## PROBLEM SET 1

DUE DATE: MARCH 20, 2019

Exercise 1.1. Starting with a single coin, you play a game with a simple automaton: at each step you insert a single coin to which the machine returns two coins.
(1) Show that an unassuming player might loose all his/her money in $\omega$ steps.
(2) Show that, with any strategy, the player will go bankrupt in countably many steps.

Exercise 1.2. Suppose that $A \subseteq \mathbb{C}$ is arbitrary. Show that there is an algebraically closed subfield $F \subseteq \mathbb{C}$ of size at most $|A|+\aleph_{0}$ which contains $A$.
Exercise 1.3. Suppose that $f_{\alpha}: \omega_{1} \rightarrow \omega_{1}$ for $\alpha<\omega_{1}$. Show that there is a club $C \subset \omega_{1}$ such that for any $\beta \in C$ and $\alpha, \xi<\beta, f_{\alpha}(\xi)<\beta$ as well.
Exercise 1.4. Suppose that each line $\ell$ in $\mathbb{R}^{2}$ is assigned a natural number $m_{\ell} \geq 2$. Construct a set $A \subset \mathbb{R}^{2}$ which meets each line $\ell$ in exactly $m_{\ell}$ points.
Problem 1.5. Show that $\mathbb{R}^{2}$ has a well order $\prec$ so that for any $y$, the set $\{x \prec y:|y-x| \in \mathbb{Q}\}$ is finite. Why does it follow that the rational distance graph on $\mathbb{R}^{2}$ has countable chromatic number?

Problem 1.6. Prove that the family of all non-empty perfect subsets of $\mathbb{R}$ has chromatic number 2. In fact, show that there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ so that $g[C]=\mathbb{R}$ for any copy $C$ of the Cantor set in $\mathbb{R}$.
Problem 1.7. Prove that any graph $G$ of size at most continuum is spatial i.e., there is an injective $f: V(G) \rightarrow \mathbb{R}^{3}$ so that for any pair of edges ab, cd $\in E(G)$, the open line segments $(f(a), f(b))$ and $(f(c), f(d))$ are disjoint.
Problem 1.8. Can we cover $\mathbb{R}^{2}$ by disjoint circles? How about $\mathbb{R}^{3}$ ? Can you do it by unit circles only?
Problem 1.9. Show that $\mathbb{R}^{+}$can be decomposed into two, disjoint sets both closed under addition.

Challenge 1.10. Show that the rational distance graph on $\mathbb{R}^{3}$ has countable chromatic number too.

Open Problem 1.11 (Erdős). Is there a Borel set $A \subset \mathbb{R}^{2}$ which meets each line $\ell$ in exactly 2 points?

Open Problem 1.12 (Ulam). Does there exist a dense set $S \subseteq \mathbb{R}^{2}$ so that all pairwise distances between points in $S$ are rational?
Open Problem 1.13. Is there a Borel partition of $\mathbb{R}^{3}$ by unit circles?

