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1. Introdu
tionThe notion of a D-spa
e was probably �rst introdu
ed by van Douwen andsin
e than, many work had been done in this topi
. Investigating the proper-ties of D-spa
es and the 
onne
tions between other 
overing properties led tothe de�nition of aD-spa
es, de�ned by Arhangel'skii in [2℄. As it turned out,property aD is mu
h more do
ile then property D. In [3℄ Arhangel'skii askedthe following, as one of the "most intriguing problems in the theory of D and
aD-spa
es":Problem 4.6. Is there a Ty
hono� aD-spa
e whi
h is not a D-spa
e?A negative answer to this question would settle almost all of the questionsabout the relationship of 
lassi
al 
overing properties to property D. Quite sim-ilarly, Guo and Junnila in [8℄ asked the following about a weakening of property
D: Problem 2.12. Is every aD-spa
e linearly D?In G. Gruenhage's survey on D-spa
es [7℄, another version of this questionis stated (besides the original Arhangel'skii), namely:Question 3.6(2) Is every s
attered, aD-spa
e a D-spa
e?The main result of this paper is the following answer to the questions above.Theorem 1.1. There exists a 0-dimensional T2 spa
e X su
h that X is s
at-tered, aD and non linearly D.In [15℄ the author showed that the existen
e of a lo
ally 
ountable, lo
ally
ompa
t spa
e X of size ω1 whi
h is aD and non linearly D is independent ofZFC. Here we re�ne those methods and using Shelah's 
lub guessing theory weanswer the above questions in ZFC.The paper has the following stru
ture. In Se
tions 2, 3 and 4 we gather allthe ne
essary fa
ts about D-spa
es, MAD families and 
lub guessing. In Se
tion5 we de�ne spa
es X [λ, µ,M, C], where λ and µ = cf(µ) are 
ardinals, M is aMAD family on µ and C is a guessing sequen
e. It is shown in Claim 5.2 that(0) X [λ, µ,M, C] is always T2, 0-dimensional and s
attered.Se
tion 6 
ontains two important results:(1) X [λ, µ,M, C] is not linearly D if cf(λ) ≥ µ (see Corollary 6.3),(2) X [λ, µ,M, C] is aD under 
ertain assumptions (see Corollary 6.9).2



Finally in Se
tion 7 we show how to produ
e su
h spa
es X [λ, µ,M, C] depend-ing on the 
ardinal arithmeti
 and using Shelah's 
lub guessing.Although the paper is self-
ontained, we atta
h two appendi
es. In Ap-pendix A, we present a few more fa
ts about D and aD-spa
es and explain whythe problem under 
onsideration is relevant. In Appendix B, we give a bit moredetailed explanation of guessing sequen
es.The reader is supposed to be familiar with the basi
 notions and notationsof set-theory and general topology. However, for unde�ned terms and notationssee [9℄ and [6℄, respe
tively.2. De�nitionsAn open neighborhood assignment (ONA, in short) on a spa
e (X, τ) is amap U : X → τ su
h that x ∈ U(x) for every x ∈ X . A spa
e X is said to be aD-spa
e if for every neighborhood assignment U , one 
an �nd a 
losed dis
rete
D ⊆ X su
h that X =

⋃
d∈D U(d) =

⋃
U [D] (su
h a set D is 
alled a kernel for

U). In [2℄ the authors introdu
ed property aD:De�nition 2.1. A spa
e (X, τ) is said to be aD i� for ea
h 
losed F ⊆ X andfor ea
h open 
over U of X there is a 
losed dis
rete A ⊆ F and φ : A → Uwith a ∈ φ(a) for all a ∈ A su
h that F ⊆ ∪φ[A].It is 
lear that D-spa
es are aD. Proving that a spa
e is aD, the notion ofan irredu
ible spa
e will play a key role. A spa
e X is irredu
ible i� every open
over U has a minimal open re�nement U0; meaning that no proper subfamilyof U0 
overs X . In [3℄ Arhangel'skii showed the following equivalen
e.Theorem 2.2 ([3, Theorem 1.8℄). A T1-spa
e X is an aD-spa
e if and only ifevery 
losed subspa
e of X is irredu
ible.Another generalization of property D is due to Guo and Junnila [8℄. For aspa
e X a 
over U is monotone i� it is linearly ordered by in
lusion.De�nition 2.3. A spa
e (X, τ) is said to be linearly D i� for any ONA U :
X → τ for whi
h {U(x) : x ∈ X} is monotone, one 
an �nd a 
losed dis
reteset D ⊆ X su
h that X =

