PROBLEM SET 3

DUE DATE: APRIL 3, 2019

Exercise 3.1. Let d be a finite number. Prove that any infinite family of d-element sets contains an infinite Δ -system.

Suppose that κ is an infinite cardinal. The basic open sets in the product topology on 2^{κ} are of the form $[\varepsilon] := \{f \in 2^{\kappa} : \varepsilon \subset f\}$ where ε is a finite partial function from κ to 2.

Exercise 3.2. Let κ be an infinite cardinal. Show that there is no uncountable family of pairwise disjoint non-empty open subsets of 2^{κ} .¹

A topological space (X, τ) is called separable if it has a countable dense subset. (X, τ) is said to be Lindelöf if any open cover of X has a countable subcover.

Exercise 3.3. Suppose that (X, τ) is a topological space and $(X, \tau) \in M \prec H(\theta)$. Prove the following claims.

(1) If X is separable then $\overline{X \cap M} = X$.

(2) If X is Lindelöf and $\mathcal{U} \in M$ is an open cover of X then $M \cap \mathcal{U}$ covers X.

Exercise 3.4. Suppose that $F : \omega_1 \to [\omega_1]^{<\omega}$. Show that there is a stationary $S \subset \omega_1$ so that $\{F(\xi) : \xi \in S\}$ is a Δ -system.

Exercise 3.5. Show that any family of $(2^{\aleph_0})^+$ -many countably infinite sets contains a Δ -system of the same size.

Problem 3.6. Show that there is a family of countable sets \mathcal{A} of size continuum so that \mathcal{A} is totally ordered by the subset relation (i.e., for any $x \neq y \in A$ either $x \subset y$ or $y \subset x$).

Problem 3.7. Let k be finite and suppose that F is a family of sets each of finite size s. Show that if $|F| > s! (k-1)^s$ then F contains a Δ -system with at least k elements.

Problem 3.8. Suppose that \mathcal{A} is a family of subsets of \mathbb{R} and for any $a, b \in \mathcal{A}$, $a \cap b$ is finite. Prove that \mathcal{A} has size at most continuum.

Problem 3.9. Prove that there is no strictly increasing sequence $(F_{\xi})_{\xi < \omega_1}$ of closed subsets of \mathbb{R} .

¹In other words, this topology satisfies the countable chain condition.