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1. IntrodutionThe notion of a D-spae was probably �rst introdued by van Douwen andsine than, many work had been done in this topi. Investigating the proper-ties of D-spaes and the onnetions between other overing properties led tothe de�nition of aD-spaes, de�ned by Arhangel'skii in [2℄. As it turned out,property aD is muh more doile then property D. In [3℄ Arhangel'skii askedthe following, as one of the "most intriguing problems in the theory of D and
aD-spaes":Problem 4.6. Is there a Tyhono� aD-spae whih is not a D-spae?A negative answer to this question would settle almost all of the questionsabout the relationship of lassial overing properties to property D. Quite sim-ilarly, Guo and Junnila in [8℄ asked the following about a weakening of property
D: Problem 2.12. Is every aD-spae linearly D?In G. Gruenhage's survey on D-spaes [7℄, another version of this questionis stated (besides the original Arhangel'skii), namely:Question 3.6(2) Is every sattered, aD-spae a D-spae?The main result of this paper is the following answer to the questions above.Theorem 1.1. There exists a 0-dimensional T2 spae X suh that X is sat-tered, aD and non linearly D.In [15℄ the author showed that the existene of a loally ountable, loallyompat spae X of size ω1 whih is aD and non linearly D is independent ofZFC. Here we re�ne those methods and using Shelah's lub guessing theory weanswer the above questions in ZFC.The paper has the following struture. In Setions 2, 3 and 4 we gather allthe neessary fats about D-spaes, MAD families and lub guessing. In Setion5 we de�ne spaes X [λ, µ,M, C], where λ and µ = cf(µ) are ardinals, M is aMAD family on µ and C is a guessing sequene. It is shown in Claim 5.2 that(0) X [λ, µ,M, C] is always T2, 0-dimensional and sattered.Setion 6 ontains two important results:(1) X [λ, µ,M, C] is not linearly D if cf(λ) ≥ µ (see Corollary 6.3),(2) X [λ, µ,M, C] is aD under ertain assumptions (see Corollary 6.9).2



Finally in Setion 7 we show how to produe suh spaes X [λ, µ,M, C] depend-ing on the ardinal arithmeti and using Shelah's lub guessing.Although the paper is self-ontained, we attah two appendies. In Ap-pendix A, we present a few more fats about D and aD-spaes and explain whythe problem under onsideration is relevant. In Appendix B, we give a bit moredetailed explanation of guessing sequenes.The reader is supposed to be familiar with the basi notions and notationsof set-theory and general topology. However, for unde�ned terms and notationssee [9℄ and [6℄, respetively.2. De�nitionsAn open neighborhood assignment (ONA, in short) on a spae (X, τ) is amap U : X → τ suh that x ∈ U(x) for every x ∈ X . A spae X is said to be aD-spae if for every neighborhood assignment U , one an �nd a losed disrete
D ⊆ X suh that X =

⋃
d∈D U(d) =

⋃
U [D] (suh a set D is alled a kernel for

U). In [2℄ the authors introdued property aD:De�nition 2.1. A spae (X, τ) is said to be aD i� for eah losed F ⊆ X andfor eah open over U of X there is a losed disrete A ⊆ F and φ : A → Uwith a ∈ φ(a) for all a ∈ A suh that F ⊆ ∪φ[A].It is lear that D-spaes are aD. Proving that a spae is aD, the notion ofan irreduible spae will play a key role. A spae X is irreduible i� every openover U has a minimal open re�nement U0; meaning that no proper subfamilyof U0 overs X . In [3℄ Arhangel'skii showed the following equivalene.Theorem 2.2 ([3, Theorem 1.8℄). A T1-spae X is an aD-spae if and only ifevery losed subspae of X is irreduible.Another generalization of property D is due to Guo and Junnila [8℄. For aspae X a over U is monotone i� it is linearly ordered by inlusion.De�nition 2.3. A spae (X, τ) is said to be linearly D i� for any ONA U :
X → τ for whih {U(x) : x ∈ X} is monotone, one an �nd a losed disreteset D ⊆ X suh that X =

