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1. Introduction

The notion of a D-space was probably first introduced by van Douwen and
since than, many work had been done in this topic. Investigating the proper-
ties of D-spaces and the connections between other covering properties led to
the definition of aD-spaces, defined by Arhangel’skii in [2]. As it turned out,
property aD is much more docile then property D. In [3] Arhangel’skii asked
the following, as one of the "most intriguing problems in the theory of D and
aD-spaces":

Problem 4.6. Is there a Tychonoff aD-space which is not a D-space?

A negative answer to this question would settle almost all of the questions
about the relationship of classical covering properties to property D. Quite sim-
ilarly, Guo and Junnila in [8] asked the following about a weakening of property
D:

Problem 2.12. s every aD-space linearly D?

In G. Gruenhage’s survey on D-spaces [7], another version of this question
is stated (besides the original Arhangel’skii), namely:

Question 3.6(2) Is every scattered, aD-space a D-space?

The main result of this paper is the following answer to the questions above.

Theorem 1.1. There exists a 0-dimensional T> space X such that X is scat-
tered, aD and non linearly D.

In [15] the author showed that the existence of a locally countable, locally
compact space X of size wy; which is aD and non linearly D is independent of
ZFC. Here we refine those methods and using Shelah’s club guessing theory we
answer the above questions in ZFC.

The paper has the following structure. In Sections 2, 3 and 4 we gather all
the necessary facts about D-spaces, MAD families and club guessing. In Section
5 we define spaces X[\, u, M, C], where X and p = cf () are cardinals, M is a
MAD family on g and C is a guessing sequence. It is shown in Claim 5.2 that

(0) X[\, u, M, C] is always T», 0-dimensional and scattered.
Section 6 contains two important results:
(1) X[\, pu, M, C] is not linearly D if c¢f(A) > p (see Corollary 6.3),

(2) X[\, pu, M, C] is aD under certain assumptions (see Corollary 6.9).



Finally in Section 7 we show how to produce such spaces X[\, u, M, C] depend-
ing on the cardinal arithmetic and using Shelah’s club guessing.

Although the paper is self-contained, we attach two appendices. In Ap-
pendix A, we present a few more facts about D and aD-spaces and explain why
the problem under consideration is relevant. In Appendix B, we give a bit more
detailed explanation of guessing sequences.

The reader is supposed to be familiar with the basic notions and notations
of set-theory and general topology. However, for undefined terms and notations
see [9] and [6], respectively.

2. Definitions

An open neighborhood assignment (ONA, in short) on a space (X, 7) is a
map U : X — 7 such that z € U(x) for every x € X. A space X is said to be a
D-space if for every neighborhood assignment U, one can find a closed discrete
D C X such that X = J,cp U(d) = JU[D] (such a set D is called a kernel for
U). In [2] the authors introduced property aD:

Definition 2.1. A space (X, 7) is said to be aD iff for each closed F C X and
for each open cover U of X there is a closed discrete A C F and ¢ : A — U
with a € ¢(a) for all a € A such that F C Up[A].

It is clear that D-spaces are aD. Proving that a space is aD, the notion of
an irreducible space will play a key role. A space X is irreducible iff every open
cover U has a minimal open refinement Uy; meaning that no proper subfamily
of Uy covers X. In [3] Arhangel’skii showed the following equivalence.

Theorem 2.2 ([3, Theorem 1.8]). A T1-space X is an aD-space if and only if
every closed subspace of X is irreducible.

Another generalization of property D is due to Guo and Junnila [8]. For a
space X a cover U is monotone iff it is linearly ordered by inclusion.

Definition 2.3. A space (X, 7) is said to be linearly D iff for any ONA U :
X — 7 for which {U(x) : x € X} is monotone, one can find a closed discrete
set D C X such that X = |JUI[D].

We will use the following characterization of linear D property. A set D C X
is said to be U-big for a cover U iff there is no U € U such that D C U.

