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0.1 Introduction

D-spaces were introduced approximately 40 years ago as a straightforward
generalization of compactness. Since then, D-spaces are in the center of
interest for general topologists. However, we still lack understanding of the
relationship of classical covering properties to D-spaces. The purpose of this
thesis is to gather some of the most recent results from the theory of D-spaces
and related covering properties.

In Chapter 1 we introduce the notion of D-spaces and tend to make the
reader familiar with the classical results. A further aim of this chapter is to
define properties closely related to property D; that is, we introduce linearly
D-spaces, aD-spaces, and we state some theorems. Finally, Chapter 1 ends
with a short list of open problems concerning D-spaces.

In Chapter 2 our aim is to present the recent progress on the long standing
problem whether Lindel6f implies D. First, we present the main result of [4]
which is one of the breakthroughs in the topic:

Theorem 2.1.4 . FEvery Menger space is a D-space.

This theorem is a nice application of topological games to the theory of
D-spaces. As a corollary, we show the following:

Corollary 2.1.6 . Martin’s Aziom implies that every Lindeldf space of size
less than 2% is D.

Following this line of research, the previous corollary was made stronger
by D. Repovs, L. Zdomskyy in [23] and W. Shi, H. Zhang in [26] indepen-
dently.

Theorem 2.1.18 . Consistently every subparacompact space of size wy s a
D-space.

We outline the methods involved. Opposing these results, we summarize
Szeptycki’s [30] stating that

Theorem 2.2.1 .  implies the existence of a Ti-Lindeldf non D-space.

Finally, Chapter 3 gathers the author’s results in the topic. aD-spaces
are a well-known generalization of D-spaces; until recently, it was not known
whether there is an aD, non D-space. Our main result is Theorem 3.1.1,
stating that



Theorem 3.1.1 (|28, Theorem 1.1]). There exists a 0-dimensional, Haus-
dorff, scattered aD-space which is not linearly D.

This answers a question of Arhangel’skii [3] among others; a complete in-
troduction to the problem is in Section 3.1. The proof of the theorem requires
advanced set-theoretical methods such as Shelah’s club-guessing theory.

Also, we prove the following independence result in Section 3.7.

Theorem 3.1.2 (|27, Theorem 5.2|). The ezistence of a locally countable,
locally compact space X of size wy which is aD and non linearly D is inde-
pendent of ZFC.

The thesis contains certain notions and notations without explicit defi-
nitions; let us refer to Engelking’s [14] and Kunen’s [21] for topological and
set-theoretical background, respectively.

I would like to thank the help of the Set Theory and Topology research
group at the Rényi Institute in preparing [27| and [28]. Also, I would like to
thank Assaf Rinot for his ideas and advices to look deeper into the theory of
club guessing in ZFC.



I dedicate this thesis to my father.
Without his support I would not be here.



Chapter 1
D-spaces

An open neighborhood assignment (ONA, in short) on a topological space
(X,7)isamap U : X — 7 such that x € U(x) for every z € X.

Definition 1.0.1. X s said to be a D-space iff for every neighborhood
assignment U on X, there is a closed discrete D C X such that X =
Uuep U(d) = U UI[D]; such a set D is called a kernel for U.

The notion of a D-space was probably first introduced by van Douwen
and E. Michael in the mid-1970’s; Michael sent van Douwen a letter with
a proof that semistratifiable spaces are D, and van Douwen replied with an
alternate proof, in a letter dated June 6, 1975 [15]|. Since than, many work
had been done it the topic.

Property D can be thought of as a covering property; every compact
space, moreover o-compact space, is a D-space and countably compact D-
spaces are compact. Let us quote Gary Gruenhage’s words from the inspiring
survey [15]:

Part of the fascination with D-spaces s that, aside from these
easy facts, very little else is known about the relationship between
the D property and many of the standard covering properties. For
example, it is not known if a very strong covering property such as
hereditarily Lindeldf implies D, and yet for all we know it could
be that a very weak covering property such as submetacompact or
submetalindeldf implies D!

Indeed, it is not known whether any of the following properties, even
if one adds "hereditarily", imply D: Lindel6f, paracompact, ultraparacom-



pact, strongly paracompact, metacompact, metalindel6f, subparacompact,
submetacompact, submetalindel6f, paralindel6f, screenable, o-metacompact.

In this chapter, our aim is to summarize the basic results about D-spaces
and corresponding generalizations.

1.1 Basic results

The next proposition is part of the folklore.

Proposition 1.1.1. Every o-compact space is a D-space and countably com-
pact D-spaces are compact.

This implies that R with the usual Euclidean topology is D and that w;
with the order topology is not a D-space.
Let us say a few words about unions of D-spaces.

Proposition 1.1.2 (|7, Proposition 7.|). If the space X is the countable
union of closed D-subspace then X is a D-space.

Interestingly, it is not known whether the union of two D-spaces is a
D-space again. We remark that there is a o-discrete space which is non
D; see the van Douwen-Wicke-space I' in [12]. Guo and Junnila generalized
Proposition 1.1.2.

Theorem 1.1.3 ([17]). Suppose that X = J,_, Xa such that X, is D and
Uup <o Xor is closed for every oo < A. Then X is a D-space.

In many cases, spaces with some additional structure are D-spaces; this
is the case with generalized metric spaces or spaces with nice bases.

Theorem 1.1.4. The following are D-spaces:
(1) semistratifiable spaces [7],

(2) subspaces of symmetrizable spaces [8],

(3) spaces having a point-countable base [2].

The first two properties are both well-known weakenings of metrizability;
for definitions see [16]. The proof of "metrizable space are D" works in the
first two cases with minor refinements.

Monotone normal spaces generalize both ordered and metric spaces. We
have the following classic result from [7].
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Theorem 1.1.5. Every monotone normal D-space is paracompact.

At the end of this chapter, in Section 1.4, we cite various open problems
concerning D-spaces.

1.2 Linearly D-spaces

A straightforward generalization of property D is due to Guo and Junnila
[18]. For a space X a cover U is monotone iff it is linearly ordered by
inclusion.

Definition 1.2.1. A space (X, 7T) is said to be linearly D iff for any ONA
U: X — 7 for which {U(x) : © € X} is monotone, one can find a closed
discrete set D C X such that X = |JUI[D].

The connection between classical covering properties and linear D-property
is determined by the next theorem.

Theorem 1.2.2 ([18, Proposition 2.11]). Every submetalindeldf Ty space is
linearly D.

Submetalindeldfness is a significant weakening of both Lindel6fness and
paracompactness.

Definition 1.2.3. A space X is submetalindelof iff for every open cover U
of X there are {U, : n € w} open refinements of U covering X such that for
every x € X there isn € w such that |[{U e U, : x € U}| < w.

We will later use the following characterization of linear D property. A
set D C X is said to be U-big for a cover U iff there is no U € U such that
DCU.

Theorem 1.2.4 ([18, Theorem 2.2|). The following are equivalent for a T;-
space X:

1. X is linearly D,

2. for every non-trivial monotone open cover U of X, there exists a closed
discrete U-big set in X.



We remark that there are linearly D, non D-spaces; for example, any
linearly Lindel6f, non Lindelof space is such. This can be easily seen from
the following:

Proposition 1.2.5 ([18|). A space X is linearly Lindeldf iff X is linearly D
and there are no uncountable closed discrete sets in X.

For various examples of linearly Lindel6f, non Lindelof spaces see [22].

1.3 aD-spaces

Investigating the properties of D-spaces and the connections between other
covering properties led to the definition of aD-spaces, defined by Arhangel’skii
and Buzyakova in [2].

Definition 1.3.1. A space (X, 1) is said to be aD iff for each closed FF C X
and for each open cover U of X there is a closed discrete D C F and U :
D — U with x € U(x) for all x € D such that F C UU[D].