⋃
U [D].We will use the following haraterization of linear D property. A set D ⊆ Xis said to be U-big for a over U i� there is no U ∈ U suh that D ⊆ U .Theorem 2.4 ([8, Theorem 2.2℄). The following are equivalent for a T1-spaeX:1. X is linearly D.2. For every non-trivial monotone open over U of X, there exists a loseddisrete U-big set in X. 3



We enourage the reader to look up Appendix A for a more detailed (andless dry) introdution to D-spaes. We also reommend G. Gruenhage's reently�nished survey on D-spaes [7℄, summarizing the fats and the work done in thetopi, stating numerous open problems.3. Notes on MAD familiesAs MAD families will play an essential part in our onstrutions we observesome easy fats about them. Let µ be any in�nite ardinal. We all M ⊆ [µ]µan almost disjoint family if |M ∩ N | < µ for all distint M, N ∈ M. M isa maximal almost disjoint family (in short, a MAD family) if for all A ∈ [µ]µthere is some M ∈ M suh that |A ∩ M | = µ.We will use the following rather trivial ombinatorial fat.Claim 3.1. Let M ⊆ [µ]µ be a MAD family and M = {Mϕ : ϕ < κ}. Supposethat N ∈ [µ]µ and |N \ ∪M′| = µ for all M′ ∈ [M]<µ. Then |Φ| > µ for
Φ = {ϕ < κ : |N ∩ Mϕ| = µ}.Proof. If |Φ| < µ then with Ñ = N \

⋃
{Mϕ : ϕ ∈ Φ} ∈ [µ]µ we an extend theMAD family, whih is a ontradition. If |Φ| = µ then let Φ = {ϕζ : ζ < µ}. Bytrans�nite indution, onstrut Ñ = {nξ : ξ < µ} suh that nξ ∈ N \ (

⋃
{Mϕζ :

ζ < ξ}∪{nζ : ζ < ξ}) for ξ < µ. It is straightforward that Ñ /∈ M andM∪{Ñ}is almost disjoint, whih is a ontradition.From our point of view the sizes of MAD families are important. Clearlythere is a MAD family on ω of size 2ω. The analogue of this does not alwayshold for ω1. Baumgartner in [4℄ proves that it is onsistent with ZFC that thereis no almost disjoint family on ω1 of size 2ω1 . However, we have the followingfat.Claim 3.2. If 2ω = ω1 then there is a MAD family M on ω1 of size 2ω1.In Setion 7 we use nonstationary MAD families MNS ⊆ [µ]µ meaningthat MNS is a MAD family suh that every M ∈ MNS is nonstationary in µ.Observe, that using Zorn's lemma to almost disjoint families of nonstationarysets of µ we an get nonstationary MAD families.4. Fragments of Shelah's lub guessingThe onstrutions of the upoming setions will use the following amazingresults of Shelah. For a ardinal λ and a regular ardinal µ let Sλ
µ denote theordinals in λ with o�nality µ. For an S ⊆ Sλ

µ an S-lub sequene is a sequene
C = 〈Cδ : δ ∈ S〉 suh that Cδ ⊆ δ is a lub in δ of order type µ.Theorem 4.1 ([13, Claim 2.3℄). Let λ be a ardinal suh that cf(λ) ≥ µ++ forsome regular µ and let S ⊆ Sλ

µ stationary. Then there is an S-lub sequene
C = 〈Cδ : δ ∈ S〉 suh that for every lub E ⊆ λ there is δ ∈ S (equivalently,stationary many) suh that Cδ ⊆ E. 4



A detailed proof of Theorem 4.1 an be found in [1, Theorem 2.17℄.Theorem 4.2 ([14, Claim 3.5℄). Let λ be a ardinal suh that λ = µ+ for someunountable, regular µ and S ⊆ Sλ
µ stationary. Then there is an S-lub sequene

C = 〈Cδ : δ ∈ S〉 suh that Cδ = {αδ
ζ : ζ < µ} ⊆ δ and for every lub E ⊆ λthere is δ ∈ S (equivalently, stationary many) suh that:

