MAT136H1F – Quiz 6

TUT0101 - M3 (TA: I. Angelopoulos)

Fall, 2014

	FAMILY NAME: GIVEN NAME:
	STUDENT ID:
	Mark your lecture and tutorial sections:
	L0101 (morning) L5101 (evening) T0101 (M3) T0102 (R4) T5101 (T5) T5201 (R5)
	You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!
Qı	estion 1. Find a power series representation of $\int \frac{1}{1+x^3} dx.$ $\frac{1}{1+x^3} = \frac{1}{1-(-x^3)} = -x^3+x^6-x^9+x^{12}-x^{15}+\cdots - -x^3 < < \Rightarrow x <$
	$\int \frac{dx}{1+x^3} = C + x - \frac{x^4}{4} + \frac{x^7}{7} - \frac{x^{10}}{10} + \frac{x^{13}}{13} - \frac{x^{16}}{16} + \cdots \qquad x < x $

. It's probably better to use sigma-notation, but I decided to just write out the first few terms of the sevies

Question 2. Find the interval of convergence for $\sum_{n=0}^{\infty} \frac{2^n(x-2)^n}{n}$.

Ratio Test:
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \left[\frac{2^{n+1}(x-2)^{n+1}}{(n+1)} \right] / \left[\frac{2^n(x-2)^n}{n} \right] \right| = \lim_{n\to\infty} \left| 2(x-2) \left(\frac{n}{n+1} \right) \right|$$
So if $2|x-2| < 1$ i.e. $|x-2| < \frac{1}{2}$ $\sum_{n=1}^{\infty} \frac{2^n(x-2)^n}{n}$ converges $= 2|x-2|$

and if 2/x-2/>/ the series diverges

check endpoints
$$x = \frac{5}{2}$$
: $\sum_{n=1}^{\infty} \frac{2^n \left(\frac{1}{2}\right)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ diverget $x = \frac{3}{2}$: $\sum_{n=1}^{\infty} \frac{2^n \left(-\frac{1}{2}\right)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ Converge

Question 3. Congratulations, this was the last quiz and you just won 2 free points! Draw something nice for your TA or just leave this place blank. Don't forget to complete the course evaluation on Portal.

Connolderco

MAT136H1F - Quiz 6

TUT0201 - R4 (TA: B. Navarro Lameda)

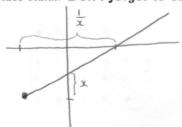
Fall, 2014

FAMILY NAME:

GIVEN NAME:

STUDENT ID:						
Mark your lecture and tutorial sections:						
L0101 (morning) L5101 (evening) T0101 (M3) T0102 (R4) T5101 (T5) T5201 (R5)						
You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!						
Question 1. Find a power series representation of $\int \frac{1}{2-3x} dx$.						
$\frac{1}{2-3x} = \frac{1}{2} \left(\frac{1}{1-\frac{3x}{2}} \right) = \frac{1}{2} \left(1 + \frac{3x}{2} + \frac{9x^2}{4} + \frac{27}{8}x^3 + \cdots \right) \left -\frac{3x}{2} \right < \iff x < \frac{2}{3}$						
$\int \frac{dx}{2-3x} = C + \frac{1}{2} \left(x + \frac{3}{4} x^2 + \frac{9}{12} x^3 + \frac{27}{32} x^4 + \cdots \right) x < \frac{2}{3}$						
$= C + \frac{x}{2} + \frac{3}{8}x^2 + \frac{9}{24}x^3 + \frac{27}{64}x^4 + \cdots x < \frac{2}{3}$						
It's probably better to use sigma-notation, but I decided to just write out the first few						
Question 2. Find the radius of convergence for $\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n!}}$.						
Ratio Test: $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = \lim_{n\to\infty} \left \left[\frac{(x+2)^{n+1}}{\sqrt{(n+1)!}} \right] / \left[\frac{(x+2)^n}{\sqrt{n!}} \right] \right = \lim_{n\to\infty} \left (x+2) \sqrt{\frac{n!}{(n+1)!}} \right $						
Therefore $\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n!}}$ converges for any ∞ . = $\lim_{n\to\infty} (x+2)\sqrt{\frac{1}{n+1}} $						
So the radius of convergence is so = 0 (no matter what x is!						

Question 3. Congratulations, this was the last quiz and you just won 2 free points! Draw something nice for your TA or just leave this place blank. Don't forget to complete the course evaluation on Portal.



