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0.1 Introdution
D-spaes were introdued approximately 40 years ago as a straightforwardgeneralization of ompatness. Sine then, D-spaes are in the enter ofinterest for general topologists. However, we still lak understanding of therelationship of lassial overing properties to D-spaes. The purpose of thisthesis is to gather some of the most reent results from the theory ofD-spaesand related overing properties.In Chapter 1 we introdue the notion of D-spaes and tend to make thereader familiar with the lassial results. A further aim of this hapter is tode�ne properties losely related to property D; that is, we introdue linearly
D-spaes, aD-spaes, and we state some theorems. Finally, Chapter 1 endswith a short list of open problems onerning D-spaes.In Chapter 2 our aim is to present the reent progress on the long standingproblem whether Lindelöf implies D. First, we present the main result of [4℄whih is one of the breakthroughs in the topi:Theorem 2.1.4 . Every Menger spae is a D-spae.This theorem is a nie appliation of topologial games to the theory of
D-spaes. As a orollary, we show the following:Corollary 2.1.6 . Martin's Axiom implies that every Lindelöf spae of sizeless than 2ω is D.Following this line of researh, the previous orollary was made strongerby D. Repov², L. Zdomskyy in [23℄ and W. Shi, H. Zhang in [26℄ indepen-dently.Theorem 2.1.18 . Consistently every subparaompat spae of size ω1 is a
D-spae.We outline the methods involved. Opposing these results, we summarizeSzeptyki's [30℄ stating thatTheorem 2.2.1 . ♦ implies the existene of a T1-Lindelöf non D-spae.Finally, Chapter 3 gathers the author's results in the topi. aD-spaesare a well-known generalization of D-spaes; until reently, it was not knownwhether there is an aD, non D-spae. Our main result is Theorem 3.1.1,stating that 2



Theorem 3.1.1 ([28, Theorem 1.1℄). There exists a 0-dimensional, Haus-dor�, sattered aD-spae whih is not linearly D.This answers a question of Arhangel'skii [3℄ among others; a omplete in-trodution to the problem is in Setion 3.1. The proof of the theorem requiresadvaned set-theoretial methods suh as Shelah's lub-guessing theory.Also, we prove the following independene result in Setion 3.7.Theorem 3.1.2 ([27, Theorem 5.2℄). The existene of a loally ountable,loally ompat spae X of size ω1 whih is aD and non linearly D is inde-pendent of ZFC.The thesis ontains ertain notions and notations without expliit de�-nitions; let us refer to Engelking's [14℄ and Kunen's [21℄ for topologial andset-theoretial bakground, respetively.I would like to thank the help of the Set Theory and Topology researhgroup at the Rényi Institute in preparing [27℄ and [28℄. Also, I would like tothank Assaf Rinot for his ideas and advies to look deeper into the theory oflub guessing in ZFC.
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I dediate this thesis to my father.Without his support I would not be here.

4



Chapter 1
D-spaesAn open neighborhood assignment (ONA, in short) on a topologial spae
(X, τ) is a map U : X → τ suh that x ∈ U(x) for every x ∈ X .De�nition 1.0.1. X is said to be a D-spae i� for every neighborhoodassignment U on X, there is a losed disrete D ⊆ X suh that X =⋃

d∈D U(d) =
⋃

U [D]; suh a set D is alled a kernel for U .The notion of a D-spae was probably �rst introdued by van Douwenand E. Mihael in the mid-1970's; Mihael sent van Douwen a letter witha proof that semistrati�able spaes are D, and van Douwen replied with analternate proof, in a letter dated June 6, 1975 [15℄. Sine than, many workhad been done it the topi.Property D an be thought of as a overing property; every ompatspae, moreover σ-ompat spae, is a D-spae and ountably ompat D-spaes are ompat. Let us quote Gary Gruenhage's words from the inspiringsurvey [15℄:Part of the fasination with D-spaes is that, aside from theseeasy fats, very little else is known about the relationship betweenthe D property and many of the standard overing properties. Forexample, it is not known if a very strong overing property suh ashereditarily Lindelöf implies D, and yet for all we know it ouldbe that a very weak overing property suh as submetaompat orsubmetalindelöf implies D!Indeed, it is not known whether any of the following properties, evenif one adds "hereditarily", imply D: Lindelöf, paraompat, ultraparaom-5



pat, strongly paraompat, metaompat, metalindelöf, subparaompat,submetaompat, submetalindelöf, paralindelöf, sreenable, σ-metaompat.In this hapter, our aim is to summarize the basi results about D-spaesand orresponding generalizations.1.1 Basi resultsThe next proposition is part of the folklore.Proposition 1.1.1. Every σ-ompat spae is a D-spae and ountably om-pat D-spaes are ompat.This implies that R with the usual Eulidean topology is D and that ω1with the order topology is not a D-spae.Let us say a few words about unions of D-spaes.Proposition 1.1.2 ([7, Proposition 7.℄). If the spae X is the ountableunion of losed D-subspae then X is a D-spae.Interestingly, it is not known whether the union of two D-spaes is a
D-spae again. We remark that there is a σ-disrete spae whih is non
D; see the van Douwen-Wike-spae Γ in [12℄. Guo and Junnila generalizedProposition 1.1.2.Theorem 1.1.3 ([17℄). Suppose that X =

⋃
α<λ Xα suh that Xα is D and⋃

α′<αXα′ is losed for every α < λ. Then X is a D-spae.In many ases, spaes with some additional struture are D-spaes; thisis the ase with generalized metri spaes or spaes with nie bases.Theorem 1.1.4. The following are D-spaes:(1) semistrati�able spaes [7℄,(2) subspaes of symmetrizable spaes [8℄,(3) spaes having a point-ountable base [2℄.The �rst two properties are both well-known weakenings of metrizability;for de�nitions see [16℄. The proof of "metrizable spae are D" works in the�rst two ases with minor re�nements.Monotone normal spaes generalize both ordered and metri spaes. Wehave the following lassi result from [7℄.6