It is clear that D-spaces are aD. As it turned out, property aD is much
more docile than property D.

Theorem 1.3.2 (|3, Theorem 1.15|). Every submetalindeldf T space is aD.

Thus, until the recent results of [28], there was the hope to prove aD = D
and settle the problems listed in the introduction.

Proving that a space is aD, the notion of an irreducible space will play a
key role.

Definition 1.3.3. A space X is irreducible iff every open cover U has a
minimal open refinement Uy; meaning that no proper subfamily of Uy covers
X.

In [3] Arhangel’skii showed the following equivalence.

Theorem 1.3.4 (|3, Theorem 1.8]). A Ti-space X is an aD-space if and
only if every closed subspace of X is irreducible.

In Chapter 3, we deal with existence of aD, non D-spaces.



1.4 Various open problems

First, let us state some open problems asking if certain spaces are D. Of
course, the main interest is in the following.

Problem 1.4.1. Is every (hereditarily) Lindeldf space a D-space?

We will deal with this question in Chapter 2. Let us remark again, that it
is not known whether any of the following strong covering properties imply
D: Lindel6f, paracompact, ultraparacompact, strongly paracompact; simi-
larly, it is unknown whether there is a non D-space with any of the following
weak covering properties: metacompact, metalindel6f, subparacompact, sub-
metacompact, submetalindelof, paralindel6f, screenable, o-metacompact.

Another main question in the area is the following from Arhangel’skii [3].

Problem 1.4.2. Is the union of two D-spaces a D-space again? Is it aD?

Let us cite this classic problem of Borges and Wehrly connected to The-
orem 1.1.5.

Problem 1.4.3 ([7]). Is every paracompact, monotonically normal space a
D-space?

The following is from [9].

Problem 1.4.4. Suppose that X is a continuous image of a Lindeldf D-
space. Is X a D-space?

Now, we turn to a possibly easier open problems. Suppose that S is
the Sorgenfrey-line. Van Douwen and Pfeffer in [11] proved that S and its
finite powers are D-spaces; later, de Caux [10] showed that these space are
hereditarily D-spaces. However, the following is still open.

Problem 1.4.5. ([10]) Is S¥ a (hereditarily) D-space?

Suppose that M is a metric space with topology 7. If 7/ refines 7 such
that every point p € M has a base B in 7’ such that U \ {p} € 7 for every
U € B then (M, 7') is called a butterfly space over the metric space (M, ).
For example, the Sorgenfrey line or its finite powers are butterfly spaces over
the appropriate Euclidean metric spaces. The following question is from [15].

Problem 1.4.6. Is every butterfly space over a separable metric space a
D-space?

The reader can find many more fascinating questions in [13| and in the
survey [15].



Chapter 2

Is every Lindelof space a D-space?

In their article [20] in Open Problems in Topology II, M. Hrusak and J. T.
Moore listed twenty open problems from set theoretic topology which should
be at the center of research interest. Problem 1.4.1, whether every Lindel6f
space is D, is number fourteen on their list.

Until very recently, there were no progress in solving the above problem,
nor a preferred conjecture; it seemed to be plausible to exist a Lindelo6f, non
D-space and also that every Lindelof space is D. The aim of this chapter is
to present some of the main recent results concerning Lindel6f and D-spaces.

One of the first and most prominent results is L. Aurichi’s following the-
orem.

Theorem 2.1.4 ([4]). Every Menger space is a D-space.
From this, we deduce the following:

Corollary 2.1.6 . MA implies that every Lindeldf space of size less than 2“
18 a D-space.

The latter corollary and methods of L. Aurichi were improved by D.
Repovs, L. Zdomskyy in [23] and W. Shi, H. Zhang in [26] independently.

Theorem 2.1.18 ([23, Corollary 2.6] and [26] independently). It is consis-
tent that every subparacompact space of size Ry is a D-space.

On the other hand, the following was proved by P. Szeptycki.
Theorem 2.2.1 ([30]). It is consistent that there exists a Ti-Lindeldf non
D-space of size Ny.
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The above results might indicate, that Problem 1.4.1 is not decidable in
ZFC; however, any such theorem is yet to come. The rest of this chapter will
summarize the above listed three results.

2.1 On Lindel6f implies D

In this section, our aim is to gather results stating that certain covering
properties imply property D.

2.1.1 Menger spaces

Definition 2.1.1. A space X is said to be Menger iff for every sequence of
open covers {U, : n € w} of X there are finite V,, C U, for everyn € w such
that U{V, : n € w} covers X.

Note that every o-compact space is Menger. On the other hand, every
Menger space is Lindeldf; indeed, for any open cover U apply the definition
of being Menger for the constant sequence U,, = U.

The Menger property has an interesting and non-trivial characterization
by topological games.

Definition 2.1.2. The Menger-game on a space X 1is the following game of
length w, played by two players, Player I and II. In each round n € w, Player
I chooses an open cover U, of X closed under finite unions and Player II
responds by choosing U, € Uy,. Player II wins iff X =, ., Un-

The following was proved by W. Hurewicz [19].
Theorem 2.1.3. A space X is Menger iff Player I does not have a winning
strategy in the Menger-game on X.

The next theorem was proved by L. Aurichi.
Theorem 2.1.4 ([4]). Every Menger space is a D-space.

Proof. Let N be any ONA and let us define a strategy for Player T in the
Menger-game on X. First let Player I play {UN[F]| : F € [X]<“}. If Player
IT responds by UN[Fp] for some Fy € [X]<“ then let Player I play

{UN[F, UF]: F € [X]*,Fn(UN[F)) = 0}.
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Then Player IT responds by some F; € [X]<“. In general, suppose that Player
IT responded by Fy, ..., F,,—1 € [X]<“ till step n; more precisely, the responds
are coded by these finite sets. Let F.,, = U{F; : i < n} and let Player I play

{UN[F.,UF]: F € [X]<, Fn(UN[F.]) = 0}.

This defines a strategy for Player I in the Menger-game. Since X is Menger,
this strategy is not winning by Theorem 2.1.3. Thus there are finite subsets
F, of X for n € w such that {UN[F.,] : n € w} covers X. Let D = U{F,, :
n € w}, then X = UN[D]. Tt is easy to check that D is closed and discrete
in X; hence, X is a D-space. U

Before stating the first consistency results concerning D-spaces, we need
a small claim. Let us recall the definition of the dominating number; a family
D C w¥ is called dominating iff for every g € w* there is f € D such that
g(n) < f(n) for all but finitely many n € w. The dominating number 0 is a
cardinal defined as follows.

0 = min{x : there is a dominating family D C w® of size k}

It is clear that w < 0 < 2“ and consistently 0 can be smaller than
the continuum; it is well known that MA, Martin’s Axiom, implies that
Nl <0 = 2%,

Claim 2.1.5. Fvery Lindeldf space of size less than 0 is Menger; hence D
by Theorem 2.1.4.

Proof. Let us fix a sequence of open covers {U,, : n € w} of X; we can suppose
that each U, is countable by X being Lindel6f. Let U, = {U,; : k € w} for
n € w. For every x € X define f, : w — w such that v € U, s, for
every n € w. |X| < 0 implies that there is a function g € w“ such that
fz(n) < g(n) for infinitely many n € w, for every x € X ; observe that
x € WUy : k < g(n)} for such n € w. Let V,, = {Ups : k < g(n)} € U]
for n € w. Clearly, U{V,, : n € w} covers X. Thus X is Menger. O

Corollary 2.1.6. MA implies that every Lindelof space of size less than 2“
1s a D-space.

Thus there is no ZFC example of a Lindel6f, non D-space of size less
than 2“. In the next section, we will reach analogues corollaries concerning
paracompact spaces.