{ζ < µ : αδ
ζ+1 ∈ E} is stationary.For a detailed proof, see [16℄. We reommend Appendix B for the reader who�rst enounters guessing sequenes as a brief explanation to this phenomenon.5. The general onstrutionDe�nition 5.1. Let λ > µ = cf(µ) be in�nite ardinals. Let M ⊆ [µ]µ bea MAD family, M = {Mϕ : ϕ < κ} and let C = {Cα : α ∈ Sλ

µ} denote an
Sλ

µ-lub sequene. We de�ne a topologial spae X = X [λ, µ,M, C] as follows.The underlying set of our topology will be a subset of the produt λ × κ. Let
• Xα = {(α, 0)} for α ∈ λ \ Sλ

µ ,
• Xα = {α} × κ for α ∈ Sλ

µ ,
• X =

⋃
{Xα : α < λ}.Let Cα = {aξ
α : ξ < µ} denote the inreasing enumeration for α ∈ Sλ

µ . For eah
α ∈ Sλ

µ let
• Iξ

α = (aξ
α, aξ+1

α ] for ξ ∈ su(µ) ∪ {0},
• Iξ

α = [aξ
α, aξ+1

α ] for ξ ∈ lim(µ).Note that ⋃
{Iξ

α : ξ < µ} = (a0
α, α) is a disjoint union.De�ne the topology on X by neighborhood bases as follows;(i) for α ∈ Sλ

µ and ϕ < κ let
U((α, ϕ), η) = {(α, ϕ)} ∪

⋃
{Xγ : γ ∈ ∪{Iξ

α : ξ ∈ Mϕ \ η}} for η < µand let
B(α, ϕ) = {U((α, ϕ), η) : η < µ}be a base for the point (α, ϕ).
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<µ ∪ su(λ) ∪ {0} let (α, 0) be an isolated point,(iii) for α ∈ Sλ
µ′ where µ′ > µ let

U(α, β) =
⋃

{Xγ : β < γ ≤ α} for β < αand let
B(α) = {U(α, β) : β < α}be a base for the point (α, 0).It is straightforward to hek that these basi open sets form neighborhoodbases.

⋆Fix some ardinals λ > µ = cf(µ), a MAD familyM = {Mϕ : ϕ < κ} ⊆ [µ]µand Sλ
µ-lub sequene C. In the following X = X [λ, µ,M, C].Claim 5.2. The spae X [λ, µ,M, C] is 0-dimensional, T2 and sattered. Ob-serve that(a) Xα is losed disrete for all α < λ, moreover(b) ⋃
{Xα : α ∈ A} is losed disrete for all A ∈ [λ]<µ,() X≤α =

⋃
{Xβ : β ≤ α} is lopen for all α < λ.Proof. First we prove that X [λ, µ,M, C] is T2. Note that(∗) ⋃

{Xγ : β < γ ≤ α} is lopen for all β < α < λ.Thus (α, ϕ), (α′, ϕ′) ∈ X an be separated trivially if α 6= α′. Suppose that
α = α′ ∈ Sλ

µ and ϕ 6= ϕ′ < κ. There is η < µ suh that (Mϕ ∩ Mϕ′

) \ η = ∅sine |Mϕ ∩ Mϕ′

| < µ. Thus U((α, ϕ), η) ∩ U((α, ϕ′), η) = ∅.Next we show that X [λ, µ,M, C] is 0-dimensional. By (∗) it is enough toprove that U((α, ϕ), η) is losed for all α ∈ Sλ
µ , ϕ < κ and η < µ. Suppose

x = (α′, ϕ′) ∈ X \ U((α, ϕ), η), we want to separate x from U((α, ϕ), η) by6



an open set. Let α = α′. There is η′ < µ suh that (Mϕ ∩ Mϕ′

) \ η′ = ∅,thus U((α, ϕ), η) ∩ U((α, ϕ′), η′) = ∅. Let α 6= α′. If α′ ∈ Sλ
<µ ∪ su(λ) ∪ {0}then x is isolated, thus we are done. Suppose α ∈ Sλ

µ′ where µ′ ≥ µ. Then
β = sup(Cα \ α′) < α′ thus U(α′, β) ∩ U((α, ϕ), η) = ∅.