⋃
U [D].We will use the following 
hara
terization of linear D property. A set D ⊆ Xis said to be U-big for a 
over U i� there is no U ∈ U su
h that D ⊆ U .Theorem 2.4 ([8, Theorem 2.2℄). The following are equivalent for a T1-spa
eX:1. X is linearly D.2. For every non-trivial monotone open 
over U of X, there exists a 
loseddis
rete U-big set in X. 3



We en
ourage the reader to look up Appendix A for a more detailed (andless dry) introdu
tion to D-spa
es. We also re
ommend G. Gruenhage's re
ently�nished survey on D-spa
es [7℄, summarizing the fa
ts and the work done in thetopi
, stating numerous open problems.3. Notes on MAD familiesAs MAD families will play an essential part in our 
onstru
tions we observesome easy fa
ts about them. Let µ be any in�nite 
ardinal. We 
all M ⊆ [µ]µan almost disjoint family if |M ∩ N | < µ for all distin
t M, N ∈ M. M isa maximal almost disjoint family (in short, a MAD family) if for all A ∈ [µ]µthere is some M ∈ M su
h that |A ∩ M | = µ.We will use the following rather trivial 
ombinatorial fa
t.Claim 3.1. Let M ⊆ [µ]µ be a MAD family and M = {Mϕ : ϕ < κ}. Supposethat N ∈ [µ]µ and |N \ ∪M′| = µ for all M′ ∈ [M]<µ. Then |Φ| > µ for
Φ = {ϕ < κ : |N ∩ Mϕ| = µ}.Proof. If |Φ| < µ then with Ñ = N \

⋃
{Mϕ : ϕ ∈ Φ} ∈ [µ]µ we 
an extend theMAD family, whi
h is a 
ontradi
tion. If |Φ| = µ then let Φ = {ϕζ : ζ < µ}. Bytrans�nite indu
tion, 
onstru
t Ñ = {nξ : ξ < µ} su
h that nξ ∈ N \ (

⋃
{Mϕζ :

ζ < ξ}∪{nζ : ζ < ξ}) for ξ < µ. It is straightforward that Ñ /∈ M andM∪{Ñ}is almost disjoint, whi
h is a 
ontradi
tion.From our point of view the sizes of MAD families are important. Clearlythere is a MAD family on ω of size 2ω. The analogue of this does not alwayshold for ω1. Baumgartner in [4℄ proves that it is 
onsistent with ZFC that thereis no almost disjoint family on ω1 of size 2ω1 . However, we have the followingfa
t.Claim 3.2. If 2ω = ω1 then there is a MAD family M on ω1 of size 2ω1.In Se
tion 7 we use nonstationary MAD families MNS ⊆ [µ]µ meaningthat MNS is a MAD family su
h that every M ∈ MNS is nonstationary in µ.Observe, that using Zorn's lemma to almost disjoint families of nonstationarysets of µ we 
an get nonstationary MAD families.4. Fragments of Shelah's 
lub guessingThe 
onstru
tions of the up
oming se
tions will use the following amazingresults of Shelah. For a 
ardinal λ and a regular 
ardinal µ let Sλ
µ denote theordinals in λ with 
o�nality µ. For an S ⊆ Sλ

µ an S-
lub sequen
e is a sequen
e
C = 〈Cδ : δ ∈ S〉 su
h that Cδ ⊆ δ is a 
lub in δ of order type µ.Theorem 4.1 ([13, Claim 2.3℄). Let λ be a 
ardinal su
h that cf(λ) ≥ µ++ forsome regular µ and let S ⊆ Sλ

µ stationary. Then there is an S-
lub sequen
e
C = 〈Cδ : δ ∈ S〉 su
h that for every 
lub E ⊆ λ there is δ ∈ S (equivalently,stationary many) su
h that Cδ ⊆ E. 4



A detailed proof of Theorem 4.1 
an be found in [1, Theorem 2.17℄.Theorem 4.2 ([14, Claim 3.5℄). Let λ be a 
ardinal su
h that λ = µ+ for someun
ountable, regular µ and S ⊆ Sλ
µ stationary. Then there is an S-
lub sequen
e

C = 〈Cδ : δ ∈ S〉 su
h that Cδ = {αδ
ζ : ζ < µ} ⊆ δ and for every 
lub E ⊆ λthere is δ ∈ S (equivalently, stationary many) su
h that:

{ζ < µ : αδ
ζ+1 ∈ E} is stationary.For a detailed proof, see [16℄. We re
ommend Appendix B for the reader who�rst en
ounters guessing sequen
es as a brief explanation to this phenomenon.5. The general 
onstru
tionDe�nition 5.1. Let λ > µ = cf(µ) be in�nite 
ardinals. Let M ⊆ [µ]µ bea MAD family, M = {Mϕ : ϕ < κ} and let C = {Cα : α ∈ Sλ

µ} denote an
Sλ

µ-
lub sequen
e. We de�ne a topologi
al spa
e X = X [λ, µ,M, C] as follows.The underlying set of our topology will be a subset of the produ
t λ × κ. Let
• Xα = {(α, 0)} for α ∈ λ \ Sλ

µ ,
• Xα = {α} × κ for α ∈ Sλ

µ ,
• X =

⋃
{Xα : α < λ}.Let Cα = {aξ
α : ξ < µ} denote the in
reasing enumeration for α ∈ Sλ

µ . For ea
h
α ∈ Sλ

µ let
• Iξ

α = (aξ
α, aξ+1

α ] for ξ ∈ su

(µ) ∪ {0},
• Iξ

α = [aξ
α, aξ+1

α ] for ξ ∈ lim(µ).Note that ⋃
{Iξ

α : ξ < µ} = (a0
α, α) is a disjoint union.De�ne the topology on X by neighborhood bases as follows;(i) for α ∈ Sλ

µ and ϕ < κ let
U((α, ϕ), η) = {(α, ϕ)} ∪

⋃
{Xγ : γ ∈ ∪{Iξ

α : ξ ∈ Mϕ \ η}} for η < µand let
B(α, ϕ) = {U((α, ϕ), η) : η < µ}be a base for the point (α, ϕ).
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<µ ∪ su

(λ) ∪ {0} let (α, 0) be an isolated point,(iii) for α ∈ Sλ
µ′ where µ′ > µ let

U(α, β) =
⋃

{Xγ : β < γ ≤ α} for β < αand let
B(α) = {U(α, β) : β < α}be a base for the point (α, 0).It is straightforward to 
he
k that these basi
 open sets form neighborhoodbases.

⋆Fix some 
ardinals λ > µ = cf(µ), a MAD familyM = {Mϕ : ϕ < κ} ⊆ [µ]µand Sλ
µ-
lub sequen
e C. In the following X = X [λ, µ,M, C].Claim 5.2. The spa
e X [λ, µ,M, C] is 0-dimensional, T2 and s
attered. Ob-serve that(a) Xα is 
losed dis
rete for all α < λ, moreover(b) ⋃
{Xα : α ∈ A} is 
losed dis
rete for all A ∈ [λ]<µ,(
) X≤α =

⋃
{Xβ : β ≤ α} is 
lopen for all α < λ.Proof. First we prove that X [λ, µ,M, C] is T2. Note that(∗) ⋃

{Xγ : β < γ ≤ α} is 
lopen for all β < α < λ.Thus (α, ϕ), (α′, ϕ′) ∈ X 
an be separated trivially if α 6= α′. Suppose that
α = α′ ∈ Sλ

µ and ϕ 6= ϕ′ < κ. There is η < µ su
h that (Mϕ ∩ Mϕ′

) \ η = ∅sin
e |Mϕ ∩ Mϕ′

| < µ. Thus U((α, ϕ), η) ∩ U((α, ϕ′), η) = ∅.Next we show that X [λ, µ,M, C] is 0-dimensional. By (∗) it is enough toprove that U((α, ϕ), η) is 
losed for all α ∈ Sλ
µ , ϕ < κ and η < µ. Suppose

x = (α′, ϕ′) ∈ X \ U((α, ϕ), η), we want to separate x from U((α, ϕ), η) by6



an open set. Let α = α′. There is η′ < µ su
h that (Mϕ ∩ Mϕ′

) \ η′ = ∅,thus U((α, ϕ), η) ∩ U((α, ϕ′), η′) = ∅. Let α 6= α′. If α′ ∈ Sλ
<µ ∪ su

(λ) ∪ {0}then x is isolated, thus we are done. Suppose α ∈ Sλ

µ′ where µ′ ≥ µ. Then
β = sup(Cα \ α′) < α′ thus U(α′, β) ∩ U((α, ϕ), η) = ∅.