Let us mention a similar theorem to Claim 2.1.5 without proof. Let M
denote the ideal of meager sets.
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Theorem 2.1.7 ([4]). If a Lindeldf space X can be covered by fewer than
cov(M) many compact sets then X is Menger, hence D.

Finally, let us cite another application of Theorem 2.1.4. A space X is
called productively Lindeldf iff X x Y is Lindelof for every Lindelof space Y.

Theorem 2.1.8 (|31, Theorem 2|). The Continuum Hypothesis implies that
every productively Lindeldf space is Menger, hence D.

As a corollary, under CH every Lindel6f P-space is a D-space.

2.1.2 Subparacompact spaces

Our aim in this section is to present the methods of [23] and the proof of
Theorem 2.1.18. If not stated otherwise, the definitions and results are from
[23].

Let us introduce a weakening of property D.

Definition 2.1.9. A space X has property D, or X is a D,-space for some
cardinal k iff for every ONA N on X there are closed discrete subsets { Dy :
¢ <k} of X such that U{N[Dy] : £ < Kk} covers X.

We omit the proof of the following observations.

Claim 2.1.10. 1. D =D, = Dy = D, for every cardinal A\ < k and
0<n<w.

2. Property D, is inherited by closed subsets.

3. FEvery Lindelof space is a D, -space.
Next, we will need a notion very similar to the Menger property.

Definition 2.1.11. A space X has property E? iff for every sequence of
countable open covers {U, : n € w} of X there are finite V,, C U,, for every
n € w such that U{V, :n € w} covers X.

Note that property E, is equivalent to the Menger property in the realm
of Lindel6f spaces. Let us define the corresponding E* -game:

Definition 2.1.12. The Ej-game on a space X s the following game of
length w, played by two players, Player I and II. In each round n € w, Player
I chooses a countable, increasing open cover U, = {Upy : k € w} of X and
Player II responds by choosing k, € w. Player IT wins iff X =, .., Un.k, -

new
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The direct analogue of Theorem 2.1.3 holds in this case.

Proposition 2.1.13. A space X has property E iff Player I has no winning
strategy in the E -game on X.

The main theorem of this section is the following.

Theorem 2.1.14 ([23, Theorem 2.1]). Suppose that a space X has properties
D, and E. Then X is a D-space.

Proof. Let N be any ONA on X and we define a strategy for Player I in the
E’-game. Let Fy = X; Fy is a Dy-space so there is an increasing sequence
{Aok : k € w} of closed discrete subsets of Fyy such that {UN[Agy] : k € w}
covers X. Let Player I play {UN[Aox] : k¥ € w}. Player II responds by
choosing A, for some ky € w. Let F; = X \ UN[Agg,|, then there is an
increasing sequence {A; : k € w} of closed discrete subsets of F} such that
{UN[A1k] : k € w} covers Fy. Let Player I play {X \ FiU{J N[A14] : k € w}.
Player II responds by choosing A x, for some k; € w. In general, let F), =
X\ Ui, UN[A;,]. F, is closed in X, hence a D,-space; thus there is an
increasing sequence {A, ; : k € w} of closed discrete subsets of F), such that
{UN[A. ] : k € w} covers F,,. Let Player I play { X\ F,,UJ N[A, 4] : k € w}.
Player II responds by choosing A, j, for some k, € w.

This strategy is not winning for Player I, hence there are choices {k, :
n € w} for Player II such that

X = [J(X\ F, U (UN[Au,)).-

new

Then X =, c,, UN[Ank,] since X\ Fy = 0 and X\ F,, = J,_,, UN[A;,] for
n > 0. Finally, it is easy to see that J, ., An, is closed discrete in X. O

Subparacompactness is a significant weakening of paracompactness.

Definition 2.1.15. A space X is subparacompact iff every open cover of X
has a o-locally finite closed refinement.

Note that not every D, space is a D, space; indeed, take w; with the
usual order topology. However, we have the following.

Lemma 2.1.16 (|23, Lemma 2.3|). Suppose that X is a subparacompact space
which can be covered by wi-many of its Lindeldf subspaces. Then X is a D,
space. In particular, every subparacompact space of size wy is a D,,-space.

14



Proof. Suppose that X = U£<w1 L¢ such that L¢ is Lindelof for all £ < wy;
without the loss of generality, we can suppose that L C L, forall { <7 < w;.
Let N be any ONA on X. There are countable subsets {C, : @ <w;} of X
such that

(i) Lo € UN[Col,
(i) Co NMUgcq UN[Ce] = 0 for all @ < wy,
(iil) Lo \ Uecq UN[Ce] CUN[C,] for all v < wy.

Let C' = U(Kw1 C,; it suffices to prove that C' is o-closed discrete. The
subparacompactness of X implies that there is a closed refinement F =
UnewFn of the open cover {N(z) : x € C'} such that F, is locally finite for
every n € w. Clearly, ' N C is countable for every FF € F. Let C N F =
{TnFm : m € w} for F € F, for some n € w if C'N F is nonempty. Let
Apm = A{xnpm: F € Fo, CNF # (}; it is easy to see that A, ,, is closed
discrete and C' = | J Ay O

n,mew

Observe that the proof of Claim 2.1.5 actually gave us the following: every
space X of size less than 9 is E and every Lindelof, E*-space is Menger.
Thus, we have the following corollary.

Corollary 2.1.17. Suppose that X is a subparacompact space of size less
than 0 which can be covered by wi-many of its Lindeldf subspaces. Then X
1s a D-space.

Proof. X is E by the previous observation and D, by Lemma 2.1.16. Thus
X is a D-space by Theorem 2.1.14. O

Thus, we have proved the following either.

Theorem 2.1.18 ([23, Corollary 2.6] and [26] independently). MA implies
that every subparacompact space of size wy is a D-space.

Although, we do not know the answer to the following.

Problem 2.1.19. Is it consistent, that wy < 2% and every (sub)paracompact
space of size less than 2% is a D-space?

15



2.2  On Lindelof does not imply D

In this section, we outline a construction of Paul Szeptycki and deduce the
following:

Theorem 2.2.1 ([30]). It is consistent that there exists a Ti-Lindelof non
D-space of size V.

We skip most of the proofs since the methods involved are greatly ad-

vanced. If not stated otherwise, results are from [30].

2.2.1 Preliminaries

The following lemma will be used later.

Lemma 2.2.2. Consider a topology on wy generated by sets {U, : v < wy}
as a subbase; sets of the form

Ur \ H where Up:ﬂ{U,Y:fyeF}

for F,H € [w]<¥ form a base. If for every uncountable family B C [w]<*

of pairwise disjoint sets there is a countable B C B such that
i\ J{Ur: FeB}| <w
then the topology 1s hereditarily Ti-Lindeldf.

The construction uses a well known set theoretical principal: Jensen’s <.

Definition 2.2.3. A {-sequence is a sequence {Sp : f < wi} of subsets of
wy such that for every S C wy there are stationary many $ € wy such that
SN B =Ss. Let  denote the statement that there exist a <$>-sequence.

We need the following observation which is part of the folklore.

Claim 2.2.4. < is equivalent to the following statement: there exists a se-
quence {Bg : < wi} such that Bg C [wi|< for all B < wy and for every
B C [wy|<¥ there are stationary many [ < wy such that B N [B]<¥ = Bg.
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2.2.2 The construction

From now on, we assume that <) holds; that is, we can fix a sequence {Bg :
f < wi} provided by Claim 2.2.4. Also, since < implies the Continuum
Hypothesis, we can fix an enumeration {C, : @ < w;} of countable subsets
of wy such that C,, C « for every a < wy.