X [λ, µ,M, C] is sattered sine X [λ, µ,M, C] is right separated by the lex-iographial ordering on λ × κ.(a) and () is trivial, we prove (b). Suppose x = (α′, ϕ′) ∈ X , we provethat there is a neighborhood U of x suh that |U ∩
⋃
{Xα : α ∈ A}| ≤ 1. If

α′ ∈ Sλ
<µ ∪ su(λ) ∪ {0} then x is isolated, thus we are done. Suppose α ∈ Sλ

µ′where µ′ ≥ µ. Then β = sup(A \ α′) < α′ thus the open set U = {x} ∪
⋃
{Xγ :

β < γ < α} will do the job.6. Fousing on property D and aDAgain �x some ardinals λ > µ = cf(µ), a MAD family M = {Mϕ : ϕ <
κ} ⊆ [µ]µ and Sλ

µ-lub sequene C. Our next aim is to investigate the spaes
X = X [λ, µ,M, C] onerning property D and aD.De�nition 6.1. Let π(F ) = {α < λ : F ∩ Xα 6= ∅} for F ⊆ X. F is said to be(un)bounded if π(F ) is (un)bounded in λ.Claim 6.2. If F ⊆ X and π(F ) aumulates to α ∈ Sλ

η suh that µ ≤ η < λthen F ′ ∩ Xα 6= ∅.Proof. If η > µ then Xα = {(α, 0)} and eah neighborhood U(α, β) of (α, 0)intersets F . Thus F ′ ∩ Xα 6= ∅. Let us suppose that π(F ) aumulates to
α ∈ Sλ

µ . Sine ⋃
{Iξ

α : ξ < µ} = (a0
α, α), the set N = {ξ < µ : Iξ

α ∩ π(F ) 6= ∅}has ardinality µ. Thus there is some ϕ < κ suh that |N ∩ Mϕ| = µ, sine Mis MAD family. It is straightforward that (α, ϕ) ∈ F ′ sine U((α, ϕ), η)∩F 6= ∅for all η < µ.Corollary 6.3. If cf(λ) ≥ µ then a losed unbounded subspae F ⊆ X is not alinearly D-subspae of X. Hene X [λ, µ,M, C] is not a linearly D-spae.Proof. Let F ⊆ X be losed unbounded. |π(D)| < µ for every losed disrete
D ⊆ X by Claim 6.2. Thus there is no big losed disrete set for the open over
{X≤α : α < λ} whih shows that F is not linearly D by Theorem 2.4.Our aim now is to prove that in ertain ases the spae X [λ, µ,M, C] is an
aD-spae, equivalently every losed subspae of it is irreduible; see Theorem2.2.Claim 6.4. Every losed, bounded subspae F ⊆ X is a D-subspae of X; hene
F is irreduible.Proof. We prove that F ⊆ X is a D-subspae of X by indution on α =
sup π(F ) < λ. Let U : F → τ be an ONA. If α is a suessor (or α = 0),then F0 = F \ U((α, 0)) is losed and sup(F0) < α thus we are easily done byindution. 7



Let α ∈ Sλ
µ′ where µ ≤ µ′ < λ. Then sup π(F0) < α where F0 = F \∪U [Xα∩

F ] by Claim 6.2. Thus we are easily done by indution and the fat that Xα islosed disrete.Now let ν = cf(α) < µ, let sup{αξ : ξ < ν} = α suh that α0 = 0 and
{αξ : ξ < ν} is stritly inreasing. Let Jξ =

⋃
{Xγ : αξ ≤ γ ≤ αξ+1} if ξ < νis limit or ξ = 0 and Jξ =

⋃
{Xγ : αξ < γ ≤ αξ+1} if ξ < ν is a suessor. Let

Jν = Xα. Clearly {Jξ : ξ ≤ ν} is a disrete family of disjoint lopen sets suhthat ⋃
{Jξ : ξ ≤ ν} = X≤α. F =