X [λ, µ,M, C] is s
attered sin
e X [λ, µ,M, C] is right separated by the lex-i
ographi
al ordering on λ × κ.(a) and (
) is trivial, we prove (b). Suppose x = (α′, ϕ′) ∈ X , we provethat there is a neighborhood U of x su
h that |U ∩
⋃
{Xα : α ∈ A}| ≤ 1. If

α′ ∈ Sλ
<µ ∪ su

(λ) ∪ {0} then x is isolated, thus we are done. Suppose α ∈ Sλ

µ′where µ′ ≥ µ. Then β = sup(A \ α′) < α′ thus the open set U = {x} ∪
⋃
{Xγ :

β < γ < α} will do the job.6. Fo
using on property D and aDAgain �x some 
ardinals λ > µ = cf(µ), a MAD family M = {Mϕ : ϕ <
κ} ⊆ [µ]µ and Sλ

µ-
lub sequen
e C. Our next aim is to investigate the spa
es
X = X [λ, µ,M, C] 
on
erning property D and aD.De�nition 6.1. Let π(F ) = {α < λ : F ∩ Xα 6= ∅} for F ⊆ X. F is said to be(un)bounded if π(F ) is (un)bounded in λ.Claim 6.2. If F ⊆ X and π(F ) a

umulates to α ∈ Sλ

η su
h that µ ≤ η < λthen F ′ ∩ Xα 6= ∅.Proof. If η > µ then Xα = {(α, 0)} and ea
h neighborhood U(α, β) of (α, 0)interse
ts F . Thus F ′ ∩ Xα 6= ∅. Let us suppose that π(F ) a

umulates to
α ∈ Sλ

µ . Sin
e ⋃
{Iξ

α : ξ < µ} = (a0
α, α), the set N = {ξ < µ : Iξ

α ∩ π(F ) 6= ∅}has 
ardinality µ. Thus there is some ϕ < κ su
h that |N ∩ Mϕ| = µ, sin
e Mis MAD family. It is straightforward that (α, ϕ) ∈ F ′ sin
e U((α, ϕ), η)∩F 6= ∅for all η < µ.Corollary 6.3. If cf(λ) ≥ µ then a 
losed unbounded subspa
e F ⊆ X is not alinearly D-subspa
e of X. Hen
e X [λ, µ,M, C] is not a linearly D-spa
e.Proof. Let F ⊆ X be 
losed unbounded. |π(D)| < µ for every 
losed dis
rete
D ⊆ X by Claim 6.2. Thus there is no big 
losed dis
rete set for the open 
over
{X≤α : α < λ} whi
h shows that F is not linearly D by Theorem 2.4.Our aim now is to prove that in 
ertain 
ases the spa
e X [λ, µ,M, C] is an
aD-spa
e, equivalently every 
losed subspa
e of it is irredu
ible; see Theorem2.2.Claim 6.4. Every 
losed, bounded subspa
e F ⊆ X is a D-subspa
e of X; hen
e
F is irredu
ible.Proof. We prove that F ⊆ X is a D-subspa
e of X by indu
tion on α =
sup π(F ) < λ. Let U : F → τ be an ONA. If α is a su

essor (or α = 0),then F0 = F \ U((α, 0)) is 
losed and sup(F0) < α thus we are easily done byindu
tion. 7



Let α ∈ Sλ
µ′ where µ ≤ µ′ < λ. Then sup π(F0) < α where F0 = F \∪U [Xα∩

F ] by Claim 6.2. Thus we are easily done by indu
tion and the fa
t that Xα is
losed dis
rete.Now let ν = cf(α) < µ, let sup{αξ : ξ < ν} = α su
h that α0 = 0 and
{αξ : ξ < ν} is stri
tly in
reasing. Let Jξ =

⋃
{Xγ : αξ ≤ γ ≤ αξ+1} if ξ < νis limit or ξ = 0 and Jξ =

⋃
{Xγ : αξ < γ ≤ αξ+1} if ξ < ν is a su

essor. Let

Jν = Xα. Clearly {Jξ : ξ ≤ ν} is a dis
rete family of disjoint 
lopen sets su
hthat ⋃
{Jξ : ξ ≤ ν} = X≤α. F =

