Problems on uncountable graphs - the morning show -

Dániel T. Soukup

http://renyi.hu/~dsoukup/

Dániel Soukup (Rényi)

Problems on uncountable graphs

Norwich 2015 1 / 23

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

- some very good surveys: P. Komjáth, S. Todorcevic...
- historical and personal reasons,
- minimal structure
 - easily accessible problems,
 - great for understanding the limitations of certain techniques.

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

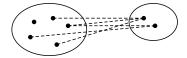
The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

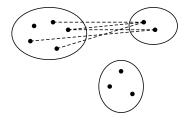
How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.



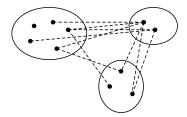
How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.



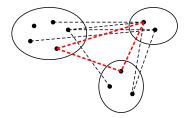
How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.



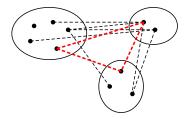
How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.



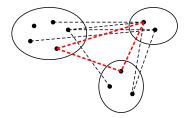
How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.



How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.



How does large chromatic number affect the subgraph structure?

- Tutte, 1954: There are \triangle -free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

What graphs must occur as subgraphs of uncountably chromatic graphs?

 Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.

• Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

What finite graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any n ∈ N there is a graph G with Chr(G) = ω₁ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If Chr(G) > ω then there is an n ∈ ω such that any odd cycle of length bigger than n embeds into G.

What finite graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any n ∈ N there is a graph G with Chr(G) = ω₁ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If Chr(G) > ω then there is an n ∈ ω such that any odd cycle of length bigger than n embeds into G.

What finite graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any $n \in \mathbb{N}$ there is a graph G with $Chr(G) = \omega_1$ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If $Chr(G) > \omega$ then there is an $n \in \omega$ such that any odd cycle of length bigger than n embeds into G.

What finite graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any $n \in \mathbb{N}$ there is a graph G with $Chr(G) = \omega_1$ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If $Chr(G) > \omega$ then there is an $n \in \omega$ such that any odd cycle of length bigger than n embeds into G.

Can we classify countable obligatory subgraphs?

• Hajnal-Komjáth, 1984: $H_{\omega,\omega+1}$ embeds into G if $Chr(G) > \omega$ but $K_{\omega,\omega}$ can be avoided.

Problem

Is there a **universal countable obligatory graph** H^* for graphs G with $Chr(G) = \omega_1$?

Can we classify countable obligatory subgraphs?

• Hajnal-Komjáth, 1984: $H_{\omega,\omega+1}$ embeds into G if $Chr(G) > \omega$ but $K_{\omega,\omega}$ can be avoided.

Problem

Is there a **universal countable obligatory graph** H^* for graphs G with $Chr(G) = \omega_1$?

Can we classify countable obligatory subgraphs?

• Hajnal-Komjáth, 1984: $H_{\omega,\omega+1}$ embeds into G if $Chr(G) > \omega$ but $K_{\omega,\omega}$ can be avoided.

Problem

Is there a universal countable obligatory graph H^* for graphs G with $Chr(G) = \omega_1$?

Can we classify countable obligatory subgraphs?

• Hajnal-Komjáth, 1984: $H_{\omega,\omega+1}$ embeds into G if $Chr(G) > \omega$ but $K_{\omega,\omega}$ can be avoided.

Problem

Is there a universal countable obligatory graph H^* for graphs G with $Chr(G) = \omega_1$?

Chromatic number and connectivity

A set A in graph is **infinitely connected** iff A is infinite and $A \setminus F$ is connected for all finite $F \subseteq A$.

[Erdős-Hajnal, 1966, 1985...] Does every graph *G* with uncountable chromatic number contain infinitely connected subgraphs with uncountable chromatic number?

 Komjáth, 1988: It is independent of ZFC if every graph G with |G| = Chr(G) = ω₁ contains an infinitely connected uncountably chromatic subgraph.

Chromatic number and connectivity

A set A in graph is **infinitely connected** iff A is infinite and $A \setminus F$ is connected for all finite $F \subseteq A$.

[Erdős-Hajnal, 1966, 1985...] Does every graph *G* with uncountable chromatic number contain infinitely connected subgraphs with uncountable chromatic number?

 Komjáth, 1988: It is independent of ZFC if every graph G with |G| = Chr(G) = ω₁ contains an infinitely connected uncountably chromatic subgraph.