⋃
{F ξ : ξ ≤ ν} where F ξ = F ∩Jξ is losed for

ξ ≤ ν. By indution, for all ξ < ν there is some losed disrete kernel Dξ ⊆ F ξfor the restrition of U to F ξ. Let Dν = F ν . Then D =
⋃
{Dξ : ξ ≤ ν} is loseddisrete and F ⊆ ∪U [D].To handle the unbounded losed subsets we need the following de�nition.De�nition 6.5. Let Fα = F ∩ Xα for F ⊆ X and α < λ. A subset F ⊆ X ishigh enough if

|{α < λ : |Fα| = |F |}| ≥ µ.We say that a subset F ⊆ X is high if every losed unbounded subset of F ishigh enough.The following rather tehnial laim will be useful.Claim 6.6. For any F ⊆ X and ONA U : F → τ suh that U(x) is a basiopen neighborhood of x ∈ F , let
YF = {x ∈ F : ∃α < λ : Fα ⊆ U(x), |Fα| = |F |},

ΓF = {α < λ : |Fα| = |F |, ∃x ∈ F : Fα ⊆ U(x)}.If F is losed and high enough then YF , ΓF 6= ∅.Proof. Sine YF 6= ∅ i� ΓF 6= ∅, it is enough to show that there is some x ∈ YF .Sine F is high enough, |Z| ≥ µ for Z = {α′ < λ : |F | = |Fα′ |}. Let D =⋃
{Fα′ : α′ ∈ Z} ⊆ F . Let β ∈ Sλ

µ be an aumulation point of Z = π(D).Then by Claim 6.2 there is some x ∈ D′ ∩ Xβ thus x ∈ F . Clearly x ∈ YF .Theorem 6.7. If the losed unbounded F ⊆ X is high then F is irreduible.Proof. Suppose that U is an open over of F . We an suppose that we re�nedit to the form {U(x) : x ∈ F} where eah U(x) is basi open. From Claim 6.6we know that YF , ΓF 6= ∅. We de�ne Y ξ ⊆ F by indution.
• Let α0 ∈ ΓF and Y 0 = {x ∈ YF : Fα0

⊆ U(x)}. Fix some h0 : Y 0 → Fα0injetion; this exists beause |Fα0
| = |F | ≥ |YF | ≥ |Y 0|.

• Suppose we de�ned αζ < λ and Y ζ for ζ < ξ. Let
F ξ = F \

(⋃{
U(x) : x ∈ ∪{Y ζ : ζ < ξ}

}
∪ X≤α

)where α = sup{αζ : ζ < ξ}. 8



• If F ξ is bounded then stop. Notie that Fξ is bounded i� F \
⋃{

U(x) :

x ∈ ∪{Y ζ : ζ < ξ}
} is bounded.

• Suppose F ξ is unbounded. F ξ ⊆ F is losed either thus F ξ is high enoughsine F is high. Hene YF ξ , ΓF ξ 6= ∅.
• Let αξ ∈ ΓF ξ ; thus |F ξ

αξ
| = |F ξ| and F ξ

αξ
is overed by some U(x) for

x ∈ F ξ. Let Y ξ = {x ∈ YF ξ : F ξ
αξ

⊆ U(x)}. Fix some hξ : Y ξ → F ξ
αξinjetion; this exists beause |F ξ

αξ
| = |F ξ| ≥ |YF ξ | ≥ |Y ξ|.Lemma 6.8. The indution stops before µ many steps.Proof. Suppose we de�ned this way {αξ : ξ < µ} and let α = sup{αξ : ξ < µ} ∈

Sλ
µ . Let D =

⋃
{Fαξ

: ξ < µ}. By Claim 6.2 there is some x ∈ D′ ∩ Xα, thus
x ∈ F either. Clearly Fαξ

⊆ U(x) for µ many ξ < µ. By the de�nition of theindution
(∗) for every ζ < ξ < µ and every y ∈ Y ζ : F ξ

αξ
∩ U(y) = ∅Clearly by (∗), x /∈ Y ζ for all ζ < µ sine there is ζ < ξ < µ suh that

F ξ
αξ

⊆ U(x). Moreover x /∈ U(y) for every y ∈ Y ζ and ζ < µ; if x ∈ U(y) thensine x 6= y there is some β < α suh that ⋃
{Xγ : β < γ ≤ α} ⊆ U(y). Thisontradits (∗) sine there is ζ < ξ < µ suh that β < αξ, thus F ξ