Our goals are to construct sets {U., : v < wy } such that v € U, for every
v < w; and consider the topology on w; generated by this family and the
cofinite sets; we will apply Lemma 2.2.2 to prove hereditarily 7;-Lindel6fness
and the neighborhood assignment mapping « to U, will show that the space
is not a D-space. The next theorem will be the key to achieve our goals.

Theorem 2.2.5. There exist {US }1<q for a < wy with the following proper-
ties:

IH(1) U Ca+1and Uy = a+ 1 for every v < a < wy.
TH(2) U* = U N (a +1).
Let 1, denote the T topology on o+ 1 generated by the sets
Up =({Us:veF}
for F € [a+ 1)< and the cofinite sets of o+ 1.
IH(3) If Cy is 7, closed discrete then | J{US : v € Co} # a + 1.
IH(}) Let T, = {8 < «a : Bg is a pairwise disjoint family of finite subsets

of B and there is a countable elementary submodel M < H(Xs) such
that

e M N w1 = ﬁ

* {By}ycw €M

e there is an uncountable B € M such that M N B = Bg, and

o there is {V,}y<w, € M such that V,NB = USNP for all § < a}.

(a) If B € T, then Bg is a local m-network at B in 7,.
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(b) If 6 € T, N« then for every V € 1, such that 5 € V

(U FeBs FCV}

is an w-cover of (B, a].

The proof of Theorem 3.7.6 is done by induction on o < wy while TH(1)-
IH(4) are working as inductive hypothesises. We will not present the proof
here; it involves the delicate use of elementary submodels in topology which
is beyond the scope of this thesis.

Let us prove now Theorem 2.2.1.

Proof of Theorem 2.2.1. Consider sets {U },<, for @ < w; provided by The-
orem 3.7.6 with properties IH(1)-IH(4). Let U, = U{U$ : v < a < w;} for
v < wy. Let 7 denote the topology on w; generated by the sets

UF:ﬂ{U,\/:’YeF}

for F' € [wy]=¥ and the cofinite sets of w;.

Lemma 2.2.6. The topology T on wy is hereditarily T -Lindeldf.

Proof. We apply Lemma 2.2.2; fix some uncountable family B C [w;]<* of
pairwise disjoint sets. There is an M < H(X,) such that B,{U, : v <
wi},{By:y <w} €M and

MnNw; =pand BNM = BnN|[p]~¥ = Bs.

We claim that w; \ J{UFr : F' € B} C §+ 1; indeed fix some o € (5,w1).
Then 8 € T,, ensured by the model M, and hence there is some F' € Bg
such that o € Ug C Up by IH(4). O

Now we prove that (wq,7) is not a D-space. Consider the neighborhood
assignment vy — U,; we show that U{U, : v € C} # w; for every closed
discrete C' C wy. Since (wq,7) is T1-Lindeldf, |C| < w and hence there is
o < wy such that C, = C. It suffices to note that C,, is 7, closed discrete if
7 closed discrete; indeed, then U{U, : v € C,} # o + 1 by TH(3). O

Whether one can modify the above construction such that the sets {U, :
v < wq} are clopen is of central interest.
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2.3 Remarks

The Szeptycki-construction gives us only a 7} example, not even a Hausdorff
space; although, it is a great step in solving the main problem, we cannot
consider the result a complete (consistent) answer to Problem 1.4.1.

The same holds for the Aurichi and Repovs-Zdomskyy theorems (Theo-
rem 2.1.4 and 2.1.18, respectively). They are outstanding contributions to
the investigations done it the topic, however they only provide partial an-
swers.

Thus, the question remains open: Is there a Lindel6f or paracompact,
non D-space?
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Chapter 3

Properties D and aD

In Section 1.3, we introduced property aD and stated a few facts; every D-
space is an aD-space, and even spaces with rather weak covering properties
are aD, see Theorem 1.3.2. Therefore, it is worth studying whether there
is an aD-space which is not a D-space; a negative answer to this question
would settle almost all of the questions about the relationship of classical
covering properties to property D.

In this Chapter we answer this question, among others, and we show that
there are aD, non D-spaces.

3.1 Questions and answers

In [3] Arhangel’skii asked the following:
Problem 4.6. Is there a Tychonoff aD-space which is not a D-space?

Quite similarly, Guo and Junnila in [18] asked the following about a weak-
ening of property D:

Problem 2.12. Is every aD-space linearly D?

In G. Gruenhage’s survey on D-spaces [15], another version of this ques-
tion is stated (besides the original Arhangel’skii), namely:

Question 3.6(2) Is every scattered, aD-space a D-space?
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The main results of this Chapter are following answers to the questions
above.

Theorem 3.1.1 (|28, Theorem 1.1]). There exists a 0-dimensional Ty space
X such that X 1is scattered, aD, and non linearly D.

Theorem 3.1.2 (|27, Theorem 5.2|). The ezistence of a locally countable,
locally compact space X of size wy which is aD and non linearly D is inde-
pendent of ZFC.

First, we prove Theorem 3.1.1 as follows; in Section 3.2 and 3.3 we gather
all the necessary facts about MAD families and club guessing. In Section 3.4
we define spaces X[\, u, M, C], where X and p = cf () are cardinals, M is a
MAD family on p, and C is a guessing sequence. It is shown in Claim 3.4.2
that

(0) X[\, p, M, C] is always Ty, 0O-dimensional, and scattered.
Section 3.5 contains two important results:
(1) X[\, p, M, C] is not linearly D if c¢f(\) > p (see Corollary 3.5.3),
(2) X[\, p, M, C] is aD under certain assumptions (see Corollary 3.5.9).
In Section 3.6 we show how to produce such spaces X[\, u, M, C] de-

pending on the cardinal arithmetic and using Shelah’s club guessing.

Finally, in Section 3.7 we prove Theorem 3.1.2 using the set theoretical
hypothesis ({*) and a result of Zoltan Balogh about "locally nice" spaces
under M Ay,. We remark, that Section 3.7 can be read independently from
the previous sections.

3.2 Notes on MAD families

As MAD families will play an essential part in our constructions we observe
some easy facts about them. Let y be any infinite cardinal. We call M C [u]*
an almost disjoint family if |[M N N| < p for all distinct M, N € M. M is a
mazimal almost disjoint family (in short, a MAD family) if for all A € [u]*
there is some M € M such that |[AN M| = p.

We will use the following rather trivial combinatorial fact.
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Claim 3.2.1. Let M C [u]* be a MAD family and M = {M? : ¢ < k}.
Suppose that N € [p]* and [N\UM'| = p for all M" € [M]<*. Then |®| > p
for ® ={p < k:|NNM? = pu}.

Proof. If |®| < p then with N = N\ J{M¥ : ¢ € ®} € [u]* we can extend
the MAD family, which is a contradiction. If |®| = p then let & = {¢, :
¢ < p}. By transfinite induction, construct N = {ng : & < p} such that
ne € N\ (U{M¥? : ( <& U{ne: ¢ <&}) for & < p. It is straightforward
that N ¢ M and M U {N} is almost disjoint, which is a contradiction. [

From our point of view the sizes of MAD families are important. Clearly
there is a MAD family on w of size 2¥. The analogue of this does not always
hold for wy. Baumgartner in [6] proves that it is consistent with ZFC that
there is no almost disjoint family on w; of size 2“'. However, we have the
following fact.

Claim 3.2.2. If 2¥ = w; then there is a MAD family M on wy of size 2“1.

In Section 3.6 we use nonstationary MAD families Myg C [u]* meaning
that Mg is a MAD family such that every M € M yg is nonstationary in .
Observe, that using Zorn’s lemma to almost disjoint families of nonstationary
sets of 1 we can get nonstationary MAD families.