Chromatic number and connectivity

A set A in graph is **infinitely connected** iff A is infinite and $A \setminus F$ is connected for all finite $F \subseteq A$.

[Erdős-Hajnal, 1966, 1985...] Does every graph *G* with uncountable chromatic number contain infinitely connected subgraphs with uncountable chromatic number?

• Komjáth, 1988: It is independent of ZFC if every graph G with $|G| = Chr(G) = \omega_1$ contains an infinitely connected uncountably chromatic subgraph.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2015)

There is (in ZFC) a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- the chromatic number and cardinality are best possible,
- **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2015)

There is (in ZFC) a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- the chromatic number and cardinality are best possible,
- **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2015)

There is (in ZFC) a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

• the chromatic number and cardinality are best possible,

• **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2015)

There is (in ZFC) a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- the chromatic number and cardinality are best possible,
- sparse triangle-free graphs with uncountable chromatic number can be produced with the same machinery.

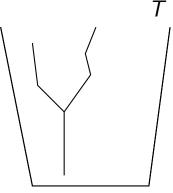
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.

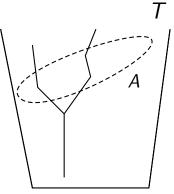
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.

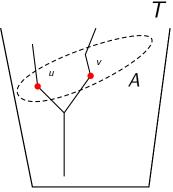
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



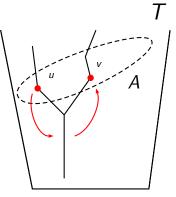
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



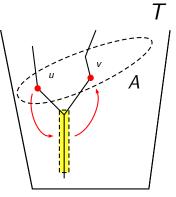
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



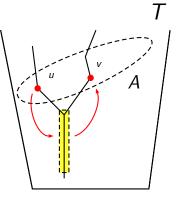
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



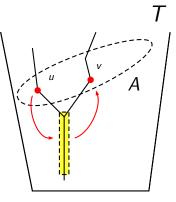
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



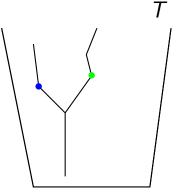
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



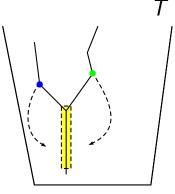
- consider the comparability graph of a non-special tree without uncountable chains.
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



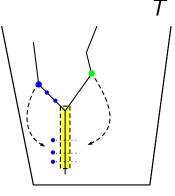
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



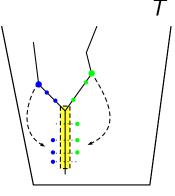
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



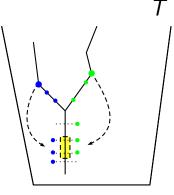
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



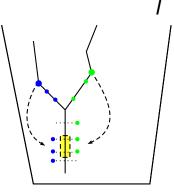
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



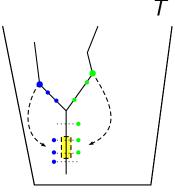
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a diagonalization of length continuum through countable elementary submodels.



What is left to do?

Problem [Erdős]

Is there a graph G with chromatic number ω_1 without non empty infinitely connected subgraphs?

My example is full of countably infinite complete subgraphs.

Can we find a triangle-free subgraph at least?

What is left to do?

Problem [Erdős]

Is there a graph G with chromatic number ω_1 without non empty infinitely connected subgraphs?

My example is full of countably infinite complete subgraphs.

Can we find a triangle-free subgraph at least?

What is left to do?

Problem [Erdős]

Is there a graph G with chromatic number ω_1 without non empty infinitely connected subgraphs?

My example is full of countably infinite complete subgraphs.

Can we find a triangle-free subgraph at least?

How common are the triangle-free graphs with large chromatic number?

Conjecture [Erdős]

Every graph G with $Chr(G) = \omega_1$ contains a subgraph H with $Chr(H) = \omega_1$ without triangles.

Komjáth, Shelah 1988: consistently no.

- There is G with size and chromatic number ω₁ such that any subgraph H with Chr(H) = ω₁ contains a copy of K_ω.
- There is a K_4 -free G with size and chromatic number ω_1 such that any subgraph H with $Chr(H) = \omega_1$ contains a triangle.

How common are the triangle-free graphs with large chromatic number?

Conjecture [Erdős]

Every graph G with $Chr(G) = \omega_1$ contains a subgraph H with $Chr(H) = \omega_1$ without triangles.