Theorem 2.4 (|8, Theorem 2.2]). The following are equivalent for a Ti-space
X:

1. X is linearly D.

2. For every non-trivial monotone open cover U of X, there exists a closed
discrete U-big set in X.



We encourage the reader to look up Appendix A for a more detailed (and
less dry) introduction to D-spaces. We also recommend G. Gruenhage’s recently
finished survey on D-spaces [7], summarizing the facts and the work done in the
topic, stating numerous open problems.

3. Notes on MAD families

As MAD families will play an essential part in our constructions we observe
some easy facts about them. Let u be any infinite cardinal. We call M C [u]*
an almost disjoint family if |M N N| < p for all distinct M, N € M. M is
a maximal almost disjoint family (in short, a MAD family) if for all A € [u]*
there is some M € M such that |[AN M| = pu.

We will use the following rather trivial combinatorial fact.

Claim 3.1. Let M C [u]* be a MAD family and M = {M¥ : ¢ < k}. Suppose
that N € [p]* and [N \ UM'| = u for all M’ € [M|<*. Then |®| > u for
O={p<k:|NNM? =p}.

Proof. If |®| < p then with N = N\ U{M? : o € ®} € [)* we can extend the
MAD family, which is a contradiction. If |®| = p then let ® = {p : { < u}. By
transfinite induction, construct N = {n¢ : £ < pu} such that ne € N\ (J{M*#< :
¢ < &U{nc : ¢ < €}) for & < p. It is straightforward that N ¢ M and MU{N}
is almost disjoint, which is a contradiction. O

From our point of view the sizes of MAD families are important. Clearly
there is a MAD family on w of size 2*. The analogue of this does not always
hold for w;. Baumgartner in [4] proves that it is consistent with ZFC that there
is no almost disjoint family on w; of size 2“*. However, we have the following
fact.

Claim 3.2. If 2 = w; then there is a MAD family M on wy of size 2“1.

In Section 7 we use nonstationary MAD families Mygs C [u]* meaning
that Myg is a MAD family such that every M € Myg is nonstationary in .
Observe, that using Zorn’s lemma to almost disjoint families of nonstationary
sets of p we can get nonstationary MAD families.

4. Fragments of Shelah’s club guessing

The constructions of the upcoming sections will use the following amazing
results of Shelah. For a cardinal A and a regular cardinal p let Sﬁ denote the
ordinals in A with cofinality pu. For an S C S’,i‘ an S-club sequence is a sequence
C = (Cs:6 €8) such that C5 C § is a club in § of order type p.

Theorem 4.1 ([13, Claim 2.3]). Let A be a cardinal such that cf(\) > u** for
some regular p and let S C Sﬁ‘ stationary. Then there is an S-club sequence
C = (Cs :6 € 8S) such that for every club E C X there is 6 € S (equivalently,
stationary many) such that Cs C E.



A detailed proof of Theorem 4.1 can be found in [1, Theorem 2.17].

Theorem 4.2 ([14, Claim 3.5]). Let \ be a cardinal such that A\ = u™* for some
uncountable, regular p and S C Sﬁ‘ stationary. Then there is an S-club sequence

C =(Cs:6 € 8) such that Cs = {ozg : ¢ < py €6 and for every club E C A
there is § € S (equivalently, stationary many) such that:

{C<p: ag_H € E} is stationary.
For a detailed proof, see [16]. We recommend Appendix B for the reader who
first encounters guessing sequences as a brief explanation to this phenomenon.
5. The general construction

Definition 5.1. Let A > u = cf(u) be infinite cardinals. Let M C [u]* be
a MAD family, M = {M? : ¢ < k} and let C = {Cqo : a € S}} denote an
Sﬁ-club sequence. We define a topological space X = X[\, u, M, C] as follows.
The underlying set of our topology will be a subset of the product \ X k. Let

o X, ={(a,0)} foroze)\\S,i‘,
. Xa:{a}XHfOTQESﬁ‘,
o X =U{Xa:a<A}

Let C, = {a§ : € < u} denote the increasing enumeration for o € S;). For each
a € Sﬁ‘ let

o I§ = (af,aStY] for € € succ(u) U {0},
o 1§ = [af, a5t for & € lim(u).

