PROBLEM SET 9

DUE DATE: JUNE 12, 2019

Exercise 9.1. Suppose that L is a linear order so that L and -L has no common infinite suborder. Prove that either L or -L is well ordered.

Exercise 9.2. Prove that a Countryman line L cannot be ccc i.e., there must be an uncountable collection of pairwise disjoint non-empty intervals in L.

Problem 9.3. Show that for any cardinal κ , there is a linear order of size κ which has more than κ initial segments.

Problem 9.4. Use the Continuum Hypothesis e.g., $2^{\aleph_0} = \aleph_1$ to construct a universal linear order L of size \aleph_1 inside $(\omega^{\omega}, <^*)$. That is, L has size \aleph_1 and embeds any linear order of size \aleph_1 .

We use the usual notation from the lectures regarding minimal walks along a <u>C</u>-sequence on ω_1 .

Exercise 9.5. Prove that for any $\alpha < \beta$, $\max(F(\alpha, \beta) \cap \alpha) = \lambda(\alpha, \beta)$.

Problem 9.6. *Prove that for any* $\zeta < \alpha < \beta$ *,* $F(\zeta, \alpha) \subset F(\zeta, \beta) \cup F(\alpha, \beta)$ *.*

Finally, some questions about partial orders.

Problem 9.7. Let P be a partial order and let σP denote the set of well-ordered subsets of P ordered by end-extension. Show that there is no strictly increasing map from σP to P.

Problem 9.8. Show that there is a poset of size c in which every chain and anti-chain is countable

Problem 9.9. Assume that $S, T \subset \omega_1$ so that $S \setminus T$ is stationary. Let σS and σT denote the set of closed subsets of S and T, respectively. Prove that there is no embedding of σS into σT .

Problem 9.10. Using the previous problem, show that there are 2^{\aleph_1} -many pairwise non-embedable partial orders of size \mathfrak{c} .

This is the last problem set, thanks for the great work!