Komjáth, Shelah 1988: consistently no.

- There is G with size and chromatic number ω₁ such that any subgraph H with Chr(H) = ω₁ contains a copy of K_ω.
- There is a K_4 -free G with size and chromatic number ω_1 such that any subgraph H with $Chr(H) = \omega_1$ contains a triangle.

How common are the triangle-free graphs with large chromatic number?

Conjecture [Erdős]

Every graph G with $Chr(G) = \omega_1$ contains a subgraph H with $Chr(H) = \omega_1$ without triangles.

Komjáth, Shelah 1988: consistently no.

- There is G with size and chromatic number ω₁ such that any subgraph H with Chr(H) = ω₁ contains a copy of K_ω.
- There is a K_4 -free G with size and chromatic number ω_1 such that any subgraph H with $Chr(H) = \omega_1$ contains a triangle.

How common are the triangle-free graphs with large chromatic number?

Conjecture [Erdős]

Every graph G with $Chr(G) = \omega_1$ contains a subgraph H with $Chr(H) = \omega_1$ without triangles.

Komjáth, Shelah 1988: consistently no.

- There is G with size and chromatic number ω₁ such that any subgraph H with Chr(H) = ω₁ contains a copy of K_ω.
- There is a K₄-free G with size and chromatic number ω₁ such that any subgraph H with Chr(H) = ω₁ contains a triangle.

How common are the triangle-free graphs with large chromatic number?

Conjecture [Erdős]

Every graph G with $Chr(G) = \omega_1$ contains a subgraph H with $Chr(H) = \omega_1$ without triangles.

Komjáth, Shelah 1988: consistently no.

- There is G with size and chromatic number ω_1 such that any subgraph H with $Chr(H) = \omega_1$ contains a copy of K_{ω} .
- There is a K_4 -free G with size and chromatic number ω_1 such that any subgraph H with $Chr(H) = \omega_1$ contains a triangle.

- *Step 1*: force a generic graph (either with finite or countable approximations),
- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What structural requirements imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

- *Step 1*: force a generic graph (either with finite or countable approximations),
- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What structural requirements imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

• *Step 1*: force a generic graph (either with finite or countable approximations),

- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What structural requirements imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

• *Step 1*: force a generic graph (either with finite or countable approximations),

- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What structural requirements imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

• *Step 1*: force a generic graph (either with finite or countable approximations),

- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What **structural requirements** imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

• *Step 1*: force a generic graph (either with finite or countable approximations),

- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What structural requirements imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

Both examples are introduced by classical iterated forcings:

• *Step 1*: force a generic graph (either with finite or countable approximations),

- Step 2: do an iteration to introduce ω-partitions of triangle-free subgraphs into independent sets (FSI or CSI respectively),
- Step 3: show that this works (also note the value of c)...

What structural requirements imply the lack of large Δ -free subgraphs??

It would be interesting to see more constructive examples, e.g. from \Diamond and in ZFC???

Any two graphs G_0 , G_1 with uncountable chromatic number contain a common 3-chromatic subgraph.

Problem [Erdős]

Does every two graphs G_0 , G_1 with uncountable chromatic number contain **a common 4-chromatic subgraph?** Is there a common ω -chromatic subgraph?

Any two graphs G_0 , G_1 with uncountable chromatic number contain a common 3-chromatic subgraph.

Problem [Erdős]

Does every two graphs G_0 , G_1 with uncountable chromatic number contain **a common 4-chromatic subgraph?** Is there a common ω -chromatic subgraph?

Any two graphs G_0 , G_1 with uncountable chromatic number contain a common 3-chromatic subgraph.

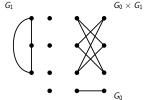
Problem [Erdős]

Does every two graphs G_0 , G_1 with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω -chromatic subgraph?

The product $G_0 \times G_1$ of $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ has vertices $V_0 \times V_1$ and edges $\{(x, y), (x', y')\}$ where $\{x, x'\} \in E_0$ and $\{y, y'\} \in E_1$.

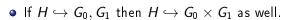
- If $H \hookrightarrow G_0, G_1$ then $H \hookrightarrow G_0 \times G_1$ as well.
- There are graphs G_0 and G_1 with chromatic number ω_1 such that $Chr(G_0 \times G_1) \leq \omega$ (see Hedetniemi's conjecture).
- These graphs have no common ω_1 -chromatic subgraph.