αξ
⊆ U(y).Thus x ∈ F ξ for all ξ < µ. Then x ∈ Y ξ for all ξ < µ suh that Fαξ
⊆ U(x).This is a ontradition.Thus let us suppose that the indution stopped at step ξ < µ, meaning that

F̃ = F \
⋃
{U(x) : x ∈ Y } is bounded where Y = ∪{Y ζ : ζ < ξ}. Let

h =
⋃
{hζ : ζ < ξ}, h : Y → F is a 1-1 funtion sine the sets dom(hζ) = Y ζand ran(hζ) ⊆ F ζ

αζ
are pairwise disjoint for ζ < ξ. Note that ran(h) ⊆

⋃
{Fαζ

:

ζ < ξ} is losed disrete by Claim 5.2. For x ∈ Y let
U0(x) = (U(x) \ ran(h)) ∪ {h(x)},note that U0(x) is open. Then

⋃
{U0(x) : x ∈ Y } =

⋃
{U(x) : x ∈ Y }is a minimal open re�nement, sine h(x) is only overed by U0(x) for all x ∈ Y .Let U0 = {U0(x) : x ∈ Y }Let V (x) = U(x) \

⋃
{Fαζ

: ζ < ξ}. Then V = {V (x) : x ∈ F̃} is anopen over of F̃ , re�ning U ; Fαζ
∩ F̃ = ∅ by onstrution for all ζ < ξ. F̃ islosed and bounded thus irreduible by Claim 6.4, hene there is an irreduibleopen re�nement V0 of V . It is straightforward that V0 ∪ U0 is a minimal openre�nement of U overing F . 9



Corollary 6.9. Suppose that λ > µ = cf(µ) are in�nite ardinals suh that
cf(λ) ≥ µ. Let M = {Mϕ : ϕ < κ} ⊆ [µ]µ be a MAD family and C an Sλ

µ-lub sequene. If X [λ, µ,M, C] is high then X [λ, µ,M, C] is a 0-dimensional,Hausdor�, sattered spae whih is aD however not linearly D.Proof. X [λ, µ,M, C] is 0-dimensional, Hausdor� and sattered by Claim 5.2 andnot linearly D by Corollary 6.3. It su�es to show that every losed F ⊆ X isirreduible. If F is bounded then F is a D-spae by Claim 6.4 hene irreduible.If F is unbounded, then F is high sine X is high. Hene F is irreduible byTheorem 6.7.7. Examples of aD, non linearly D-spaesIn this setion we give examples of aD, non linearly D-spaes of the form
X = X [λ, µ,M, C]. First let us make an observation.Claim 7.1. If Cα ⊆ π(F )′ for a losed F ⊆ X and α ∈ Sλ

µ , then Fα = Xα.Proof. Clearly ⋃
{Xγ : γ ∈ Iξ

α} ∩ F 6= ∅ for all ξ < µ. Thus every point in Xαis an aumulation point of F , thus Fα = Xα sine F is losed.Corollaries 7.3 and 7.5 below give ertain examples of high X [λ, µ,M, C]spaes.Proposition 7.2. Suppose that µ is a regular ardinal, cf(λ) ≥ µ++. Let C bean Sλ
µ-lub guessing sequene from Theorem 4.1. If M ⊆ [µ]µ is a MAD familyof size at least λ then X [λ, µ,M, C] is high.Proof. Let F ⊆ X losed, unbounded. Then π(F )′ is a lub in λ, hene thereexists a stationary S ⊆ Sλ

µ suh that Cα ⊆ π(F )′ for all α ∈ S. Thus Fα = Xαby Claim 7.1 hene |Fα| = |M| = |X | for all α ∈ S.Corollary 7.3. 1. Suppose that 2ω ≥ ω2. Let M be a MAD family on ωof size 2ω and let C be an Sω2
ω -lub guessing sequene from Theorem 4.1.Then X [ω2, ω,M, C] is high.2. Suppose that 2ω = ω1 and 2ω1 ≥ ω3. Let M be a MAD family on ω1 ofsize 2ω1 (exists by Claim 3.2) and let C be an Sω3