Note that |J{IS : € < u} = (a2, ) is a disjoint union.
Define the topology on X by neighborhood bases as follows;

(i) foraeS;) and ¢ < K let

Ul(es9),m) = {(a, @)y U|HX, sy € VIS : € € MP\ )} for < o

and let
Bla, ) = {U((e,9),m) 11 < p}
be a base for the point («, ).



(ii) for a € Si# U succ(N\) U {0} let (o, 0) be an isolated point,

(iii) for o € S;/)’ where ' > p let

U(a,ﬁ)zU{XV:6<'y§a}forﬁ<a

and let
B(a) ={U(a,B) : B < a}

be a base for the point (c,0).

It is straightforward to check that these basic open sets form neighborhood
bases.

*

Fix some cardinals A > p = c¢f(u), a MAD family M = {M? : p < k} C [u]*
and S)-club sequence C. In the following X = X[\, pu, M, C].

Claim 5.2. The space X[\, u, M, C] is 0-dimensional, To and scattered. Ob-
serve that

(a) Xq is closed discrete for all oo < X, moreover

(b) U{Xo:a € A} is closed discrete for all A € [A\]<H,
(c) X<o =U{Xp:0 <a} is clopen for all o < .

Proof. First we prove that X[\, u, M, C] is T>. Note that
() U{X,:B8 <y <a}isclopen forall 8 < a <A

Thus (a, ¢), (¢/,¢’) € X can be separated trivially if & # «’. Suppose that
a=da € S,i‘ and ¢ # ¢’ < k. There is n < p such that (M¥ N M? )\ n =0
since [M¥ N M#'| < p. Thus U((ev, ©),1) NU((e, '), ) = 0.

Next we show that X[\, u, M, (] is 0-dimensional. By (x) it is enough to
prove that U((«, ), n) is closed for all « € Sﬁ, ¢ < k and n < p. Suppose
x = (,¢") € X\ U((a,),n), we want to separate = from U((a, ¢),n) by



an open set. Let o = o/. There is 7 < p such that (M® N M# )\ 7 = 0,
thus U((o, ¢),n) NU((a,¢"),n') = 0. Let a # o/. If o’ € S2,, Usucc(A) U {0}
then z is isolated, thus we are done. Suppose a € Sﬁ‘, where p/ > p. Then
B =sup(Cy \ &) < & thus U(e/, B) NU((ar, ), m) = 0.

X[\, p, M, C] is scattered since X [, u, M, C] is right separated by the lex-
icographical ordering on A x k.

(a) and (c) is trivial, we prove (b). Suppose z = (¢/,¢’) € X, we prove
that there is a neighborhood U of = such that |UNU{X, : @ € A} < 1. If
o € 52, Usucc(A) U {0} then  is isolated, thus we are done. Suppose o € Sﬁ/
where f/ > p. Then 8 =sup(A4\ o) < ¢ thus the open set U = {z} U J{X} :
B < v < a} will do the job. O

6. Focusing on property D and aD

Again fix some cardinals A > u = cf(u), a MAD family M = {M¥? : ¢ <
k} C [u]* and S}-club sequence C. Our next aim is to investigate the spaces
X = X[\, p, M, C] concerning property D and aD.

Definition 6.1. Let 7(F) ={a < X: FNX, #0} for F C X. F is said to be
(un)bounded if 7(F) is (un)bounded in .

Claim 6.2. If F C X and ©(F) accumulates to o € S;? such that p < n < A
then F' N X, # 0.

