PROBLEM SET 1

DUE DATE: MARCH 20, 2019

Exercise 1.1. Starting with a single coin, you play a game with a simple automaton: at each step you insert a single coin to which the machine returns two coins.

(1) Show that an unassuming player might loose all his/her money in ω steps.

(2) Show that, with any strategy, the player will go bankrupt in countably many steps.

Exercise 1.2. Suppose that $A \subseteq \mathbb{C}$ is arbitrary. Show that there is an algebraically closed subfield $F \subseteq \mathbb{C}$ of size at most $|A| + \aleph_0$ which contains A.

Exercise 1.3. Suppose that $f_{\alpha} : \omega_1 \to \omega_1$ for $\alpha < \omega_1$. Show that there is a club $C \subset \omega_1$ such that for any $\beta \in C$ and $\alpha, \xi < \beta$, $f_{\alpha}(\xi) < \beta$ as well.

Exercise 1.4. Suppose that each line ℓ in \mathbb{R}^2 is assigned a natural number $m_{\ell} \geq 2$. Construct a set $A \subset \mathbb{R}^2$ which meets each line ℓ in exactly m_{ℓ} points.

Problem 1.5. Show that \mathbb{R}^2 has a well order \prec so that for any y, the set $\{x \prec y : |y-x| \in \mathbb{Q}\}$ is finite. Why does it follow that the rational distance graph on \mathbb{R}^2 has countable chromatic number?

Problem 1.6. Prove that the family of all non-empty perfect subsets of \mathbb{R} has chromatic number 2. In fact, show that there is a function $g : \mathbb{R} \to \mathbb{R}$ so that $g[C] = \mathbb{R}$ for any copy C of the Cantor set in \mathbb{R} .

Problem 1.7. Prove that any graph G of size at most continuum is spatial i.e., there is an injective $f: V(G) \to \mathbb{R}^3$ so that for any pair of edges $ab, cd \in E(G)$, the open line segments (f(a), f(b)) and (f(c), f(d)) are disjoint.

Problem 1.8. Can we cover \mathbb{R}^2 by disjoint circles? How about \mathbb{R}^3 ? Can you do it by unit circles only?

Problem 1.9. Show that \mathbb{R}^+ can be decomposed into two, disjoint sets both closed under addition.

Challenge 1.10. Show that the rational distance graph on \mathbb{R}^3 has countable chromatic number too.

Open Problem 1.11 (Erdős). Is there a Borel set $A \subset \mathbb{R}^2$ which meets each line ℓ in exactly 2 points?

Open Problem 1.12 (Ulam). Does there exist a dense set $S \subseteq \mathbb{R}^2$ so that all pairwise distances between points in S are rational?

Open Problem 1.13. Is there a Borel partition of \mathbb{R}^3 by unit circles?