⋃
{F ξ : ξ ≤ ν} where F ξ = F ∩Jξ is 
losed for

ξ ≤ ν. By indu
tion, for all ξ < ν there is some 
losed dis
rete kernel Dξ ⊆ F ξfor the restri
tion of U to F ξ. Let Dν = F ν . Then D =
⋃
{Dξ : ξ ≤ ν} is 
loseddis
rete and F ⊆ ∪U [D].To handle the unbounded 
losed subsets we need the following de�nition.De�nition 6.5. Let Fα = F ∩ Xα for F ⊆ X and α < λ. A subset F ⊆ X ishigh enough if

|{α < λ : |Fα| = |F |}| ≥ µ.We say that a subset F ⊆ X is high if every 
losed unbounded subset of F ishigh enough.The following rather te
hni
al 
laim will be useful.Claim 6.6. For any F ⊆ X and ONA U : F → τ su
h that U(x) is a basi
open neighborhood of x ∈ F , let
YF = {x ∈ F : ∃α < λ : Fα ⊆ U(x), |Fα| = |F |},

ΓF = {α < λ : |Fα| = |F |, ∃x ∈ F : Fα ⊆ U(x)}.If F is 
losed and high enough then YF , ΓF 6= ∅.Proof. Sin
e YF 6= ∅ i� ΓF 6= ∅, it is enough to show that there is some x ∈ YF .Sin
e F is high enough, |Z| ≥ µ for Z = {α′ < λ : |F | = |Fα′ |}. Let D =⋃
{Fα′ : α′ ∈ Z} ⊆ F . Let β ∈ Sλ

µ be an a

umulation point of Z = π(D).Then by Claim 6.2 there is some x ∈ D′ ∩ Xβ thus x ∈ F . Clearly x ∈ YF .Theorem 6.7. If the 
losed unbounded F ⊆ X is high then F is irredu
ible.Proof. Suppose that U is an open 
over of F . We 
an suppose that we re�nedit to the form {U(x) : x ∈ F} where ea
h U(x) is basi
 open. From Claim 6.6we know that YF , ΓF 6= ∅. We de�ne Y ξ ⊆ F by indu
tion.
• Let α0 ∈ ΓF and Y 0 = {x ∈ YF : Fα0

⊆ U(x)}. Fix some h0 : Y 0 → Fα0inje
tion; this exists be
ause |Fα0
| = |F | ≥ |YF | ≥ |Y 0|.

• Suppose we de�ned αζ < λ and Y ζ for ζ < ξ. Let
F ξ = F \

(⋃{
U(x) : x ∈ ∪{Y ζ : ζ < ξ}

}
∪ X≤α

)where α = sup{αζ : ζ < ξ}. 8



• If F ξ is bounded then stop. Noti
e that Fξ is bounded i� F \
⋃{

U(x) :

x ∈ ∪{Y ζ : ζ < ξ}
} is bounded.

• Suppose F ξ is unbounded. F ξ ⊆ F is 
losed either thus F ξ is high enoughsin
e F is high. Hen
e YF ξ , ΓF ξ 6= ∅.
• Let αξ ∈ ΓF ξ ; thus |F ξ

αξ
| = |F ξ| and F ξ

αξ
is 
overed by some U(x) for

x ∈ F ξ. Let Y ξ = {x ∈ YF ξ : F ξ
αξ

⊆ U(x)}. Fix some hξ : Y ξ → F ξ
αξinje
tion; this exists be
ause |F ξ

αξ
| = |F ξ| ≥ |YF ξ | ≥ |Y ξ|.Lemma 6.8. The indu
tion stops before µ many steps.Proof. Suppose we de�ned this way {αξ : ξ < µ} and let α = sup{αξ : ξ < µ} ∈

Sλ
µ . Let D =

⋃
{Fαξ

: ξ < µ}. By Claim 6.2 there is some x ∈ D′ ∩ Xα, thus
x ∈ F either. Clearly Fαξ

⊆ U(x) for µ many ξ < µ. By the de�nition of theindu
tion
(∗) for every ζ < ξ < µ and every y ∈ Y ζ : F ξ

αξ
∩ U(y) = ∅Clearly by (∗), x /∈ Y ζ for all ζ < µ sin
e there is ζ < ξ < µ su
h that

F ξ
αξ

⊆ U(x). Moreover x /∈ U(y) for every y ∈ Y ζ and ζ < µ; if x ∈ U(y) thensin
e x 6= y there is some β < α su
h that ⋃
{Xγ : β < γ ≤ α} ⊆ U(y). This
ontradi
ts (∗) sin
e there is ζ < ξ < µ su
h that β < αξ, thus F ξ

