PROBLEM SET 5

DUE DATE: MAY 1, 2019

Exercise 5.1. Show that any graph G of uncountable chromatic number contains a copy of K_{n,ω_1} for any $n < \omega$. The latter is the complete bipartite graph with one finite class of size n and another uncountable class.

Exercise 5.2. Fix a natural number k. Prove that any graph G of uncountable chromatic number contains a k-connected subgraph H i.e., H remains connected after the removal of < k vertices.

Exercise 5.3. Prove that the rational distance graph on the plane has no copies of K_{2,ω_1} and so it must have countable chromatic number.

Exercise 5.4. Suppose that (X, τ) is a topological space with a point-countable base \mathcal{B} . That is, for any $x \in X$, $\{U \in \mathcal{B} : x \in U\}$ is countable. Let $(X, \tau), \mathcal{B} \in M \prec H(\theta)$. Prove that for any $y \in \overline{X \cap M}, \mathcal{B} \cap M$ contains a neighbourhood base for y.

Exercise 5.5. Suppose that X is a separable metric space and $Y \subset X$ is σ -discrete. Prove that Y is countable.

Exercise 5.6. Suppose that $2^{\aleph_0} = \aleph_1$ and X is an uncountable, separable metric space. Prove that X has a subset Y that is not G_{δ} .

Problem 5.7. Show that if a topological space X is σ -discrete and any subset is a G_{δ} then actually X is σ -closed discrete.

Problem 5.8. Suppose that some $X \subset 2^{\omega_1}$ satisfies the following: for any uncountable family $\{s_{\xi} : \xi < \omega_1\}$ of finite functions with pairwise disjoint domain there is a countable I so that $X \setminus \bigcup_{\xi \in I} [s_{\xi}]$ is countable.¹ Prove that any open cover of X has a countable subcover *i.e.*, that X is Lindelöf.

Problem 5.9. Show that for any countable edge-colouring of the complete graph on ω_2 , one can find an infinite monochromatic path.

Problem 5.10. Describe an explicit construction of finite triangle-free graphs with arbitrary large finite chromatic number.²

Challenge 5.11. Show that there is a countable subspace $X \subset 2^{\mathfrak{c}}$ which has no isolated points and any two non-empty dense subsets of X have non-empty intersection.³

Open Problem 5.12. Is there a 'small' Dowker space i.e., one of size, character or weight ω_1 ?

¹The notation [s] stands for $\{f \in 2^{\omega_1} : s \subset f\}$.

²Hint: using a triangle-free graph H, try to build a larger G which is still triangle-free but has bigger chromatic number.

³Hint: construct $\{x_n : n < \omega\} \subset 2^{\mathfrak{c}}$ by defining $\{x_n \upharpoonright \alpha : n < \omega\}$ by an induction on $\alpha < \mathfrak{c}$. What should we diagonalise in the construction?