MAT136H1F - Quiz 6

TUT5101 – T5 (TA: A. Stewart) Fall, 2014

GIVEN NAME:

FAMILY NAME:

CTUDENT ID.
STUDENT ID:
Mark your lecture and tutorial sections:
L0101 (morning) L5101 (evening) T0101 (M3) T0102 (R4) T5101 (T5) T5201 (R5)
You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!
Question 1. Find the interval of convergence for $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2n+1}$.
Ratio Test: $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = \lim_{n\to\infty} \left \left[\frac{(x-1)^{n+1}}{a_n(n+1)+1} \right] / \left[\frac{(x-1)^n}{a_n+1} \right] = \lim_{n\to\infty} \left \frac{(x-1)}{a_n+3} \right = x-1 $
So if $ x-1 < 1$, $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2n+1}$ converges. If $ x-1 > 1$ $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2n+1}$ diverges.
Therefore the radius of convergence is 1. $\frac{\text{Check end points}}{x=2} \approx \frac{1}{2n+1} \approx \frac{1}{2n+2} = \frac{1}{2} \approx \frac{1}{2n+1}$ Interval of Convergence: $[0,2)$
Question 2. Find a power series representation of $\ln(1-2x)$. $\chi=0$ $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} \text{Convergence} \text{(Alt. Series)}$
$f(x) = \ln(1-2x)$
$f'(x) = \frac{-2}{1-2x} = -2\left(\frac{1}{1-2x}\right) = -2\left(1+2x+4x^2+8x^3+\cdots\right) = -2-4x-8x^2-16x^3-\cdots 2x <1$
$\int \frac{-2}{1-2x} dx = C - 2x - 2x^2 - \frac{8}{3}x^3 - 4x^4 - \frac{32}{5}x^5 - \cdots \qquad x < \frac{1}{2}$
ln(1-2(0))=ln(1)=0=C
nerefore $\ln(1-2x) = -2x - 2x^2 - \frac{8}{3}x^3 - 4x^4 - \frac{32}{5}x^5 - \dots x < \frac{1}{2}$
Question 3. Congratulations, this was the last quiz and you just won 2 free points! Draw something nice for your TA or just leave this place blank. Don't forget to complete the course evaluation on Portal.

MAT136H1F - Quiz 6

TUT5201 – R5 (TA: B. Navarro Lameda) Fall, 2014

FAMILY NAME:	GIVEN NAME:		
CTUDENT ID.			

Mark your lecture and tutorial sections:

L0101 (morning) | L5101 (evening) | T0101 (M3) | T0102 (R4) | T5101 (T5) | T5201 (R5)

You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!

Question 1. Find the radius of convergence for $\sum_{n=1}^{\infty} \frac{3^n x^n}{n^5}$.

Ratio Test:
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \left[\frac{3^{n+1}x^{n+1}}{(n+1)^5} \right] / \left[\frac{3^nx^n}{n^5} \right] = \lim_{n\to\infty} \left| 3 \times \left(\frac{n}{n+1} \right)^5 \right| = 3 |x|$$
So if $3|x| < 1$, i.e. $|x| < \frac{1}{3}$, $\sum_{n=1}^{\infty} \frac{3^nx^n}{n^5}$ converges. If $3|x| > 1$, $\sum_{n=1}^{\infty} \frac{3^nx^n}{n^5}$ diverges.

Therefore the radius of convergence is 1/3.

Question 2. Find a power series representation of $\int \frac{1}{2+x^5} dx$.

$$\frac{1}{2+x^{5}} = \frac{1}{2} \left(\frac{1}{1+\frac{x^{5}}{2}} \right) = \frac{1}{2} \left(\left| -\frac{x^{5}}{2} + \frac{x^{10}}{4} - \frac{x^{15}}{8} + \cdots \right| \text{ valid if } \left| \frac{x^{5}}{2} \right| < | \Leftrightarrow | x | < \frac{1}{2}$$

Term-by-term integration says:

$$\int \frac{dx}{2+x^5} = C + \frac{1}{2} \left(x - \frac{x^6}{12} + \frac{x^{11}}{44} - \frac{x^{16}}{16(8)} + \cdots \right) = C + \frac{x}{2} - \frac{x^6}{24} + \frac{x^{11}}{88} - \cdots \quad |x| < \sqrt[5]{2}$$

It's probably better to use sigma-notation, but I decided to write out the series to illustrate.

Question 3. Congratulations, this was the last quiz and you just won 2 free points! Draw something nice for your TA or just leave this place blank. Don't forget to complete the course evaluation on Portal.