The product $G_0 \times G_1$ of $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ has vertices $V_0 \times V_1$ and edges $\{(x, y), (x', y')\}$ where $\{x, x'\} \in E_0$ and $\{y, y'\} \in E_1$.



- If $H \hookrightarrow G_0, G_1$ then $H \hookrightarrow G_0 \times G_1$ as well.
- There are graphs G_0 and G_1 with chromatic number ω_1 such that $Chr(G_0 \times G_1) \leq \omega$ (see Hedetniemi's conjecture).
- These graphs have no common ω_1 -chromatic subgraph.

The product $G_0 \times G_1$ of $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ has vertices $V_0 \times V_1$ and edges $\{(x, y), (x', y')\}$ where $\{x, x'\} \in E_0$ and $\{y, y'\} \in E_1$.



• There are graphs G_0 and G_1 with chromatic number ω_1 such that $Chr(G_0 \times G_1) \leq \omega$ (see Hedetniemi's conjecture).

• These graphs have **no common** ω_1 -chromatic subgraph.

 $G_0 \times G_1$

Go

The product $G_0 \times G_1$ of $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ has vertices $V_0 \times V_1$ and edges $\{(x, y), (x', y')\}$ where $\{x, x'\} \in E_0$ and $\{y, y'\} \in E_1$.

- If $H \hookrightarrow G_0, G_1$ then $H \hookrightarrow G_0 \times G_1$ as well.
- There are graphs G_0 and G_1 with chromatic number ω_1 such that $Chr(G_0 \times G_1) \leq \omega$ (see Hedetniemi's conjecture).

• These graphs have no common ω_1 -chromatic subgraph.

15 / 23

Go

The product $G_0 \times G_1$ of $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ has vertices $V_0 \times V_1$ and edges $\{(x, y), (x', y')\}$ where $\{x, x'\} \in E_0$ and $\{y, y'\} \in E_1$.

- If $H \hookrightarrow G_0, G_1$ then $H \hookrightarrow G_0 \times G_1$ as well.
- There are graphs G_0 and G_1 with chromatic number ω_1 such that $Chr(G_0 \times G_1) \leq \omega$ (see Hedetniemi's conjecture).
- These graphs have **no common** ω_1 -**chromatic subgraph**.

15 / 23

Go

Is there a graph G such that $Chr(G) = Chr(G^{C}) = \omega_1$ but $Chr(G \times G^{C}) \leq \omega$?

Is there always a common ω_1 -chromatic subgraph of G and G^C provided $Chr(G) = Chr(G^C) = \omega_1$?

Problem

Construct G_0 and G_1 such that $Chr(G_0 \times G_1) = \omega_1$ but G_0 and G_1 has no common ω_1 -chromatic subgraphs.

Is there a graph G such that $Chr(G) = Chr(G^{C}) = \omega_1$ but $Chr(G \times G^{C}) \leq \omega$?

Is there always a common ω_1 -chromatic subgraph of G and G^C provided $Chr(G) = Chr(G^C) = \omega_1$?

Problem

Construct G_0 and G_1 such that $Chr(G_0 \times G_1) = \omega_1$ but G_0 and G_1 has no common ω_1 -chromatic subgraphs.

Is there a graph G such that $Chr(G) = Chr(G^{C}) = \omega_1$ but $Chr(G \times G^{C}) \leq \omega$?

Is there always a common ω_1 -chromatic subgraph of G and G^C provided $Chr(G) = Chr(G^C) = \omega_1$?

Problem

Construct G_0 and G_1 such that $Chr(G_0 \times G_1) = \omega_1$ but G_0 and G_1 has no common ω_1 -chromatic subgraphs.

Is there a graph G such that $Chr(G) = Chr(G^{C}) = \omega_1$ but $Chr(G \times G^{C}) \leq \omega$?

Is there always a common ω_1 -chromatic subgraph of G and G^C provided $Chr(G) = Chr(G^C) = \omega_1$?

Problem

Construct G_0 and G_1 such that $Chr(G_0 \times G_1) = \omega_1$ but G_0 and G_1 has no common ω_1 -chromatic subgraphs.

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in **ZFC**?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [Kierstead, Nyikos 1989]

Is there a non trivial almost smooth (hyper)graph G?

Hajnal, Nagy, L. Soukup 1990: consistently yes.

- under CH, or
- consistently with MA.

Is there a non trivial almost smooth (hyper)graph G in ZFC?