Proof. If n > p then X, = {(,0)} and each neighborhood U(«, 8) of («,0)
intersects F. Thus F' N X, # (. Let us suppose that 7(F) accumulates to
a € S). Since J{I§ : £ < p} = (b, ), the set N = {& < p: I§ Nw(F) # 0}
has cardinality p. Thus there is some ¢ < & such that |[N N M?| = u, since M
is MAD family. It is straightforward that (o, ) € F’ since U((ov, ), n) N F # ()
for all n < pu. O

Corollary 6.3. If cf(\) > p then a closed unbounded subspace F C X is not a
linearly D-subspace of X. Hence X[\, u, M, C] is not a linearly D-space.

Proof. Let F' C X be closed unbounded. |7(D)| < u for every closed discrete
D C X by Claim 6.2. Thus there is no big closed discrete set for the open cover
{X<q : @ < A} which shows that F is not linearly D by Theorem 2.4. O

Our aim now is to prove that in certain cases the space X[\, u, M, C] is an
aD-space, equivalently every closed subspace of it is irreducible; see Theorem
2.2.

Claim 6.4. Every closed, bounded subspace F C X is a D-subspace of X ; hence
F' s irreducible.

Proof. We prove that FF C X is a D-subspace of X by induction on o =
supm(F) < A\. Let U : F — 7 be an ONA. If « is a successor (or o = 0),
then Fy = F \ U((«,0)) is closed and sup(Fp) < « thus we are easily done by
induction.



Let o € S5 where < pi < A. Then sup w(Fp) < a where Fy = F\UU[X,N
F] by Claim 6.2. Thus we are easily done by induction and the fact that X, is
closed discrete.

Now let v = ef(«) < p, let sup{ae : £ < v} = « such that ap = 0 and
{ae : £ < v} is strictly increasing. Let Je = (H{ X, 1 ¢ <y <o} ifE <v
is limit or £ = 0 and Je = U{X, : a¢ < v < agq1} if £ < v is a successor. Let
Jy, = Xa. Clearly {J¢ : £ < v} is a discrete family of disjoint clopen sets such
that {Je : € <v} = X<p. F=J{F¢: ¢ <v} where F€ = F N Jg is closed for
¢ < v. By induction, for all £ < v there is some closed discrete kernel D¢ C F¢
for the restriction of U to F€. Let DY = F”. Then D = |J{D¢ : ¢ < v} is closed
discrete and F' C UU[D]. O

To handle the unbounded closed subsets we need the following definition.

Definition 6.5. Let I, = FN X, for F C X and a < A. A subset F' C X is
high enough if
Ho <At |Fa| = [F[} > p

We say that a subset F' C X is high if every closed unbounded subset of F is
high enough.

The following rather technical claim will be useful.

Claim 6.6. For any F' C X and ONA U : F — 7 such that U(z) is a basic
open neighborhood of x € F, let

Yr={z € F:3a< \: F, CU(x),|F,| =|F|},
IFrp={a<X:|F,|=|F|,3z€ F:F, CU(x)}.
If F is closed and high enough then Yr,T'r # (.

Proof. Since Yr # 0 iff T # (), it is enough to show that there is some x € Y.
Since F' is high enough, |Z| > p for Z = {&/ < A : |F| = |Fy|}. Let D =
U{Fo : o/ € Z} C F. Let § € S be an accumulation point of Z = (D).
Then by Claim 6.2 there is some = € D’ N Xg thus € F. Clearly z € Yp. O

Theorem 6.7. If the closed unbounded F C X is high then F is irreducible.

Proof. Suppose that U is an open cover of F'. We can suppose that we refined
it to the form {U(z) : x € F'} where each U(z) is basic open. From Claim 6.6
we know that Yz, T'p # (). We define Y¢ C F by induction.

e Let g €eTpand Y = {z € Yp : F,, CU(z)}. Fix some h°:Y? — F,;
injection; this exists because |Fy,| = |F| > |Yr| > [Y].

e Suppose we defined ac < A and Y© for ¢ < €. Let

Fe= P\ ((J{U@) sz e 0y ¢ <} U Xaa)

where o = sup{a¢ : ¢ < &}.



e If F* is bounded then stop. Notice that Fe is bounded iff F\ J{U(z) :
x € U{YC: ( <&}} is bounded.

e Suppose F¢ is unbounded. F¢ C F is closed either thus F¢ is high enough
since F' is high. Hence Ype,'pe # 0.

o Let ag € Tpe; thus [F5,| = [F¢| and F§, is covered by some U(z) for
r € FS Let Y& = {z € Ype : Fai C U(x)}. Fix some h® : Y& — Fai
injection; this exists because |F5, | = [F&| > [Ype| > [YE].

