MAT135H1F - Quiz 3

TUT5101

June 4, 2015

FAMILY NAME:

GIVEN NAME:

Mark your lecture and tutorial sections:

STUDENT ID:

L0101	L5101	T0101	T0201	T5101	T5102

You have 25 minutes to solve the problems below! Each problem is worth 1 point. Good luck!

Question 1. What is the slope of the tangent to $f(x) = \arccos(2x-1)$ at $x = \frac{1}{2}$?

- (a) -2
- (b) 2
- (c) -1
- (d) 1

Answer: (a) -2. First we determine f'(x). Using the chain rule and our knowledge of differentiating arccos, we obtain $f'(x) = -2\frac{1}{\sqrt{1-(2x-1)^2}} = \frac{-2}{\sqrt{4x-4x^2}} = \frac{-1}{\sqrt{x(1-x)}}$. The slope of the line tangent to f at $x = \frac{1}{2}$ is given by $f'(\frac{1}{2}) = \frac{-1}{\sqrt{\frac{1}{4}}} = -2$.

Question 2. Let g(0) = 0 and g'(0) = 4. What is $\frac{d}{dx}g(g(x))$ at x = 0?

(a) 4

- (b) 0
- (c) 8
- (d) 16

Answer: (d) 16. Differentiating g(g(x))with the chain rule gives $\frac{d}{dx}g(g(x)) =$ g'(g(x))g'(x). Thus, evaluating at x = 0gives $g'(g(0))g'(0) = g'(0)^2 = 16$. **Question 3.** Let $x^2 + xy + y^2 = 4$. Find y' by implicit differentiation.

(a)
$$-\frac{2x+y}{y+x}$$

(b)
$$-\frac{x+2y}{y+2x}$$

(c)
$$-\frac{2x+y}{2y+x}$$

(d)
$$-\frac{3y+2x}{x}$$

Answer: (c) $-\frac{2x+y}{2y+x}$. First we differentiate both sides of the equation using the chain rule and the product rule on the left side. We obtain $2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$. This implies $\frac{dy}{dx}(x + 2y) = -2x - y$ which gives $\frac{dy}{dx} = \frac{-2x-y}{2y+x}$.

Question 4. Where is the horizontal tangent of $f(x) = e^{x^2}$?

- (a) At x = 0
- (b) At x = -1
- (c) There is none.
- (d) At x = 1

Answer: (a) at x = 0. We solve for f'(x)using the chain rule. We have $f'(x) = 2xe^{x^2}$. Horizontal lines have a slope of 0, so we solve f'(x) = 0. Since $e^{x^2} > 0$ for all $x \in \mathbf{R}$, we must have x = 0. **Question 5.** What is $\frac{d}{dx} \ln^2(x)$ at x = e?

Question 6. What is $\frac{d}{dx}\sin(\frac{\pi}{x})$ at x = 1?

- (a) 1
- (b) 2
- (c) $2\ln(e)$
- (d) $\frac{2}{e}$

Answer: (d) $\frac{2}{e}$. We differentiate $\ln^2(x)$ using the chain rule. We have $\frac{d}{dx}\ln^2(x) = 2\ln(x)\frac{1}{x}$. At x = e, we obtain $2\ln(e)\frac{1}{e} = 2e^{-1}$.

- (a) -1
- (b) 1
- (c) $-\pi$
- (d) π

Answer: (c) $-\pi$. We differentiate using the chain rule. We have $\frac{d}{dx}\sin(\frac{\pi}{x}) = \cos(\frac{\pi}{x})\frac{-\pi}{x^2}$. Evaluating at x = 1 gives $\cos(\pi)(-\pi) = -\pi$.