Problem [L. Soukup 1997]

Is there a nontrivial ω -smooth or ω_1 -smooth graph G?

It is **independent** whether there is a nontrivial $< \omega$ -smooth graph:

- No, if $\omega_1 < \mathfrak{s}$ or $2^{\omega} < 2^{\omega_1}$ or in $V^{\mathbb{C}_{\omega_2}}$.
- Yes, such graphs can be forced: add a generic graph + add isomorphisms.

Problem [L. Soukup 1997]

Is there a nontrivial ω -smooth or ω_1 -smooth graph G?

It is **independent** whether there is a nontrivial $< \omega$ -smooth graph:

- No, if $\omega_1 < \mathfrak{s}$ or $2^{\omega} < 2^{\omega_1}$ or in $V^{\mathbb{C}_{\omega_2}}$.
- Yes, such graphs can be forced: add a generic graph + add isomorphisms.

Problem [L. Soukup 1997]

Is there a nontrivial ω -smooth or ω_1 -smooth graph G?

- It is **independent** whether there is a nontrivial $< \omega$ -smooth graph:
 - No, if $\omega_1 < \mathfrak{s}$ or $2^{\omega} < 2^{\omega_1}$ or in $V^{\mathbb{C}_{\omega_2}}$.
 - Yes, such graphs can be forced: add a generic graph + add isomorphisms.

Problem [L. Soukup 1997]

Is there a nontrivial ω -smooth or ω_1 -smooth graph G?

It is **independent** whether there is a nontrivial $< \omega$ -smooth graph:

- No, if $\omega_1 < \mathfrak{s}$ or $2^{\omega} < 2^{\omega_1}$ or in $V^{\mathbb{C}_{\omega_2}}$.
- Yes, such graphs can be forced: add a generic graph + add isomorphisms.

Problem [L. Soukup 1997]

Is there a nontrivial ω -smooth or ω_1 -smooth graph G?

- It is **independent** whether there is a nontrivial $< \omega$ -smooth graph:
 - No, if $\omega_1 < \mathfrak{s}$ or $2^{\omega} < 2^{\omega_1}$ or in $V^{\mathbb{C}_{\omega_2}}$.
 - Yes, such graphs can be forced: add a generic graph + add isomorphisms.

Problem [L. Soukup 1997]

Is there a nontrivial ω -smooth or ω_1 -smooth graph G?

It is **independent** whether there is a nontrivial $< \omega$ -smooth graph:

- No, if $\omega_1 < \mathfrak{s}$ or $2^{\omega} < 2^{\omega_1}$ or in $V^{\mathbb{C}_{\omega_2}}$.
- Yes, such graphs can be forced: add a generic graph + add isomorphisms.

What do you need for Ramsey's theorem to fail?

Todorcevic proved that $\omega_1 \not\rightarrow [\omega_1]_{\omega_1}^2$ i.e. we can colour the edges of K_{ω_1} such that every colour appears on every uncountable induced subgraph.

Conjecture [Erdős, Galvin, Hajnal 1975]

Suppose that G = (V, E) is an ω_1 -chromatic graph. Then there is a colouring $c : E \to \omega_1$ such that for every $V = \bigcup_{i \in \omega} V_i$ there is $i < \omega$ such that F assumes all values on $G[V_i]$.

What do you need for Ramsey's theorem to fail?

Todorcevic proved that $\omega_1 \not\rightarrow [\omega_1]_{\omega_1}^2$ i.e. we can colour the edges of \mathcal{K}_{ω_1} such that every colour appears on every uncountable induced subgraph.

Conjecture [Erdős, Galvin, Hajnal 1975]

Suppose that G = (V, E) is an ω_1 -chromatic graph. Then there is a colouring $c : E \to \omega_1$ such that for every $V = \bigcup_{i \in \omega} V_i$ there is $i < \omega$ such that F assumes all values on $G[V_i]$.

What do you need for Ramsey's theorem to fail?

Todorcevic proved that $\omega_1 \not\rightarrow [\omega_1]_{\omega_1}^2$ i.e. we can colour the edges of K_{ω_1} such that every colour appears on every uncountable induced subgraph.

Conjecture [Erdős, Galvin, Hajnal 1975]

Suppose that G = (V, E) is an ω_1 -chromatic graph. Then there is a colouring $c : E \to \omega_1$ such that for every $V = \bigcup_{i \in \omega} V_i$ there is $i < \omega$ such that F assumes all values on $G[V_i]$.