αξ
⊆ U(y).Thus x ∈ F ξ for all ξ < µ. Then x ∈ Y ξ for all ξ < µ su
h that Fαξ
⊆ U(x).This is a 
ontradi
tion.Thus let us suppose that the indu
tion stopped at step ξ < µ, meaning that

F̃ = F \
⋃
{U(x) : x ∈ Y } is bounded where Y = ∪{Y ζ : ζ < ξ}. Let

h =
⋃
{hζ : ζ < ξ}, h : Y → F is a 1-1 fun
tion sin
e the sets dom(hζ) = Y ζand ran(hζ) ⊆ F ζ

αζ
are pairwise disjoint for ζ < ξ. Note that ran(h) ⊆

⋃
{Fαζ

:

ζ < ξ} is 
losed dis
rete by Claim 5.2. For x ∈ Y let
U0(x) = (U(x) \ ran(h)) ∪ {h(x)},note that U0(x) is open. Then

⋃
{U0(x) : x ∈ Y } =

⋃
{U(x) : x ∈ Y }is a minimal open re�nement, sin
e h(x) is only 
overed by U0(x) for all x ∈ Y .Let U0 = {U0(x) : x ∈ Y }Let V (x) = U(x) \

⋃
{Fαζ

: ζ < ξ}. Then V = {V (x) : x ∈ F̃} is anopen 
over of F̃ , re�ning U ; Fαζ
∩ F̃ = ∅ by 
onstru
tion for all ζ < ξ. F̃ is
losed and bounded thus irredu
ible by Claim 6.4, hen
e there is an irredu
ibleopen re�nement V0 of V . It is straightforward that V0 ∪ U0 is a minimal openre�nement of U 
overing F . 9



Corollary 6.9. Suppose that λ > µ = cf(µ) are in�nite 
ardinals su
h that
cf(λ) ≥ µ. Let M = {Mϕ : ϕ < κ} ⊆ [µ]µ be a MAD family and C an Sλ

µ-
lub sequen
e. If X [λ, µ,M, C] is high then X [λ, µ,M, C] is a 0-dimensional,Hausdor�, s
attered spa
e whi
h is aD however not linearly D.Proof. X [λ, µ,M, C] is 0-dimensional, Hausdor� and s
attered by Claim 5.2 andnot linearly D by Corollary 6.3. It su�
es to show that every 
losed F ⊆ X isirredu
ible. If F is bounded then F is a D-spa
e by Claim 6.4 hen
e irredu
ible.If F is unbounded, then F is high sin
e X is high. Hen
e F is irredu
ible byTheorem 6.7.7. Examples of aD, non linearly D-spa
esIn this se
tion we give examples of aD, non linearly D-spa
es of the form
X = X [λ, µ,M, C]. First let us make an observation.Claim 7.1. If Cα ⊆ π(F )′ for a 
losed F ⊆ X and α ∈ Sλ

µ , then Fα = Xα.Proof. Clearly ⋃
{Xγ : γ ∈ Iξ

α} ∩ F 6= ∅ for all ξ < µ. Thus every point in Xαis an a

umulation point of F , thus Fα = Xα sin
e F is 
losed.Corollaries 7.3 and 7.5 below give 
ertain examples of high X [λ, µ,M, C]spa
es.Proposition 7.2. Suppose that µ is a regular 
ardinal, cf(λ) ≥ µ++. Let C bean Sλ
µ-
lub guessing sequen
e from Theorem 4.1. If M ⊆ [µ]µ is a MAD familyof size at least λ then X [λ, µ,M, C] is high.Proof. Let F ⊆ X 
losed, unbounded. Then π(F )′ is a 
lub in λ, hen
e thereexists a stationary S ⊆ Sλ

µ su
h that Cα ⊆ π(F )′ for all α ∈ S. Thus Fα = Xαby Claim 7.1 hen
e |Fα| = |M| = |X | for all α ∈ S.Corollary 7.3. 1. Suppose that 2ω ≥ ω2. Let M be a MAD family on ωof size 2ω and let C be an Sω2
ω -
lub guessing sequen
e from Theorem 4.1.Then X [ω2, ω,M, C] is high.2. Suppose that 2ω = ω1 and 2ω1 ≥ ω3. Let M be a MAD family on ω1 ofsize 2ω1 (exists by Claim 3.2) and let C be an Sω3

ω1
-
lub guessing sequen
efrom Theorem 4.1. Then X [ω3, ω1,M, C] is high.Proposition 7.4. Suppose that λ = µ+ > µ = cf(µ) > ω and let C be an Sµ+

