PROBLEM SET 3

DUE DATE: APRIL 3, 2019

Exercise 3.1. Let d be a finite number. Prove that any infinite family of d-element sets contains an infinite Δ-system.

Suppose that κ is an infinite cardinal. The basic open sets in the product topology on 2^{κ} are of the form $[\varepsilon]:=\left\{f \in 2^{\kappa}: \varepsilon \subset f\right\}$ where ε is a finite partial function from κ to 2 .
Exercise 3.2. Let κ be an infinite cardinal. Show that there is no uncountable family of pairwise disjoint non-empty open subsets of $2^{\kappa} .{ }^{1}$

A topological space (X, τ) is called separable if it has a countable dense subset. (X, τ) is said to be Lindelöf if any open cover of X has a countable subcover.

Exercise 3.3. Suppose that (X, τ) is a topological space and $(X, \tau) \in M \prec H(\theta)$. Prove the following claims.
(1) If X is separable then $\overline{X \cap M}=X$.
(2) If X is Lindelöf and $\mathcal{U} \in M$ is an open cover of X then $M \cap \mathcal{U}$ covers X.

Exercise 3.4. Suppose that $F: \omega_{1} \rightarrow\left[\omega_{1}\right]^{<\omega}$. Show that there is a stationary $S \subset \omega_{1}$ so that $\{F(\xi): \xi \in S\}$ is a Δ-system.

Exercise 3.5. Show that any family of $\left(2^{\aleph_{0}}\right)^{+}$-many countably infinite sets contains a Δ system of the same size.

Problem 3.6. Show that there is a family of countable sets \mathcal{A} of size continuum so that \mathcal{A} is totally ordered by the subset relation (i.e., for any $x \neq y \in A$ either $x \subset y$ or $y \subset x$).

Problem 3.7. Let k be finite and suppose that F is a family of sets each of finite size s. Show that if $|F|>s!(k-1)^{s}$ then F contains a Δ-system with at least k elements.

Problem 3.8. Suppose that \mathcal{A} is a family of subsets of \mathbb{R} and for any $a, b \in \mathcal{A}, a \cap b$ is finite. Prove that \mathcal{A} has size at most continuum.

Problem 3.9. Prove that there is no strictly increasing sequence $\left(F_{\xi}\right)_{\xi<\omega_{1}}$ of closed subsets of \mathbb{R}.

[^0]
[^0]: ${ }^{1}$ In other words, this topology satisfies the countable chain condition.