ω1
-lub guessing sequenefrom Theorem 4.1. Then X [ω3, ω1,M, C] is high.Proposition 7.4. Suppose that λ = µ+ > µ = cf(µ) > ω and let C be an Sµ+

µ -lub guessing sequene from Theorem 4.2. If there is a nonstationary MADfamily MNS ⊆ [µ]µ suh that |MNS| = µ+ then X = X [µ+, µ,MNS, C] ishigh.Proof. Let MNS = {Mϕ : ϕ < µ+} and C = 〈Cα : α ∈ Sµ+

µ 〉 suh that
Cα = {aξ

α : ξ < µ} ⊆ α. Suppose that the losed F ⊆ X is unbounded. Then
π(F )′ is a lub in µ+, hene there exists a stationary S ⊆ Sµ+

µ suh that
Nα = {ξ < µ : aξ+1

α ∈ π(F )′} is stationary in µ10



for all α ∈ S. Fix any α ∈ S, we prove that |Fα| = |F |. Nα is stationary so byapplying Claim 3.1 we get that |Φα| = µ+ for Φα = {ϕ < µ+ : |Nα ∩Mϕ| = µ}.Note that F ∩
⋃
{Xγ : γ ∈ Iξ

α} 6= ∅ for ξ ∈ Nα. Thus (α, ϕ) is an aumulationpoint of F for ϕ ∈ Φα, hene {α} × Φα ⊆ Fα. Thus |Fα| = µ+ = |X |.Corollary 7.5. Suppose that 2ω1 = ω2. Let C be an Sω2
ω1
-lub guessing sequenefrom Theorem 4.2 and let MNS be a nonstationary MAD family on ω1. Then

X [ω2, ω1,MNS, C] is high.Thus, by all means we an dedue the proof of Theorem 1.1.Proof of Theorem 1.1. Note that in any model of ZFC, either (2ω ≥ ω2) or
(2ω = ω1 ∧ 2ω1 ≥ ω3) or (2ω1 = ω2). Using Corollaries 7.3 and 7.5 above, de-pending on the sizes of 2ω and 2ω1 , we see that there exists a high X [λ, µ,M, C]spae. We are done by Corollary 6.9.8. AknowledgementsThe author would like to thank Assaf Rinot for his ideas and advies to lookdeeper into the theory of lub guessing in ZFC.Appendix A.The aim of this setion is to motivate the study of D-spaes and relatedproperties, as well as to present a few fats about the relationship betweenstandard overing properties and D, aD-spaes. We shall also see, that theabove solved problem was worth studying.Appendix A.1. Motivation for D-spaesCompatness is one of the main onepts of general topology. A spae Xis ompat i� every open over of X has a �nite subover. Equivalently, if forevery open neighborhood assignment x 7→ U(x), there is a �nite subset D ⊆ Xsuh that X = ∪U [D]. Note, that if X is ompat then D ⊆ X is �nite i� it islosed and disrete. Thus, the de�nition of D-spaes is a logial generalizationof ompatness.De�nition Appendix A.1. A spae X is said to be a D-spae if for everyneighborhood assignment U , one an �nd a losed disrete D ⊆ X suh that
X =

⋃
d∈D U(d) =

⋃
U [D]If we restrit our de�nition to monotone overs of a spae X , we get thede�nition of linearly D-spaes, see De�nition 2.3.It is easy to see, that every ompat spae X is irreduible, that is, eahopen over U of X has a minimal open re�nement U0. Meaning, that thereis no proper subfamily of U0 overing X . This observation is generalized withproperty aD. Indeed, from Theorem 2.2 we know that a T1 spae X is aD i�every losed subset F ⊆ X is irreduible.Now, it is straightforward to ask two things.11