µ -
lub guessing sequen
e from Theorem 4.2. If there is a nonstationary MADfamily MNS ⊆ [µ]µ su
h that |MNS| = µ+ then X = X [µ+, µ,MNS, C] ishigh.Proof. Let MNS = {Mϕ : ϕ < µ+} and C = 〈Cα : α ∈ Sµ+

µ 〉 su
h that
Cα = {aξ

α : ξ < µ} ⊆ α. Suppose that the 
losed F ⊆ X is unbounded. Then
π(F )′ is a 
lub in µ+, hen
e there exists a stationary S ⊆ Sµ+

µ su
h that
Nα = {ξ < µ : aξ+1

α ∈ π(F )′} is stationary in µ10



for all α ∈ S. Fix any α ∈ S, we prove that |Fα| = |F |. Nα is stationary so byapplying Claim 3.1 we get that |Φα| = µ+ for Φα = {ϕ < µ+ : |Nα ∩Mϕ| = µ}.Note that F ∩
⋃
{Xγ : γ ∈ Iξ

α} 6= ∅ for ξ ∈ Nα. Thus (α, ϕ) is an a

umulationpoint of F for ϕ ∈ Φα, hen
e {α} × Φα ⊆ Fα. Thus |Fα| = µ+ = |X |.Corollary 7.5. Suppose that 2ω1 = ω2. Let C be an Sω2
ω1
-
lub guessing sequen
efrom Theorem 4.2 and let MNS be a nonstationary MAD family on ω1. Then

X [ω2, ω1,MNS, C] is high.Thus, by all means we 
an dedu
e the proof of Theorem 1.1.Proof of Theorem 1.1. Note that in any model of ZFC, either (2ω ≥ ω2) or
(2ω = ω1 ∧ 2ω1 ≥ ω3) or (2ω1 = ω2). Using Corollaries 7.3 and 7.5 above, de-pending on the sizes of 2ω and 2ω1 , we see that there exists a high X [λ, µ,M, C]spa
e. We are done by Corollary 6.9.8. A
knowledgementsThe author would like to thank Assaf Rinot for his ideas and advi
es to lookdeeper into the theory of 
lub guessing in ZFC.Appendix A.The aim of this se
tion is to motivate the study of D-spa
es and relatedproperties, as well as to present a few fa
ts about the relationship betweenstandard 
overing properties and D, aD-spa
es. We shall also see, that theabove solved problem was worth studying.Appendix A.1. Motivation for D-spa
esCompa
tness is one of the main 
on
epts of general topology. A spa
e Xis 
ompa
t i� every open 
over of X has a �nite sub
over. Equivalently, if forevery open neighborhood assignment x 7→ U(x), there is a �nite subset D ⊆ Xsu
h that X = ∪U [D]. Note, that if X is 
ompa
t then D ⊆ X is �nite i� it is
losed and dis
rete. Thus, the de�nition of D-spa
es is a logi
al generalizationof 
ompa
tness.De�nition Appendix A.1. A spa
e X is said to be a D-spa
e if for everyneighborhood assignment U , one 
an �nd a 
losed dis
rete D ⊆ X su
h that
X =

⋃
d∈D U(d) =

⋃
U [D]If we restri
t our de�nition to monotone 
overs of a spa
e X , we get thede�nition of linearly D-spa
es, see De�nition 2.3.It is easy to see, that every 
ompa
t spa
e X is irredu
ible, that is, ea
hopen 
over U of X has a minimal open re�nement U0. Meaning, that thereis no proper subfamily of U0 
overing X . This observation is generalized withproperty aD. Indeed, from Theorem 2.2 we know that a T1 spa
e X is aD i�every 
losed subset F ⊆ X is irredu
ible.Now, it is straightforward to ask two things.11



