PROBLEM SET 2

DUE DATE: MARCH 27, 2019

Exercise 2.1. Prove that $H(\aleph_1)$ satisfies the statement 'all sets are countable.'

Exercise 2.2. Show that the transitive closure of any $a \in H(\theta)$ is again an element of $H(\theta)$. Show that $[H(\theta)]^{<\theta} \subset H(\theta)$.

Exercise 2.3. Suppose that $(M_{\alpha})_{\alpha < \mu}$ is an increasing sequence of elementary submodels of some $H(\theta)$. Prove that $M = \bigcup \{M_{\alpha} : \alpha < \mu\}$ is also an elementary submodel of $H(\theta)$.

Exercise 2.4. Show that if μ is a cardinal which is an element and subset of M and $X \in M$ has size μ then $X \subset M$ as well.

Exercise 2.5. Show that any uncountable $A \subset \mathbb{R}$ with $cf(|A|) > \omega$ contains uncountably many complete accumulation points i.e., $x \in A$ so that $|U \cap A| = |A|$ for any open neighbourhood U of x.

Exercise 2.6. Suppose that $M \prec H(\theta)$ is some elementary submodel and $\kappa \in M$. When is $\kappa \cap M$ an initial segment of κ ?

Problem 2.7. Prove that, for large enough θ , for any $X \subset H(\theta)$ of size \mathfrak{c} there is a countably closed elementary submodel $M \prec H(\theta)$ of size \mathfrak{c} which contains X.

Problem 2.8. For any uncountable $A \subset \mathbb{R}^n$, there is an uncountable $B \subset A$ such that all distances between points in B are pairwise different.

Problem 2.9. Find a Borel function $f : \mathbb{R} \to \mathbb{R}$ with the property that $f[I] = \mathbb{R}$ for any non-empty open $I \subset \mathbb{R}$.

Problem 2.10. Show that \mathbb{R} is the union of countably many sets $(A_i)_{i < \omega}$ so that none of the A_i contains a 3-element arithmetic progression.

Problem 2.11. Suppose that G is a graph and $k < \omega$. Assume that any finite subgraph of G has chromatic number at most k. Prove that $\chi(G) \leq k$ as well.