1. What is the onnetion between these overing properties?2. How are they onneted to lassial overing properties?Conerning the �rst question, it is easy to see that every D-spae is aD and ofourse linearly D. The result of this paper is that the onverse is not true. Thatis, by Theorem 1.1 there exists an aD-spae whih is not D or even linearly D.The seond question is a harder one, and we disuss it in the next setion.Appendix A.2. Relationship to overing propertiesThe following are easy to see.Proposition Appendix A.2.1. Every ompat, moreover every σ-ompat spae is a D-spae.2. Every ountably ompat D-spae is ompat.Despite the work done in the topi by many great mathematiians, we laktheorems stating, that a lassial overing property, that is fairly weaker thanompatness, imply D. In fat, the following overing properties are not knownto imply property D (even if you add "hereditarily"):Lindelöf, paraompat, ultraparaompat, strongly paraompat, metaompat,metalindelöf, subparaompat, submetaompat, submetalindelöf, paralindelöf,sreenable, σ-metaompat.Atually, the problem, whether Lindelöf implies D, is the 14th of the twentyentral problems in set-theoreti topology [12℄. However, Arhangel'skii provedthe following.TheoremAppendix A.3 ([3, Theorem 1.15℄). Every submetalindelöf T1 spaeis aD.Submetalindelöfness is a signi�ant weakening of both Lindelöfness and para-ompatness.De�nition Appendix A.4. A spae X is submetalindelöf i� for every openover U of X there are {Un : n ∈ ω} open re�nements of U overing X suhthat for every x ∈ X there is n ∈ ω suh that |{U ∈ Un : x ∈ U}| ≤ ω.Thus, until the reent results of this paper, there was the hope to prove
aD ⇒ D and settle the above hard-to-attak problems.Let us ite another result.Theorem Appendix A.5 ([8, Proposition 2.11℄). Every submetalindelöf T1spae is linearly D.
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Thus, unfortunately, our onstrutions annot be examples of non D-spaessatisfying some lassial overing properties (sine they are not linearly D). Ifthere is suh an example, it must be a non D-spae with both property aD andlinear D.Despite all the open problems, there are fasinating results either. We takethe opportunity again to reommend G. Gruenhage's survey on D-spaes [7℄,whih ontains all that we know and do not know about the topi.Appendix B.In the following, we give a very brief introdution to guessing sequenes.Informally, a guessing sequene S on a ardinal κ is a family of subsets of κ,whih in some way "guesses" all subsets of κ, while |S| < 2κ.The �rst appearane of guessing sequenes was in the following priniple ofJensen [10℄, alled diamond, denoted by ♦.De�nition Appendix B.1. ♦ is the statement that there exists a sequene
S = 〈Aα : α < ω1〉 of subsets of ω1 suh that for every A ⊆ ω1 there is some
α < ω1 suh that A ∩ α = Aα.Jensen disovered this priniple while investigating Gödel's onstrutible uni-verse and used ♦ to prove the existene of a ombinatorial objet, a Suslin-tree.A well known weakening of Jensen's ♦ was introdued by Ostaszewski in[11℄, alled the lub priniple, denoted by ♣. It was used in [11℄ to de�ne atopology on ω1 with ertain interesting properties.De�nition Appendix B.2. ♣ is the statement that there exists a sequene
S = 〈Aα : α < ω1〉 suh that1. Aα ⊆ α is an ω-type sequene o�nal in α for every α ∈ ω1,2. for every A ∈ [ω1]

ω1 there is some α < ω1 suh that Aα ⊆ A.Sine their introdutions, these priniples and their generalizations beamevery popular. They are ommonly used to attak problems in set-theory ortopology, as well as in measure theory or group theory.However, both ♦ and ♣ share the property that they are independent of thelassial ZFC axioms of set theory. Meaning that there are models of set theorywhere ♦ holds (see Gödel's V = L), and there are models where ♦ fails (underMartin's axiom). The same is true for ♣.Therefore, it was a surprising result when Shelah ame up with ertain kindsof guessing sequenes, whih's existene an be proven from ZFC only. Setion4 ontains the results important to us. The lub guessing theory, when we onlyaim to guess lub subsets, was used to prove oloring-theorems, in pf theoryor to prove the existene of Jónsson-algebras.Although ♦-like priniples are frequently used in general topology, there wasa lak of diret appliations of lub-guessing till now; the only one found by theauthor is in [5℄. 13
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