PROBLEM SET 7

DUE DATE: MAY 22, 2019

Exercise 7.1. Prove that any set of (r-1)(s-1) + 1 numbers contains a monotonically increasing subsequence of length r or a monotonically decreasing subsequence of length s.

Exercise 7.2. Show that ω_1 with the order topology is not metrizable.

Exercise 7.3. Prove that the Sierpinski colouring witnesses $\omega_1 \neq [\omega_1]_2^2$.

Exercise 7.4. Suppose that the colouring c witnesses $\omega_1 \neq [\omega_1]_{\omega_1}^2$. Show that for any $\alpha < \omega_1$, there is an infinite $A \subset \omega_1$ so that $c \upharpoonright [A]^2$ is constant α .

Exercise 7.5. Prove that any Aronszajn tree has a subtree with the property that each node has uncountably many extensions.

Problem 7.6. Prove that there is a subset T of $\{t \in \mathbb{Q} : \max t \in \mathbb{Q}\}$ which forms an Aronszajn tree with the end-extension relation. Show that this T must be special.

Problem 7.7. Use an Aronszajn tree and Sierpinski's idea to witness $\omega_1 \neq [\omega_1]_3^2$.

Problem 7.8. Prove that for any $c : \omega_1 \times \omega \to k$ with k finite, there are infinite $A \subset \omega_1, B \subset \omega$ so that $c \upharpoonright A \times B$ is constant.

Problem 7.9. Show that if V is a \mathfrak{c}^+ -dimensional vector space over \mathbb{Q} and $c: V \to \omega$ then there is a monochromatic solution to x + y = z with x, y, z pairwise distinct and non-zero.

Problem 7.10. For any colouring $c : \mathcal{P}(\omega) \to \omega$, there is a monochromatic, non-trivial solution to $X \cup Y = Z$.