- ◊⁺ implies the conjecture for graphs of size ω₁ in a strong sense: there is a colouring such that every colour appears on every subgraph with chromatic number ω₁.
- Consistently, there is a graph such that every colouring is constant on an uncountably chromatic subgraph.

What do we know?

- ◊⁺ implies the conjecture for graphs of size ω₁ in a strong sense: there is a colouring such that every colour appears on every subgraph with chromatic number ω₁.
- **Consistently**, there is a graph such that **every colouring is constant** on an uncountably chromatic subgraph.

What do we know?

- \diamond^+ implies the conjecture for graphs of size ω_1 in a strong sense: there is a colouring such that every colour appears on every subgraph with chromatic number ω_1 .
- Consistently, there is a graph such that every colouring is constant on an uncountably chromatic subgraph.

What do we know?

- ◇⁺ implies the conjecture for graphs of size ω₁ in a strong sense: there is a colouring such that every colour appears on every subgraph with chromatic number ω₁.
- **Consistently**, there is a graph such that every colouring is constant on an uncountably chromatic subgraph.

Prove the (strong) conjecture for certain classes of graphs!

Let
$$(T)^2 = \{\{s,t\} : s \leq t \in T\}$$
 for a tree T .

Conjecture

For every non special tree T there is a colouring $c : (T)^2 \to \omega_1$ such that $c''(S)^2 = \omega_1$ for every non special subtree S.

This is true for non special trees T if:

- T is **Souslin**, or
- if MA holds, $|T| = 2^{\omega}$ and T has no uncountable chains.

Prove the (strong) conjecture for certain classes of graphs!

Let
$$(T)^2 = \{\{s,t\} : s \leq t \in T\}$$
 for a tree T .

Conjecture

For every non special tree T there is a colouring $c : (T)^2 \to \omega_1$ such that $c''(S)^2 = \omega_1$ for every non special subtree S.

This is true for non special trees ${\cal T}$ if:

• T is **Souslin**, or

• if MA holds, $|\mathcal{T}| = 2^{\omega}$ and \mathcal{T} has no uncountable chains.

Prove the (strong) conjecture for certain classes of graphs!

Let
$$(T)^2 = \{\{s,t\} : s \leq t \in T\}$$
 for a tree T .

Conjecture

For every non special tree T there is a colouring $c : (T)^2 \to \omega_1$ such that $c''(S)^2 = \omega_1$ for every non special subtree S.

This is true for non special trees T if:

• T is **Souslin**, or

• if MA holds, $|\mathcal{T}| = 2^{\omega}$ and \mathcal{T} has no uncountable chains.

Prove the (strong) conjecture for certain classes of graphs!

Let
$$(T)^2 = \{\{s,t\} : s \leq t \in T\}$$
 for a tree T .

Conjecture

For every non special tree T there is a colouring $c : (T)^2 \to \omega_1$ such that $c''(S)^2 = \omega_1$ for every non special subtree S.

This is true for non special trees T if:

• T is **Souslin**, or

• if MA holds, $|\mathcal{T}| = 2^{\omega}$ and \mathcal{T} has no uncountable chains.

Prove the (strong) conjecture for certain classes of graphs!

Let
$$(T)^2 = \{\{s,t\} : s \leq t \in T\}$$
 for a tree T .

Conjecture

For every non special tree T there is a colouring $c : (T)^2 \to \omega_1$ such that $c''(S)^2 = \omega_1$ for every non special subtree S.

This is true for non special trees T if:

- T is **Souslin**, or
- if MA holds, $|T| = 2^{\omega}$ and T has no uncountable chains.

- incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???
- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???

- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

- incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???
- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

- incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???
- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

- incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???
- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

- incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???
- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

- incompactness of chromatic number (see recently A. Rinot),
 min{κ : ∀G(Chr(G) = ω₁ ⇒ ∃H ∈ [G]^κChr(H) = ω₁)} =???
- theory of definable graphs (closed/open graphs);
- Borel/analytic chromatic number (S. Geschke, Kechris, S. Todorcevic, ...);
- Find gaps, finite maximal antichains, etc. in (G, ≺) where H ≺ G iff there is no G → H homomorphism (N. Sauer, S. Shelah...);
- problems on countable graphs (e.g. R. Diestel and Hamburg school).

Any questions?



Dániel Soukup (Rényi)

Problems on uncountable graphs

Norwich 2015