PROBLEM SET 4

DUE DATE: APRIL 17, 2019

Exercise 4.1. Prove that any monotone $f: \omega_1 \to \mathbb{R}$ is eventually constant.

Exercise 4.2. Suppose that $X \in H(\theta)$ and $S \subset \kappa$ is stationary for some regular, uncountable κ . Then there is an $M \prec H(\theta)$ so that $X \in M$ and $M \cap \kappa \in S$.

Exercise 4.3. Suppose that $<^*$ is some well order on ω_1 of type ω_1 . Prove that there is a club $C \subset \omega_1$ so that $\alpha < \beta \in C$ implies that $\alpha <^* \beta$ (i.e., the standard well order and $<^*$ must agree on C).

Exercise 4.4. Suppose that \mathcal{F} is a d-almost disjoint family of countably infinite sets. Find a colouring $c : \bigcup \mathcal{F} \to \omega$ so that c assumes all colours on any element $a \in \mathcal{F}$.

Exercise 4.5. Take some cardinal κ and natural number n. We define a graph $Sh_n(\kappa)$ on vertices $[\kappa]^n$ and edges $\bar{a}\bar{b}$ where

 $a_0 < a_1 = b_0 < a_2 = b_1 < \dots < a_{n-1} = b_{n-2} < b_{n-1}.$

Show that for any cardinal χ there is a large enough κ , so that $Sh_n(\kappa)$ has chromatic number at least χ .

Problem 4.6. Suppose $S \subset \omega_1$ is a set of limit ordinals and that C_{α} is a cofinal subset of α of type ω for $\alpha \in S$. Show that S is non-stationary if and only if $\{C_{\alpha} : \alpha \in S\}$ is essentially disjoint.

Problem 4.7. Find a 2-almost disjoint family of sets which is not essentially disjoint.

Problem 4.8. Find a family \mathcal{F} of countably infinite, almost disjoint sets that has uncountable chromatic number i.e., for any $c : \bigcup \mathcal{F} \to \omega$ there is some $a \in \mathcal{F}$ so that $c \upharpoonright a$ is constant.

The colouring number of a graph G, denote by Col(G), is the minimal κ so that V(G) has a well order < such that for any $v \in V$, $\{u < v : uv \in E(G)\}$ has size $< \kappa$.

Problem 4.9. Prove that $\chi(G) \leq Col(G)$ that is, the chromatic number is at most the colouring number.

Problem 4.10. Find a graph G such that $\chi(G) < Col(G)$.