Lemma 6.8. The induction stops before u many steps.

Proof. Suppose we defined this way {a¢ : £ < p} and let o = sup{ae : § < p} €
S Let D = {Fa, : £ < p}. By Claim 6.2 there is some z € D' N X, thus
x € F either. Clearly F,, C U(x) for p many § < p. By the definition of the
induction

(%) for every ( < & < p and every y € Y: F§§ NU(y) =0

Clearly by (), z ¢ Y¢ for all ¢ < p since there is ( < & < p such that
F§E C U(x). Moreover = ¢ U(y) for every y € Y¢ and ¢ < p; if z € U(y) then
since x # y there is some § < «a such that (J{X, : 8 <y < a} CU(y). This
contradicts (x) since there is ¢ < & < p such that 3 < ag, thus F5, C U(y).
Thus z € F¢ for all £ < p. Then z € Y for all £ < p such that F,, C U(x).
This is a contradiction. O

Thus let us suppose that the induction stopped at step £ < p, meaning that
F = F\U{U(x) : = € Y} is bounded where Y = U{Y¢ : ¢ < &}. Let
h=J{h¢: (<&}, h:Y — Fisa 1-1 function since the sets dom(h¢) = Y©
and ran(h¢) C F§_ are pairwise disjoint for ¢ < &. Note that ran(h) € U{Fa, :
¢ < &} is closed discrete by Claim 5.2. For z € Y let

Uo(z) = (U(x) \ ran(h)) U {h(z)},

note that Up(x) is open. Then

U{Uo(:t) rxeY} = U{U(:E) czxeY}

is a minimal open refinement, since h(z) is only covered by Uy(z) for all z € Y.
Let Uy = {Uo(I) T e Y}

Let V(z) = U(z) \U{Fa : ¢ < €}. Then V = {V(z) : = € F} is an
open cover of ﬁ, refining U; F,, N F=9 by construction for all { < &. Fis
closed and bounded thus irreducible by Claim 6.4, hence there is an irreducible
open refinement Vy of V. It is straightforward that Vy Ul is a minimal open
refinement of U covering F'. (]



Corollary 6.9. Suppose that A > p = cf () are infinite cardinals such that
cf(N) > p. Let M = {M? : ¢ < k} C [u]* be a MAD family and C an S;,-
club sequence. If X[\, u, M, C] is high then X[\, p, M,C] is a 0-dimensional,
Hausdorff, scattered space which is aD however not linearly D.

Proof. X[\, u, M, C] is 0-dimensional, Hausdorff and scattered by Claim 5.2 and
not linearly D by Corollary 6.3. It suffices to show that every closed F' C X is
irreducible. If F' is bounded then F' is a D-space by Claim 6.4 hence irreducible.
If F' is unbounded, then F is high since X is high. Hence F is irreducible by
Theorem 6.7. O

7. Examples of aD, non linearly D-spaces

In this section we give examples of aD, non linearly D-spaces of the form
X = X[\, 1, M, C]. First let us make an observation.

Claim 7.1. If C,, C w(F) for a closed F C X and « € Sﬁ, then F, = X,.

Proof. Clearly {X, : v € I} N F # () for all £ < p. Thus every point in X,
is an accumulation point of F, thus F, = X, since F' is closed. O

Corollaries 7.3 and 7.5 below give certain examples of high X[\, u, M, C]
spaces.

