore f (13)(x) = 0.
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3. Let f(x) be defined by

f(x) =

{
4−x2

x3−8 when x > 2,
c−x
x+1 when x ≤ 2.

(a) (5 points) Find the values of c which makes f(x) continuous.

Solution: f(x) is continuous exactly if lim
x→2+

f(x) = lim
x→2−

f(x) = f(2).

Now

lim
x→2+

f(x) = lim
x→2+

(2− x)(2 + x)

(x− 2)(x2 + 2x+ 4)
= −1

3

hence f(2) = c−2
2+1 = − 1

3 which implies that c = 1.

(b) (5 points) Working with the same function as in part (a), find the horizontal asymptotes of f(x).

Solution: Note that

lim
x→+∞

f(x) = lim
x→+∞

4− x2

x3 − 8
= lim

x→+∞

4
x3 − 1

x

1− 8
x3

= 0

and

lim
x→−∞

f(x) = lim
x→+∞

c− x

x+ 1
= lim

x→+∞

c
x − 1

1 + 1
x

= −1.

Thus y = 0 and y = −1 are the two horizontal asymptotes of f(x).
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4. (a) (5 points) State the Intermediate Value Theorem.

Solution: IVT: Suppose that f(x) is continuous on the interval [a, b] and N is a number
between f(a) and f(b). Then there is a c in (a, b) such that f(c) = N .

(b) (5 points) Use the Intermediate Value Theorem to show that the equation

x2x = 2 + x

has at least two solutions. (Hint: one solution is positive and the other is negative.)

Solution: Let f(x) = x2x − (2 + x) and note that f(x) is a continuous function. Furthermore
f(1) = −1 < 0 and f(2) = 2 > 0 thus by IVT theorem f(x) = 0 for some x ∈ (1, 2).

Also, f(−1) = 3
2 > 0 and f(−4) < 0 so again by the IVT there exists a root in the inter-

val (−4,−1).
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5. (10 points) Find the derivative of f(x) =
√
1 + x3 at x = 1 using the definition of the derivative as a

limit.

Solution: By the definition of the derivative

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

√
1 + (1 + h)3 −

√
2

h
.

To calculate the limit we use the usual trick

lim
h→0

√
1 + (1 + h)3 −

√
2

h
= lim

h→0

√
1 + (1 + h)3 −

√
2

h

√
1 + (1 + h)3 +

√
2√

1 + (1 + h)3 +
√
2

= lim
h→0

(1 + h)3 − 1

h
√
1 + (1 + h)3 +

√
2
= lim

h→0

3 + 3h+ h2√
1 + (1 + h)3 +

√
2
=

3
√
2

4
.
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6. Let f and g be differentiable functions whose values at x = 0, 1, 2 are given in the table below:

x f(x) f ′(x) g(x) g′(x)
0 4 0 0 3
1 0 1 3 5
2 2 4 1 1

(a) (2 points) What is the equation of the tangent line to the graph of f(x) at x = 2?

Solution:

The equation of the tangent line is given by y = mx+d where m = f ′(2) = 4. Hence y = 4x+d
and furthermore we know that the line should pass through the point (2, 2) i.e. 2 = 2 · 4 + d.
Thus d = −6 and the equation of the tangent is y = 4x− 6

(b) (2 points) Suppose h(x) = x2f(x) and find h′(2).

Solution: h′(x) = 2xf(x) + x2f ′(x) Hence h′(2) = 4f(2) + 4f ′(2) = 24

(c) (3 points) Find lim
x→0

f
( sin(x)

x

)
g(2 + x).

Solution: Note that limx→0
sin(x)

x = 1 and f and g are continuous at 1 and 2 respectively so
we obtain

lim
x→0

f
( sin(x)

x

)
g(2 + x) = f(1)g(2) = 0.

(d) (3 points) Suppose h(x) = g(f(2x)) and find h′(1).

Solution: h′(x) = g′(f(2x))f ′(2x)2 by applying the chain rule twice.
Hence h′(1) = g′(f(2))f ′(2)2 = 8.
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7. (10 points) Find the limit lim
x→0

2sin
(

1
x

)√
x+ x2.

Solution: Note that −1 < sin( 1x ) < 1 and since the exponential function is strictly increasing we
deduce that

1

2
< 2sin(

1
x ) < 2

and so multiplying both sides by
√
x+ x2 gives

2−1
√

x+ x2 < 2sin
(

1
x

)√
x+ x2 < 2

√
x+ x2.

Now we have lim
x→0

√
x+ x2 = 0 and hence by Squeeze Theorem we deduce that

lim
x→0

2sin
(

1
x

)√
x+ x2 = 0.