3.3 Fragments of Shelah’s club guessing

The constructions of the upcoming sections will use the following amazing
results of Shelah. For a cardinal A\ and a regular cardinal u let Sﬁ denote
the ordinals in A with cofinality p. For an S C Sﬁ an S-club sequence is a
sequence C' = (Cys : § € §) such that Cs C ¢ is a club in § of order type p.

Theorem 3.3.1 (|24, Claim 2.3|). Let A be a cardinal such that cf(\) > p*t
for some reqular p and let S C Sﬁ‘ stationary. Then there is an S-club
sequence C = (Cs : 0 € S) such that for every club E C X there is § € S
(equivalently, stationary many) such that Cs C E.

A detailed proof of Theorem 3.3.1 can be found in [1, Theorem 2.17].
Theorem 3.3.2 (|25, Claim 3.5]). Let A be a cardinal such that A = u* for

some uncountable, reqular p and S C Sﬁ‘ stationary. Then there is an S-club
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sequence C = (C5 : 6 € S) such that Cs = {af : ¢ < p} C 6 and for every
club E C X there is 0 € S (equivalently, stationary many) such that:

{C<p: agﬂ € E} is stationary.

For a detailed proof, see [29].

3.4 The general construction

Definition 3.4.1. Let A > pu = cf(u) be infinite cardinals. Let M C [u]*
be a MAD family, M = {M? : ¢ < r} and let C = {Cy : o« € S} denote
an Sﬁ‘—club sequence. We define a topological space X = X[\, u, M,C] as
follows. The underlying set of our topology will be a subset of the product
A X K. Let

e X, ={{(x,0)} forozE)\\Sl’),
e X, ={a} xk foraes),
o X = J{X,:a< A}

Let C, = {a§, : € < u} denote the increasing enumeration for a € S;‘. For
each o € S;‘ let

o 5= (a5, a5 for & € suce(p) U {0},
o 1= [, a5 for € € lim(y).

Note that J{I5 : € < p} = (%, ) is a disjoint union.
Define the topology on X by neighborhood bases as follows;

(i) for o € Sy and o < K let

U({a, @), m) = {{a, @) Ul X, sy e W{I§ 1 €€ MP\ p}} for < p

and let
B(a,¢) ={U({e, 9),n) : n < p}
be a base for the point (o, p).
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(ii) for o € S2, U suce(X) U{0} let (o, 0) be an isolated point,

(iii) for o € Sy, where p' > let

U(a,ﬁ):U{XW:B<7§a}f0r6<a

and let
Bla) ={U(a,B8): B < a}
be a base for the point («,0).

It is straightforward to check that these basic open sets form neighborhood
bases.

*

Fix some cardinals A > u = c¢f (), a MAD family M = {M% : p < k} C
[1]#, and S)-club sequence C. In the following X = X[\, u, M, C].

Claim 3.4.2. The space X[\, pu, M, C] is 0-dimensional, Ty, and scattered.
Observe that

(a) X, is closed discrete for all < A\, moreover

(b) U{Xa:a€ A} is closed discrete for all A € [A\]<F,
(c) X<a = U{Xp: B < a} is clopen for all a < .

Proof. First we prove that X[\, u, M, C] is T». Note that

() U{X, : B <y <a}isclopen forall f < a <A
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Thus (a, @), (o/,¢’) € X can be separated trivially if « # «'. Suppose that
a=do € Sﬁ and ¢ # ¢’ < k. There is < p such that (MY N M¥)\n =10
since |M¥ N M?'| < p. Thus U({a, ), n) N U({a, ¢'),n) = 0.

Next we show that X[\, i, M, C] is O-dimensional. By (%) it is enough to
prove that U({c, ¢),n) is closed for all o € Sﬁ, ¢ < k and n < p. Suppose
x = (", ¢y € X\ U({a,p),n), we want to separate x from U({c, ¢),n) by
an open set. Let o = a’. There is 5/ < p such that (M¥ N M)\ 7 =0,
thus U({a, ), n) NU({a,¢'),7) = 0. Let a # o’. If o’ € S2, Usucc(A) U {0}
then x is isolated, thus we are done. Suppose o/ € S;), where ' > p. Then
B =sup(Cy \ ) < o thus the clopen set |J{X, : f < v < &'}, containing
(o, ¢"), is disjoint from U({c, ), n).

X[\, p, M, C] is scattered since X[\, u, M, C] is right separated by the
lexicographical ordering on A\ X k.

(a) and (c) are trivial, we prove (b). Suppose = = (o/, ¢') € X, we prove
that there is a neighborhood U of z such that [UNJ{X, : a € A} < 1.
If o/ € 52, Usucc(\) U {0} then z is isolated, thus we are done. Suppose
a € S where y/ > p. Then § = sup(A\ /) < o thus the open set
U={z}UU{X, : 8 <7 <a} will do the job. O

3.5 Focusing on property D and aD

Again fix some cardinals A > u = c¢f(u), a MAD family M = {M? : ¢ <
K} C [p]*, and S3-club sequence C'. Our next aim is to investigate the spaces
X = X[\, u, M, C] concerning property D and aD.

Definition 3.5.1. Let n(F) ={a < X: FNX, # 0} for F C X. F is said
to be (un)bounded if w(F') is (un)bounded in \.

Let F' denote the set of accumulation points of a subset F' of X.

Claim 3.5.2. If F C X and n(F) accumulates to o € S}y such that up < n < X
then F' N X, # 0.

Proof. 1f n > u then X, = {{(a,0)} and each neighborhood U(«, /) of («, 0)
intersects F'. Thus F' N X, # (). Let us suppose that 7(F) accumulates to
a € 8. Since | J{I : &€ < p} = (a), ), the set N = {& < p: IS N7w(F) # 0}
has cardinality p. Thus there is some ¢ < k such that [NNM¥| = p, since M
is MAD family. Tt is straightforward that (a, ¢) € F’ since U((«, @), n)NF #
() for all n < p. O
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Corollary 3.5.3. If cf(\) > u then a closed unbounded subspace FF C X
is not a linearly D-subspace of X. Hence X[\, u, M,C] is not a linearly
D-space.

Proof. Let F' C X be closed unbounded. |m(D)| < u for every closed discrete
D C X by Claim 3.5.2. Thus there is no big closed discrete set for the open
cover {X<, : @ < A} which shows that F' is not linearly D by Theorem
1.2.4. U

Our aim now is to prove that in certain cases the space X[\, u, M, C] is
an aD-space, equivalently every closed subspace of it is irreducible.

Claim 3.5.4. Fvery closed, bounded subspace FF C X is a D-subspace of X;
hence F is irreducible.

Proof. Since property D is inherited by closed subspaces, it suffices to prove
that F' = X, = U{Xjs: 8 < a} is a D-space.

We do this by induction on a« < \. Let U : F — 7 be an ONA. If a is a
successor (or a = 0), then Fy = F'\ U({«, 0)) is closed and sup(Fp) < a thus
we are easily done by induction.

Let o € S) where y < y/ < X Then supm(Fy) < a where Fy =
F\ UU[X, N F] by Claim 3.5.2. Thus we are easily done by induction and
the fact that X, is closed discrete.

Now let v = cf(a) < p, let sup{a¢ : £ < v} = a such that oy = 0 and
{ag : € < v} is strictly increasing. Let F¢ = (J{X, :a¢ <y <ag}ifé<v
is limit or £ = 0 and F* = [J{X, : ag <7 < agq1} if € < v is a successor.
Let [V = X,. Clearly {F¢ : £ < v} is a discrete family of disjoint clopen sets
such that J{F* : ¢ < v} = X<,. By induction, for all £ < v there is some
closed discrete kernel D¢ C F¢ for the restriction of U to F¢. Let DY = F”.
Then D = J{D¢: £ < v} is closed discrete and X, C UU|D].

]

To handle the unbounded closed subsets we need the following definition.

