PROBLEM SET 5

DUE DATE: MAY 1, 2019

Exercise 5.1. Show that any graph G of uncountable chromatic number contains a copy of $K_{n, \omega_{1}}$ for any $n<\omega$. The latter is the complete bipartite graph with one finite class of size n and another uncountable class.

Exercise 5.2. Fix a natural number k. Prove that any graph G of uncountable chromatic number contains a k-connected subgraph H i.e., H remains connected after the removal of $<k$ vertices.

Exercise 5.3. Prove that the rational distance graph on the plane has no copies of $K_{2, \omega_{1}}$ and so it must have countable chromatic number.

Exercise 5.4. Suppose that (X, τ) is a topological space with a point-countable base \mathcal{B}. That is, for any $x \in X,\{U \in \mathcal{B}: x \in U\}$ is countable. Let $(X, \tau), \mathcal{B} \in M \prec H(\theta)$. Prove that for any $y \in \overline{X \cap M}, \mathcal{B} \cap M$ contains a neighbourhood base for y.

Exercise 5.5. Suppose that X is a separable metric space and $Y \subset X$ is σ-discrete. Prove that Y is countable.

Exercise 5.6. Suppose that $2^{\aleph_{0}}=\aleph_{1}$ and X is an uncountable, separable metric space. Prove that X has a subset Y that is not G_{δ}.

Problem 5.7. Show that if a topological space X is σ-discrete and any subset is a G_{δ} then actually X is σ-closed discrete.

Problem 5.8. Suppose that some $X \subset 2^{\omega_{1}}$ satisfies the following: for any uncountable family $\left\{s_{\xi}: \xi<\omega_{1}\right\}$ of finite functions with pairwise disjoint domain there is a countable I so that $X \backslash \bigcup_{\xi \in I}\left[s_{\xi}\right]$ is countable. ${ }^{1}$ Prove that any open cover of X has a countable subcover i.e., that X is Lindelöf.

Problem 5.9. Show that for any countable edge-colouring of the complete graph on ω_{2}, one can find an infinite monochromatic path.

Problem 5.10. Describe an explicit construction of finite triangle-free graphs with arbitrary large finite chromatic number. ${ }^{2}$

Challenge 5.11. Show that there is a countable subspace $X \subset 2^{\mathfrak{c}}$ which has no isolated points and any two non-empty dense subsets of X have non-empty intersection. ${ }^{3}$

Open Problem 5.12. Is there a 'small' Dowker space i.e., one of size, character or weight ω_{1} ?

[^0]
[^0]: ${ }^{1}$ The notation $[s]$ stands for $\left\{f \in 2^{\omega_{1}}: s \subset f\right\}$.
 ${ }^{2}$ Hint: using a triangle-free graph H, try to build a larger G which is still triangle-free but has bigger chromatic number.
 ${ }^{3}$ Hint: construct $\left\{x_{n}: n<\omega\right\} \subset 2^{\mathfrak{c}}$ by defining $\left\{x_{n} \mid \alpha: n<\omega\right\}$ by an induction on $\alpha<\mathfrak{c}$. What should we diagonalise in the construction?