Proposition 7.2. Suppose that i is a reqular cardinal, cf(\) > p™. Let C be
an Sﬁ‘—club guessing sequence from Theorem 4.1. If M C [u]* is a MAD family
of size at least \ then X[\, u, M, C] is high.

Proof. Let F C X closed, unbounded. Then 7(F)’ is a club in A, hence there
exists a stationary S C Sl’) such that C, C w(F)’ for all « € S. Thus F,, = X,
by Claim 7.1 hence |F,| = |M| = |X|forall a € S. O

Corollary 7.3. 1. Suppose that 2 > wy. Let M be a MAD family on w
of size 2% and let C be an S&2-club guessing sequence from Theorem 4.1.
Then X|we,w, M, C] is high.

2. Suppose that 2 = w1 and 2“* > ws3. Let M be a MAD family on wy of
size 21 (emists by Claim 3.2) and let C be an S&3-club guessing sequence
from Theorem 4.1. Then X|ws,w1, M, C] is high.

Proposition 7.4. Suppose that A = p+ > u = cf(u) > w and let C be an Sﬁ+—
club guessing sequence from Theorem 4.2. If there is a nonstationary MAD
family Mys C [u]* such that [Mys| = pt then X = X[ut, pu, Mns,C] is
high.

Proof. Let Myg = {M?¢ : ¢ < pt} and C = (Cy : o € Sﬁ+> such that
C, ={a§ : € < u} C a. Suppose that the closed F C X is unbounded. Then
7m(F)" is a club in p*, hence there exists a stationary S C Sl’f such that

Ny = {6 < p:af™ € n(F)'} is stationary in u

10



for all @« € S. Fix any a € S, we prove that |F,| = |F|. N, is stationary so by
applying Claim 3.1 we get that |®,| = pT for &, = {p < pu : [Ny N M?| = pu}.
Note that F N J{X, : v € I§} # 0 for £ € N,. Thus (o, ¢) is an accumulation
point of F for ¢ € @, hence {a} x &, C F,. Thus |F,| = p™ = |X|. O

Corollary 7.5. Suppose that 2 = wy. Let C be an S32-club guessing sequence
from Theorem 4.2 and let M s be a nonstationary MAD family on wy. Then
X[WQ; w1, MNS? Q] is hlgh

Thus, by all means we can deduce the proof of Theorem 1.1.

Proof of Theorem 1.1. Note that in any model of ZFC, either (2* > ws) or
(2¥ = wy; A2 > ws) or (2! = wy). Using Corollaries 7.3 and 7.5 above, de-
pending on the sizes of 2* and 2“, we see that there exists a high X[\, u, M, C|
space. We are done by Corollary 6.9. O
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Appendix A.

The aim of this section is to motivate the study of D-spaces and related
properties, as well as to present a few facts about the relationship between
standard covering properties and D, aD-spaces. We shall also see, that the
above solved problem was worth studying.

Appendiz A.1. Motivation for D-spaces

Compactness is one of the main concepts of general topology. A space X
is compact iff every open cover of X has a finite subcover. Equivalently, if for
every open neighborhood assignment « — U (z), there is a finite subset D C X
such that X = UU[D]. Note, that if X is compact then D C X is finite iff it is
closed and discrete. Thus, the definition of D-spaces is a logical generalization
of compactness.

Definition Appendix A.1. A space X is said to be a D-space if for every
neighborhood assignment U, one can find a closed discrete D C X such that
X = UdeDU(d) =UU[D]

If we restrict our definition to monotone covers of a space X, we get the
definition of linearly D-spaces, see Definition 2.3.

It is easy to see, that every compact space X is irreducible, that is, each
open cover U of X has a minimal open refinement Uy. Meaning, that there
is no proper subfamily of Uy covering X. This observation is generalized with
property aD. Indeed, from Theorem 2.2 we know that a 7T} space X is aD iff
every closed subset F' C X is irreducible.

Now, it is straightforward to ask two things.