Definition 3.5.5. Let F,, = FNX, for F C X and o < \. A subset ' C X
is high enough if
{o <A:|Fu|=[F[} > p.

We say that a subset F' C X is high if every closed unbounded subset of F'
18 high enough.
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The following rather technical claim will be useful.

Claim 3.5.6. For any FF C X and ONA U : F — 71 such that U(z) is a
basic open neighborhood of x € F, let

Ye={zx e F:Ja<\:F,CU(x),|F.| =|F|},
I'r={a<\:|F,|=|F|,3x € F:F, CU(x)}.
If F is closed and high enough then Yp,T'p # ().

Proof. Since Yy # 0 iff Tr # (), it is enough to show that there is some
x € Yp. Since F is high enough, |Z]| > p for Z = {a/ < X\ : |F| = |Fu|}.
Let D = J{Fv : o/ € Z} C F. Let § € S) be an accumulation point of
Z = w(D). Then by Claim 3.5.2 there is some z € D' N Xj thus € F.
Clearly x € Yp. O

Theorem 3.5.7. If the closed unbounded F' C X 1is high then F' is irreducible.

Proof. Suppose that U is an open cover of F'. We can suppose that we refined
it to the form {U(x) : © € F'} where each U(x) is basic open. From Claim
3.5.6 we know that Yz, 'z # (). We define Y¢ C F by induction.

e Letag €Tpand Y ={z €Yp: F,, CU(x)}. Fixsomeh’:Y? — F,,
injection; this exists because |F,,| = |F| > |[Yr| > |V

e Suppose we defined a; < A and Y¢ for ¢ < £. Let

FE=F\ (J{U@) :zeu{v: ¢ <&}uXa,)
where a = sup{a¢ : ¢ <}

e If F¢ is bounded then stop. Notice that Fg is bounded iff F\ [J{U(z) :
z € U{Y¢: (< &}} is bounded.

e Suppose F¢ is unbounded. F¢ C F is closed too. Thus F¢ is high
enough since F is high. Hence Ype, I'pe # 0.

o Let a¢ € I'pe; thus |F§§| = |F¢| and Fgé is covered by some U(x) for
v € F¢. Let Y = {2 € Ype : Fy, C U(x)}. Fix some h°: Y — F,
injection; this exists because |F5, | = [F¢| > [Ype| > [V,

27



Lemma 3.5.8. The induction stops before p many steps.

Proof. Suppose we defined this way {o¢ : € < p} and let o = sup{ae : € <
u} € Sﬁ. Let D = J{Fu, : £ < p}. By Claim 3.5.2 there is some 2 € D'NX,,
thus = € I as well. Clearly F,, C U(x) for p many § < p. By the definition
of the induction

(%) for every ¢ < & < p and every y € Y¢: Fég NU(y) =0

Clearly by (x), = ¢ Y¢ for all ¢ < p since there is ( < £ < pu such that
F;, C U(x). Moreover a ¢ U(y) for every y € Y¢ and ( < 5 if 2 € U(y) then
since x # y there is some 8 < « such that | J{X, : 8 <y < a} CU(y). This
contradicts (x) since there is ( < § < p such that 5 < ag, thus F’OéE C U(y).
Thus € F¢ for all £ < . Then 2 € Y* for all £ < p such that F,, C U(x).
This is a contradiction. O

Thus let us suppose that the induction stopped at step § < p, meaning that
F = F\UJ{U(x) : € Y} is bounded where Y = U{Y¢ : ( < &}. Let
h=U{ht: (<&}, h:Y — Fisal-1 function since the sets dom(h¢) = Y¢
and ran(h) C Fg_ are pairwise disjoint for ¢ < ¢ Note that ran(h) C
U{Fo, : ¢ <&} is closed discrete by Claim 3.4.2. For v € Y let

Uo(x) = (U(x) \ ran(h)) U {h(z)},
note that Up(x) is open. Then

U{Uo(:c) creY}l= U{U(az) crxeY}

is a minimal open refinement, since h(z) is only covered by Uy(x) for all
zeY. Let Uy ={Up(z):x €Y}

Let V(z) = U(z) \U{Fa, : ¢ < &}. Then V = {V(z) : 2 € F} is an open
cover of f, refining U; F,, N F= by construction for all { < €. F is closed
and bounded thus irreducible by Claim 3.5.4, hence there is an irreducible
open refinement V), of V. It is straightforward that V, Ul is a minimal open
refinement of U covering F. O

Corollary 3.5.9. Suppose that X\ > p = cf(p) are infinite cardinals such
that cf(A\) > p. Let M = {M? : ¢ < k} C [u]* be a MAD family and
C an Sl’)—club sequence. If X[\, u, M, C] is high then X\, u, M,C] is a
0-dimensional, Hausdorff, scattered space which is aD however not linearly
D.
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Proof. X[\, u, M, C] is 0-dimensional, Hausdorff, and scattered by Claim
3.4.2 and not linearly D by Corollary 3.5.3. It suffices to show that every
closed F' C X is irreducible. If F'is bounded then F'is a D-space by Claim
3.5.4 hence irreducible. If F' is unbounded then F'is high since X is high.
Hence F' is irreducible by Theorem 3.5.7. O

3.6 Examples of aD, non linearly D-spaces

In this section we give examples of aD, non linearly D-spaces of the form
X = X[\, u, M, C]. First let us make an observation.

Claim 3.6.1. If C, C 7(F) for a closed F C X and « € Sl;\ then I, = X,.

Proof. Clearly |J{X, : v € I} N F # 0 for all £ < u. Thus every point in
X, is an accumulation point of F', thus F, = X, since F' is closed. O

Corollaries 3.6.3 and 3.6.5 below give certain examples of high X [\, u, M, C]
spaces.

wtt. Let
¥ is a

Proposition 3.6.2. Suppose that p is a regular cardinal, cf(\)
C be an Sﬁ—club quessing sequence from Theorem 3.3.1. If M
MAD family of size at least \ then X[\, u, M, C] is high.

>
C

Proof. Let F© C X be closed and unbounded. Then 7 (F)" is a club in A,
hence there exists a stationary S C S} such that C, C 7(F)' for all a € S.
Thus F, = X, by Claim 3.6.1 hence |F,| = M| = |X| for all « € S. O

Corollary 3.6.3. 1. Suppose that 2 > wy. Let M be a MAD family on
w of size 2¢ and let C' be an S¥2-club guessing sequence from Theorem
3.3.1. Then X[wy,w, M, C] is high.

2. Suppose that 2% = wy and 2°* > ws. Let M be a MAD family on wq
of size 2v (exists by Claim 3.2.2) and let C be an SZ3-club guessing
sequence from Theorem 3.3.1. Then X|ws,wi, M, C] is high.

Proposition 3.6.4. Suppose that A = pt > p = cf(p) > w and let C
be an Sf—club guessing sequence from Theorem 3.3.2. If there is a non-
stationary MAD family Mys C [p]* such that |Mygs| = u* then X =
X", u, Mns, CJ is high.
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Proof. Let Mys = {M?¥ : ¢ < u*} and C = (C, : a € Sff} such that
C, = {a5 : € < u} C . Suppose that the closed ' C X is unbounded.
Then 7(F)" is a club in p*, hence there exists a stationary S C S;Lﬁ such
that

N, ={& < p: a5 € n(F)'} is stationary in p

for all @« € S. Fix any a € S, we prove that |F,| = |F|. N, is stationary
so by applying Claim 3.2.1 we get that |®,| = p* for &, = {p < p* :
|IN, N M?| = u}. Note that FN(J{X, : v € I§} # 0 for ¢ € N,. Thus
(o, ) is an accumulation point of F for ¢ € ®,, hence {a} x &, C F,. Thus
ol = it = |X]. 0

Corollary 3.6.5. Suppose that 2“1 = w,. Let C be an Sg*-club guessing
sequence from Theorem 3.3.2 and let Myg be a nonstationary MAD family
on wy. Then X|ws,wi, Myg, C] is high.

