PROBLEM SET 8

DUE DATE: JUNE 5, 2019

Exercise 8.1. Suppose that P is a partial order and any antichain in P has finite size at most k. Show that P is the union of at most k chains given that all its finite subsets satisfy this property.

Let L be a Countryman line i.e., a linear order which is uncountable but L^{2} is the union of countably many chains (partially ordered by the coordinate-wise order). Without knowing whether such things could exist, let's prove a few things.

Exercise 8.2. Show that L has no uncountable well-ordered or reverse well-ordered subset.

Problem 8.3. Show that L has no uncountable suborder isomorphic to a set of reals.

Problem 8.4. Show that L and its reverse $-L$ has no common uncountable suborder.
The maximal weight is an important characteristic of minimal walks: define

$$
\rho_{1}:\left[\omega_{1}\right]^{2} \rightarrow \omega
$$

by

$$
\rho_{1}(\alpha, \beta)=\max \left\{\left|C_{\xi} \cap \alpha\right|: \xi \in \operatorname{Tr}(\alpha, \beta)\right\} .
$$

In other words, $\rho_{1}(\alpha, \beta)=\max \rho_{0}(\alpha, \beta)$.
Problem 8.5 (Finite-to-one property). Show that for any $\beta<\omega_{1}$ and $n<\omega$, the set

$$
\left\{\alpha<\beta: \rho_{1}(\alpha, \beta) \leq n\right\}
$$

is finite.

Problem 8.6 (Coherence of max. weight). Show that for any $\alpha<\beta<\omega_{1}$, the set

$$
\left\{\xi<\alpha: \rho_{1}(\xi, \beta) \neq \rho_{1}(\xi, \alpha)\right\}
$$

is finite.
The number of steps is another characteristic of minimal walks: define

$$
\rho_{2}:\left[\omega_{1}\right]^{2} \rightarrow \omega
$$

by

$$
\rho_{2}(\alpha, \beta)=|\operatorname{Tr}(\alpha, \beta)|-1 .
$$

Problem 8.7 (Semi-coherence of number of steps). Show that for any $\alpha<\beta<\omega_{1}$,

$$
\sup _{\xi<\alpha}\left|\rho_{2}(\xi, \beta)-\rho_{2}(\xi, \alpha)\right|<\infty .
$$

