MODERN TECHNIQUES IN COMBINATORIAL SET THEORY PRESENTATION MATERIAL

Topic 1 - Inductive constructions and closure arguments

Any of the following papers/books will naturally continue the topics covered in the course:

- Set theory and Ramsey theory in Euclidean spaces [14, 7, 9, 11];
- Diagonalisations of length continuum and general topology [28, Chapter 4];
- Soifer's colouring book [24];
- Some chromatic number papers [15, 10, 17];
- Erdős' work in infinite combinatorics [16];
- Elementary submodels in combinatorics [25, 26];
- Elementary submodels in topology [6, 8];
- Balogh's work with elementary submodels and topology $[2,3,1]$;
- From the theory of countably infinite graphs [5], [4, Chapter 8];
- Descriptive graph combinatorics [13].

Topic 2 - Coherent sequences and minimal walks

The main reference here is S . Todorcevic's [29] and recommended additional topics from the book include:

- Banach spaces with few operators (Chapter 5.3);
- Variations of the square-bracket relation (Chapter 2.3 and 5.1);
- Coherent mappings in general (Chapter 4).

A great survey on combinatorial topics is Todorcevic's [27] focusing on graph dichotomies and compactness results.
J. Moore's solution to the basis problem for uncountable linear orders [22] and the structural analysis of Aronszajn trees [20] is also recommended.

Topic 3 - Construction schemes

- Trees of elementary submodels (Davies-trees) [25];
- The Steinhaus tiling problem [12];
- Todorcevic's construction scheme [19, 18];
- Kurepa families and Jensen matrices [29, Chapter 7.6];
- Constructions based on diamond [23, 21].

References

[1] Z. Balogh. A natural dowker space. In Topology Proc., volume 27, pages 1-7, 2003.
[2] Zoltán Balogh. There is a Q-set space in ZFC. Proceedings of the American Mathematical Society, pages 557-561, 1991.
[3] Zoltan Balogh. There is a paracompact q-set space in zfc. Proceedings of the American Mathematical Society, 126(6):1827-1833, 1998.
[4] Reinhard Diestel. Graph theory (Graduate texts in mathematics), volume 173. Springer Heidelberg, 2005.
[5] Reinhard Diestel. Ends and tangles. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 87, pages 223-244. Springer, 2017.
[6] A. Dow. An introduction to applications of elementary submodels to topology. Topology Proc., 13(1):1772, 1988.
[7] RJ Gardner and R Daniel Mauldin. Bijections of \mathbb{R}^{n} onto itself. Geometriae Dedicata, 26(3):323-332, 1988.
[8] S. Geschke. Applications of elementary submodels in general topology. Foundations of the formal sciences, 1 (Berlin, 1999). Synthese, 133(1-2):31-41, 2002.
[9] Ronald L Graham. Recent trends in euclidean ramsey theory. Discrete Mathematics, 136(1-3):119-127, 1994.
[10] András Hajnal and Péter Komjáth. What must and what need not be contained in a graph of uncountable chromatic number? Combinatorica, 4(1):47-52, 1984.
[11] Neil Hindman, Imre Leader, and Dona Strauss. Pairwise sums in colourings of the reals. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 87, pages 275-287. Springer, 2017.
[12] A. Jackson and R. D. Mauldin. Survey of the Steinhaus tiling problem. The Bulletin of Symbolic Logic Vol., 9(3):335-361, 2003.
[13] Alexander S Kechris and Andrew S Marks. Descriptive graph combinatorics. Preprint available at http://math. ucla. edu/~ marks, 2015.
[14] Péter Komjáth. Set theoretic constructions in euclidean spaces. In New trends in discrete and computational geometry, pages 303-325. Springer, 1993.
[15] Péter Komjáth. The chromatic number of infinite graphsa survey. Discrete Math., 311(15):1448-1450, 2011.
[16] Péter Komjáth. Erdőss work on infinite graphs. In Erdős Centennial, pages 325-345. Springer, 2013.
[17] Péter Komjáth. A note on uncountable chordal graphs. Discrete Mathematics, 338(9):1565-1566, 2015.
[18] Fulgencio Lopez. Banach spaces from a construction scheme. Journal of Mathematical Analysis and Applications, 446(1):426-435, 2017.
[19] Fulgencio Lopez and Stevo Todorcevic. Trees and gaps from a construction scheme. Proceedings of the American Mathematical Society, 145(2):871-879, 2017.
[20] J. T. Moore. Structural analysis of Aronszajn trees. In Logic Colloquium 2005, volume 28 of Lect. Notes Log., pages 85-106. Assoc. Symbol. Logic, Urbana, IL, 2008.
[21] Justin Moore, Michael Hrušák, and Mirna Džamonja. Parametrized principles. Transactions of the American Mathematical Society, 356(6):2281-2306, 2004.
[22] Justin Tatch Moore. A five element basis for the uncountable linear orders. Annals of Mathematics, pages 669-688, 2006.
[23] Assaf Rinot. Jensens diamond principle and its relatives. Set theory and its applications, 533:125-156, 2011.
[24] Alexander Soifer. The mathematical coloring book: Mathematics of coloring and the colorful life of its creators. Springer Science \& Business Media, 2008.
[25] Dániel T. Soukup and Lajos Soukup. Infinite combinatorics plain and simple. to appear in the Journal of Symbolic Logic, arXiv preprint:1705.06195, 2017.
[26] L. Soukup. Elementary submodels in infinite combinatorics. Discrete Math., 311(15):1585-1598, 2011.
[27] S. Todorcevic. Combinatorial dichotomies in set theory. Bulletin of Symbolic Logic, 17(01):1-72, 2011.
28] Stevo Todorcevic. Partition problems in topology. Number 84. American Mathematical Soc., 1989.
[29] Stevo Todorcevic. Walks on ordinals and their characteristics. 263, 2007.