Thus, by all means we can deduce the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Note that in any model of ZFC, either (2¥ > ws)
or (2¢ = wy; A 2% > w3) or (2¥' = wy). Using Corollaries 3.6.3 and 3.6.5
above, depending on the sizes of 2 and 2“', we see that there exists a high
X[\, i, M, C] space. We are done by Corollary 3.5.9. O

3.7 Consistently on property D and aD

Our main goal in this section is to construct a "locally nice" space which
is not linearly D, however every closed subset of it is irreducible; hence aD
by Theorem 1.3.4. Then we deduce that such a space, with size less than
continuum, cannot exist in ZFC.

3.7.1 Preliminaries

We will use the following set-theoretical assumption:
($*) there is a $*-sequence, meaning that there exists an {A, : o € lim(wy)}
such that A, C [a]* is countable and for every X C w; there is a club

C C wy such that X Na e A, for all o € C.

Also, we need the following easy claim about MAD families.
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Claim 3.7.1. If {N; : i € w} C [w]¥ then there is a MAD family M C [w]
of size 2% such that for all M € M and i € w: |[M N N;| = w.

Proof. We will construct the MAD family M on Q. We can suppose that
each N; is dense in Q. Let R = {z, : o < 2} and for all o < 2¥ let
S, € Q such that S, is a convergent sequence with limit point z, and
|Sa N N;| = w for all i € w. Then § = {5, : a < 2¥} is almost disjoint, let
T =A{T, : a < A} C[Q]* such that SUT is MAD. Then M = {S,UT, :
a < APU{S,: A <a<2¢¥}isa MAD family with the desired property. O

The following result of Zoltan Balogh will play a key role in proving our
independence result.

Definition 3.7.2. A space X is said to be locally nice iff X is locally count-
able and locally compact.

Let us note that every locally nice space is 0-dimensional, Tychonoff and
first-countable.

Theorem 3.7.3 (|5, Theorem 2.2|). Suppose MA. Then for any locally nice
space X of cardinality < 2% exactly one of the following is true:

e X is the countable union of closed discrete subspaces,

e X contains a perfect preimage of wy with the order topology.
Let us state a final claim, which will be used later.

Claim 3.7.4. (i) If the space F is a perfect preimage of wy then F' is count-
ably compact, non compact.

(i1) If X is first-countable and F C X is a perfect preimage of wy then F
is closed in X.

Proof. (i) Tt is known that under perfect mappings, the preimage of a com-
pact space is compact (see [14, Theorem 3.7.2|). Take any countably infinite
A C F and perfect surjection f : FF — w;. There is some o < w; such that
fIA] € a+ 1. Thus A is the subset of the compact set f~'[a + 1]. (ii) is a
consequence of (i). O

The following can be easily seen now.

Corollary 3.7.5. Suppose that X is a first-countable space which is aD or
linearly D. Then X does not contain a perfect preimage of wy.
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3.7.2 The main result

Theorem 3.7.6. Suppose ($*). There is a locally nice, 0-dimensional T
space X of size wy such that X is not linearly D, however every closed subset
F C X s wrreducible; equivalently X is an aD-space.

Proof. We will define a topology on X = w; x wy. Let X, = {a} x w; and
Xoo=axw for a < wy.

Definition 3.7.7. The set A € [X]|* runs up to a < wy iff A = {(an, B,) :
n€w)} C X, such that ap < ... < a,, < ... and sup{a,, : n € w} = a.

Note that if A C X runs up to some a < w; then AN Xp is finite for all
b < wy.

We need the following consequence of ({$*). Let m(A) = {a € wy
ANX, #0} for AC X.

Claim 3.7.8. ($*) There exists a sequence {A, : a € lim(wq)} C [X]¥ with
Ay = U{AL : n € w} for all o € lim(wy) such that

1. |A?| =w for alln € w,
2. A, runs up to «,
3. forallY C X if [7(Y)| = w; then

3 club C' C wy such that Va € C3n € w(AL CY).

Proof. Let {A, : a € lim(w;)} denote a {*-sequence. Let i : wy X wp — wy
denote a bijection which maps ((a+1) x (a+1)) \ (@ x @) tow-(a+1)\w-a.
Let

Ay ={i""(A) : A€ Ao, sup(n(i ' (4))) = a}

and let A, = J{A” : n € w} such that
1. |A?| = w for all n € w,
2. A, runs up to «,

(3) for all B € A, there is n € w such that A" C B,
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for all @ € lim(w;). We claim that the sequence {A, : a € lim(w;)} has
the desired properties. Let Y C X such that |7(Y)| = wy. There is some
club Cy C wy such that Y N X_, C a x a for a € Cy. There is some club
Cy C wy such that ani[Y] € A, fora € C. Let Cy = {a < w; :w-a € C};
clearly, Cy is a club. Let C' = Co N Co N 7(Y). Fix some a € C. Then
w-anNilY] = Aforsome A € A,.,, thus i[Y N X_,] = A since w-a = i[a x ]
and Y N X, C o x a. Hence i71(4) =Y N X, and i~} (A) € A, because
a € w(Y)". Thus there is n € w such that A? CY by (3)". O

Let {4, : o € lim(w;)} C [X]“ denote a sequence with A, = [J{AZ :n €
w} for a € lim(wy) from Claim 3.7.8. We want to define the topology on X
such that

X, is closed discrete for all o < wy,
e X_, is open for all o € wy,
e if A € [X]“ runs up to a then A has an accumulation point in X,,,

e X, C A" for all a € lim(w;) and n € w.

Let M, C [A,]“ denote a MAD family on A, for @ € lim(w;) such that
IMNA? =w forall M € M, and n € w; such an M,, exists by Claim 3.7.1.
Enumerate M, = {M? : 8 < w;}.

We define topologies 7., on X_., by induction on a < w; such that
Tea NP(X<p) = 7<p for all f < o < wy. This way we will get a topology 7
on X if we take U{7, : @ < w;} as a base.

Suppose a < w; and we have defined the topology (X, <o) such that

(1) (X<asT<a) is a locally countable, locally compact, 0-dimensional 75
space,

(ii) for all o < @ and x € X, there is some neighborhood G of x such that
GnN Xa/ = {l‘},

(iil) (v, 1] X w1 € X, is clopen for all oy < a1 < a.

If @ € wy \ lim(w;) then let X, be discrete. Suppose « € lim(w;) and let us
enumerate {F C X, \ Ay : F runs up to a} as {F?: 8 < w}.

Definition 3.7.9. A subspace A C T of a topological space T is completely
discrete iff there is a discrete family of open sets {G, : a € A} such that
a € G, foralla € A.
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The following claim will be useful later.

Claim 3.7.10. Suppose that A = {(an,5,) : n € w} C X runs up to a.
Then A is completely discrete in X..; hence closed discrete.

Proof. Let Gy = (0, ap] X wy and Gpy1 = (i, @py1] X wy for n € w. G, is
open for all n € w by inductional hypothesis (iii). Note that {G, : n € w}
is a discrete family of open sets such that A NG, is finite for all n € w. Let
G, denote a finite, disjoint family of clopen subsets of G, such that for all
a € AN G, there is exactly one GG € G,, such that a € G. Then the discrete
family U{G,, : n € w} shows that A is completely discrete. O

In step a € lim(w;) we define the neighborhoods of points in X, =
{(a, B) : B < w1} by induction on < w; such that:

(a) Xco U{(a,p") : p" < B} is locally countable, locally compact and 0-
dimensional 75,

(b) there is some neighborhood U of (a, 3) such that U N A, C M5,
(¢) MP converges to (a, 3),
(d) F? accumulates to (o, ') for some 3’ < 8.