11



1. What is the connection between these covering properties?

2. How are they connected to classical covering properties?

Concerning the first question, it is easy to see that every D-space is aD and of
course linearly D. The result of this paper is that the converse is not true. That
is, by Theorem 1.1 there exists an aD-space which is not D or even linearly D.
The second question is a harder one, and we discuss it in the next section.

Appendiz A.2. Relationship to covering properties

The following are easy to see.
Proposition Appendix A.2.
1. Every compact, moreover every o-compact space is a D-space.

2. Every countably compact D-space is compact.

Despite the work done in the topic by many great mathematicians, we lack
theorems stating, that a classical covering property, that is fairly weaker than
compactness, imply D. In fact, the following covering properties are not known
to imply property D (even if you add "hereditarily"):

Lindel6f, paracompact, ultraparacompact, strongly paracompact, metacompact,
metalindel6f, subparacompact, submetacompact, submetalindel6f, paralindelof,
screenable, o-metacompact.

Actually, the problem, whether Lindel6f implies D, is the 14th of the twenty
central problems in set-theoretic topology [12]. However, Arhangel’skii proved
the following.

Theorem Appendix A.3 ([3, Theorem 1.15]). Every submetalindeldf Ty space
s aD.

Submetalindeldfness is a significant weakening of both Lindel6fness and para-
compactness.

Definition Appendix A.4. A space X is submetalindelof iff for every open
cover U of X there are {U,, : n € w} open refinements of U covering X such
that for every x € X there is n € w such that {U e Uy, : x € U}| < w.

Thus, until the recent results of this paper, there was the hope to prove
aD = D and settle the above hard-to-attack problems.
Let us cite another result.

Theorem Appendix A.5 ([8, Proposition 2.11]). FEvery submetalindelof Ty
space s linearly D.

12



Thus, unfortunately, our constructions cannot be examples of non D-spaces
satisfying some classical covering properties (since they are not linearly D). If
there is such an example, it must be a non D-space with both property aD and
linear D.

Despite all the open problems, there are fascinating results either. We take
the opportunity again to recommend G. Gruenhage’s survey on D-spaces [7],
which contains all that we know and do not know about the topic.

Appendix B.

In the following, we give a very brief introduction to guessing sequences.
Informally, a guessing sequence S on a cardinal k is a family of subsets of x,
which in some way "guesses" all subsets of , while |S| < 2.

The first appearance of guessing sequences was in the following principle of
Jensen [10], called diamond, denoted by <.

Definition Appendix B.1. { is the statement that there exists a sequence
S = (An : a < wi) of subsets of w1 such that for every A C wy there is some
a < wp such that ANa = A,.

Jensen discovered this principle while investigating Godel’s constructible uni-
verse and used < to prove the existence of a combinatorial object, a Suslin-tree.

A well known weakening of Jensen’s ¢ was introduced by Ostaszewski in
[11], called the club principle, denoted by &. It was used in [11] to define a
topology on w; with certain interesting properties.

Definition Appendix B.2. & is the statement that there exists a sequence
S=(A,:a<wi) such that

1. A, C «is an w-type sequence cofinal in o for every a € wy,

2. for every A € [w1]“? there is some o < wy such that A, C A.

Since their introductions, these principles and their generalizations became
very popular. They are commonly used to attack problems in set-theory or
topology, as well as in measure theory or group theory.

However, both {5 and & share the property that they are independent of the
classical ZFC axioms of set theory. Meaning that there are models of set theory
where ¢ holds (see Gédel’s V = L), and there are models where ¢ fails (under
Martin’s axiom). The same is true for &.

Therefore, it was a surprising result when Shelah came up with certain kinds
of guessing sequences, which’s existence can be proven from ZFC only. Section
4 contains the results important to us. The club guessing theory, when we only
aim to guess club subsets, was used to prove coloring-theorems, in pcf theory
or to prove the existence of Jonsson-algebras.

Although {-like principles are frequently used in general topology, there was
a lack of direct applications of club-guessing till now; the only one found by the
author is in [5].
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