1. What is the 
onne
tion between these 
overing properties?2. How are they 
onne
ted to 
lassi
al 
overing properties?Con
erning the �rst question, it is easy to see that every D-spa
e is aD and of
ourse linearly D. The result of this paper is that the 
onverse is not true. Thatis, by Theorem 1.1 there exists an aD-spa
e whi
h is not D or even linearly D.The se
ond question is a harder one, and we dis
uss it in the next se
tion.Appendix A.2. Relationship to 
overing propertiesThe following are easy to see.Proposition Appendix A.2.1. Every 
ompa
t, moreover every σ-
ompa
t spa
e is a D-spa
e.2. Every 
ountably 
ompa
t D-spa
e is 
ompa
t.Despite the work done in the topi
 by many great mathemati
ians, we la
ktheorems stating, that a 
lassi
al 
overing property, that is fairly weaker than
ompa
tness, imply D. In fa
t, the following 
overing properties are not knownto imply property D (even if you add "hereditarily"):Lindelöf, para
ompa
t, ultrapara
ompa
t, strongly para
ompa
t, meta
ompa
t,metalindelöf, subpara
ompa
t, submeta
ompa
t, submetalindelöf, paralindelöf,s
reenable, σ-meta
ompa
t.A
tually, the problem, whether Lindelöf implies D, is the 14th of the twenty
entral problems in set-theoreti
 topology [12℄. However, Arhangel'skii provedthe following.TheoremAppendix A.3 ([3, Theorem 1.15℄). Every submetalindelöf T1 spa
eis aD.Submetalindelöfness is a signi�
ant weakening of both Lindelöfness and para-
ompa
tness.De�nition Appendix A.4. A spa
e X is submetalindelöf i� for every open
over U of X there are {Un : n ∈ ω} open re�nements of U 
overing X su
hthat for every x ∈ X there is n ∈ ω su
h that |{U ∈ Un : x ∈ U}| ≤ ω.Thus, until the re
ent results of this paper, there was the hope to prove
aD ⇒ D and settle the above hard-to-atta
k problems.Let us 
ite another result.Theorem Appendix A.5 ([8, Proposition 2.11℄). Every submetalindelöf T1spa
e is linearly D.

12



Thus, unfortunately, our 
onstru
tions 
annot be examples of non D-spa
essatisfying some 
lassi
al 
overing properties (sin
e they are not linearly D). Ifthere is su
h an example, it must be a non D-spa
e with both property aD andlinear D.Despite all the open problems, there are fas
inating results either. We takethe opportunity again to re
ommend G. Gruenhage's survey on D-spa
es [7℄,whi
h 
ontains all that we know and do not know about the topi
.Appendix B.In the following, we give a very brief introdu
tion to guessing sequen
es.Informally, a guessing sequen
e S on a 
ardinal κ is a family of subsets of κ,whi
h in some way "guesses" all subsets of κ, while |S| < 2κ.The �rst appearan
e of guessing sequen
es was in the following prin
iple ofJensen [10℄, 
alled diamond, denoted by ♦.De�nition Appendix B.1. ♦ is the statement that there exists a sequen
e
S = 〈Aα : α < ω1〉 of subsets of ω1 su
h that for every A ⊆ ω1 there is some
α < ω1 su
h that A ∩ α = Aα.Jensen dis
overed this prin
iple while investigating Gödel's 
onstru
tible uni-verse and used ♦ to prove the existen
e of a 
ombinatorial obje
t, a Suslin-tree.A well known weakening of Jensen's ♦ was introdu
ed by Ostaszewski in[11℄, 
alled the 
lub prin
iple, denoted by ♣. It was used in [11℄ to de�ne atopology on ω1 with 
ertain interesting properties.De�nition Appendix B.2. ♣ is the statement that there exists a sequen
e
S = 〈Aα : α < ω1〉 su
h that1. Aα ⊆ α is an ω-type sequen
e 
o�nal in α for every α ∈ ω1,2. for every A ∈ [ω1]

ω1 there is some α < ω1 su
h that Aα ⊆ A.Sin
e their introdu
tions, these prin
iples and their generalizations be
amevery popular. They are 
ommonly used to atta
k problems in set-theory ortopology, as well as in measure theory or group theory.However, both ♦ and ♣ share the property that they are independent of the
lassi
al ZFC axioms of set theory. Meaning that there are models of set theorywhere ♦ holds (see Gödel's V = L), and there are models where ♦ fails (underMartin's axiom). The same is true for ♣.Therefore, it was a surprising result when Shelah 
ame up with 
ertain kindsof guessing sequen
es, whi
h's existen
e 
an be proven from ZFC only. Se
tion4 
ontains the results important to us. The 
lub guessing theory, when we onlyaim to guess 
lub subsets, was used to prove 
oloring-theorems, in p
f theoryor to prove the existen
e of Jónsson-algebras.Although ♦-like prin
iples are frequently used in general topology, there wasa la
k of dire
t appli
ations of 
lub-guessing till now; the only one found by theauthor is in [5℄. 13
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