We need the following lemma to carry out the induction on f < wy.

Lemma 3.7.11. Suppose that (TUS, T) is a locally countable, locally compact
and 0-dimensional Ty space such that T 1is open and S s countable. Let
D ={d,:ne€w} CT closed discrete in T'US and completely discrete in T
Let r ¢ T US. Then there is a topology p on R =T U S U{r} such that

o (R, p) is locally countable, locally compact and 0-dimensional Ty,
® plirus) =T,
e D converges tor andr ¢ S in (R, p).

Proof. Suppose that d,, € G, such that {G,, : n € w} is a family of open sets
which is discrete in 7. Foreach n € wlet { B! : i € w} denote a neighborhood
base of d,, such that

e G, DBl 2B D .. and

e B! is countable, compact and clopen for all n,7 € w.
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Since S N D = () there is some clopen neighborhood U, of each s € S such
that U; N D = (). There is g, : w — w such that

UsN By ) = 0 for alln € w.

Since S is countable, there is g : w — w such that for all s € S there is some
N € w such that gs(n) < g(n) for all n > N. Define the topology p on R as
follows. Let

By ={r}u| J{By,) :n>N}and B={By: N cw},

Let p be the topology on R generated by 7 U B.

Clearly p|us)y = 7. We claim that (R, p) is locally countable, locally
compact and 0-dimensional. Since B is a neighborhood base for r, it suffices
to prove that each B € B is countable, compact (trivial) and clopen. Let
N € w then By is clopen in T since [J{By, : n € w} is a family of clopen
sets which is discrete in T guaranteed by the discrete family {G, : n € w}.
Let s € S. There is N € w such that U, N By, = @ for n > N. There is
some neighborhood V' € 7 of s such that V N U{By,, : n < N} = 0 since s
is not in the closed set [ J{By,, : n < N}. Thus (U; N V)N By = 0. This
proves that By is clopen.

We claim that (R, p) is To. Let s € S, then there is N € w such that
UsN By, = 0 for n > N, thus By N Us = 0. As noted before By N'T is
closed and clearly \{ByNT : N € w} = ). This yields that any point t € T
and r can be separated, thus (R, p) is Ts.

Clearly D converges to r and SN B = () for any B € Bthusr ¢ S. [

Suppose we are in step § < w; and we defined the neighborhoods of points
in XooU{(e, 3") : B" < f}. We use Lemma 3.7.11 to define the neighborhoods
of r = (a,3). Let T = Xoo and S = {(a, 3) : ' < B} U (4, \ MP). Note
that F#UM? runs up to « thus closed and completely discrete in 7' by Claim
3.7.10. Also, M? is closed discrete in T'U S by inductional hypothesis (b) for

(cr, B') where ' < .
e If F? accumulates to zg for some ' < 3 then let D = M?5.
e If 9 is closed discrete in T'U S then let D = M? U F?.

Note that D is closed discrete in T'U S. By Claim 3.7.11 we can define the
neighborhoods of = («, 8) such that the resulting space satisfies conditions
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(a), (b),(c) and (d). After carrying out the induction on £, the resulting
topology on X, clearly satisfies conditions (i),(ii) and (iii). This completes
the induction.

As a base, the family | J{7-, : @ € lim(w;)} generates a topology 7 on X
which is locally countable, locally compact and 0-dimensional 75. Observe
that X, is closed discrete and X_, is open for all & < w; (by inductional
hypothesises (ii) and (iii)) .

Claim 3.7.12. Suppose that F C X runs up to some o € lim(wy). Then
there is some f < wy such that F' accumulates to (a, B). Equivalently, if G C
X is open and X, C G then there is some o < « such that (o/, o] x w; C G.

Proof. There is some 3 < w; such that F' = F?. Thus by inductional hy-
pothesis (d) there is some ' < § such that F' accumulates to (a, ). O

Claim 3.7.13. X is not linearly D.

Proof. If D C X is closed discrete then 7(D) is finite by Claim 3.7.12. Thus
there is no big closed discrete set for the cover {X_ ., : o < wy}. O

Our next aim is to prove that all closed subspaces of X are irreducible.

Claim 3.7.14. If |7 (F)| = w for a closed F' C X then F is a D-space, hence
irreducible.

Proof. Since FF = U{FFN X, : a € n(F)} is a countable union of closed
discrete sets, F' is a D-space by Proposition 1.1.2. We mention that if the
ONA U on F has closed discrete kernel D then we get an irreducible cover
by taking the following open refinement: {(U(d) \ D) U{d} :d € D}. O

Claim 3.7.15. If |[7(A)| = wy for A C X then there is a club C C wy such
that C'xwy C A'. As a consequence, if m(U) is stationary for the open U C X
then there is some o < wy such that X \ U C o X wy.

Proof. There is a club C' C w; by Claim 3.7.8 such that for all a € C' there
is n € w such that A? C A. We will prove that X, C A’ for « € C. Take
any point (a, 8) € X,. |M? N A?| = w for all 8 < w; by the construction of
the MAD family M, and M? converges to (a, 3) by inductional hypothesis
(c). Thus A? accumulates to («, 3), hence X, C A’ O

Claim 3.7.16. If |n(F)| = wy for a closed F C X then F' is irreducible.
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Proof. Take an open cover of I, say . We can suppose that we refined it to
the form U = {U(x) : € F'}, where U(x) is a neighborhood of z € F. From
Claim 3.7.15 we know that there is some club C C w; such that C x w; C F.
For a € C define the open set G, = U{U(z) : v € X,}. For every a € C
there is some 0(a) < « such that (6(a),a] X w; C G,; by Claim 3.7.12. So
there is some § < w; and a stationary S C C such that (J,a] x w; C G,
for all @ € S. Fix some dy > ¢ such that X5, C F. Let Syp = S\ (6o + 1).
For all & € Sy there is d, € X, C F such that (dg,) € U(d,). Let us
refine these sets: Up(d,) = (U(da) \ ({do} x So)) U {(do, )} for all a € Sp;
let Uy = {Up(d,) : a € Sp}. Clearly Uy is an open refinement of ¢ which is
minimal and {d, : @ € w1} C Wy. Since Sy is stationary and Sy C 7[UlUo]
we get that there is some 7y < w; such that F; = F'\ Uy C v X w; by Claim
3.7.15. So by Claim 3.7.14 the closed set F} is a D-space, hence irreducible.
Take a minimal open refinement of the cover {U(z) \ ({do} x So) : x € F1},
let this be U;. The union Uy U is an open refinement of &/ which covers F
and minimal. O

This proves that all closed subspaces of X are irreducible. Hence X is an
aD-space by Theorem 1.3.4.
O

Finally, we can observe the following.

Proposition 3.7.17. Suppose MA. Let X be a locally nice space of cardi-
nality < 2*. Then the following are equivalent:

(1) X is a D-space,
(2) X is a linearly D-space,
(3) X is an aD-space.

Proof. In each case, X does not contain a perfect preimage of w; by Corollary
3.7.5. Hence, X is o-closed discrete by Balogh’s Theorem 3.7.3 which finishes
the proof. O

Thus we can deduce the proof of Theorem 3.1.2.

Proof of Theorem 3.1.2. If M Ay, holds, then every locally nice aD-space of
cardinality w; is a D-space by Proposition 3.7.17. If ({*) holds, then there is
a locally nice, O-dimensional T5 space X of size w; such that X is not linearly
D, but aD by Theorem 3.7.6. This completes the proof. O
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However, the following remain open.

Problem 3.7.18. Is there a ZFC example of a locally nice, Ty space X such
that X is not (linearly) D however aD ¢
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