Theorem 1.1.5. Every monotone normal D-spae is paraompat.At the end of this hapter, in Setion 1.4, we ite various open problemsonerning D-spaes.1.2 Linearly D-spaesA straightforward generalization of property D is due to Guo and Junnila[18℄. For a spae X a over U is monotone i� it is linearly ordered byinlusion.De�nition 1.2.1. A spae (X, τ) is said to be linearly D i� for any ONA
U : X → τ for whih {U(x) : x ∈ X} is monotone, one an �nd a loseddisrete set D ⊆ X suh that X =

⋃
U [D].The onnetion between lassial overing properties and linearD-propertyis determined by the next theorem.Theorem 1.2.2 ([18, Proposition 2.11℄). Every submetalindelöf T1 spae islinearly D.Submetalindelöfness is a signi�ant weakening of both Lindelöfness andparaompatness.De�nition 1.2.3. A spae X is submetalindelöf i� for every open over Uof X there are {Un : n ∈ ω} open re�nements of U overing X suh that forevery x ∈ X there is n ∈ ω suh that |{U ∈ Un : x ∈ U}| ≤ ω.We will later use the following haraterization of linear D property. Aset D ⊆ X is said to be U-big for a over U i� there is no U ∈ U suh that

D ⊆ U .Theorem 1.2.4 ([18, Theorem 2.2℄). The following are equivalent for a T1-spae X:1. X is linearly D,2. for every non-trivial monotone open over U of X, there exists a loseddisrete U-big set in X. 7



We remark that there are linearly D, non D-spaes; for example, anylinearly Lindelöf, non Lindelöf spae is suh. This an be easily seen fromthe following:Proposition 1.2.5 ([18℄). A spae X is linearly Lindelöf i� X is linearly Dand there are no unountable losed disrete sets in X.For various examples of linearly Lindelöf, non Lindelöf spaes see [22℄.1.3 aD-spaesInvestigating the properties of D-spaes and the onnetions between otherovering properties led to the de�nition of aD-spaes, de�ned by Arhangel'skiiand Buzyakova in [2℄.De�nition 1.3.1. A spae (X, τ) is said to be aD i� for eah losed F ⊆ Xand for eah open over U of X there is a losed disrete D ⊆ F and U :
D → U with x ∈ U(x) for all x ∈ D suh that F ⊆ ∪U [D].It is lear that D-spaes are aD. As it turned out, property aD is muhmore doile than property D.Theorem 1.3.2 ([3, Theorem 1.15℄). Every submetalindelöf T1 spae is aD.Thus, until the reent results of [28℄, there was the hope to prove aD ⇒ Dand settle the problems listed in the introdution.Proving that a spae is aD, the notion of an irreduible spae will play akey role.De�nition 1.3.3. A spae X is irreduible i� every open over U has aminimal open re�nement U0; meaning that no proper subfamily of U0 overs
X. In [3℄ Arhangel'skii showed the following equivalene.Theorem 1.3.4 ([3, Theorem 1.8℄). A T1-spae X is an aD-spae if andonly if every losed subspae of X is irreduible.In Chapter 3, we deal with existene of aD, non D-spaes.8



1.4 Various open problemsFirst, let us state some open problems asking if ertain spaes are D. Ofourse, the main interest is in the following.Problem 1.4.1. Is every (hereditarily) Lindelöf spae a D-spae?We will deal with this question in Chapter 2. Let us remark again, that itis not known whether any of the following strong overing properties imply
D: Lindelöf, paraompat, ultraparaompat, strongly paraompat; simi-larly, it is unknown whether there is a non D-spae with any of the followingweak overing properties: metaompat, metalindelöf, subparaompat, sub-metaompat, submetalindelöf, paralindelöf, sreenable, σ-metaompat.Another main question in the area is the following from Arhangel'skii [3℄.Problem 1.4.2. Is the union of two D-spaes a D-spae again? Is it aD?Let us ite this lassi problem of Borges and Wehrly onneted to The-orem 1.1.5.Problem 1.4.3 ([7℄). Is every paraompat, monotonially normal spae a
D-spae?The following is from [9℄.Problem 1.4.4. Suppose that X is a ontinuous image of a Lindelöf D-spae. Is X a D-spae?Now, we turn to a possibly easier open problems. Suppose that S isthe Sorgenfrey-line. Van Douwen and Pfe�er in [11℄ proved that S and its�nite powers are D-spaes; later, de Caux [10℄ showed that these spae arehereditarily D-spaes. However, the following is still open.Problem 1.4.5. ([10℄) Is Sω a (hereditarily) D-spae?Suppose that M is a metri spae with topology τ . If τ ′ re�nes τ suhthat every point p ∈ M has a base B in τ ′ suh that U \ {p} ∈ τ for every
U ∈ B then (M, τ ′) is alled a butter�y spae over the metri spae (M, τ).For example, the Sorgenfrey line or its �nite powers are butter�y spaes overthe appropriate Eulidean metri spaes. The following question is from [15℄.Problem 1.4.6. Is every butter�y spae over a separable metri spae a
D-spae?The reader an �nd many more fasinating questions in [13℄ and in thesurvey [15℄. 9



Chapter 2Is every Lindelöf spae a D-spae?In their artile [20℄ in Open Problems in Topology II, M. Hru²ák and J. T.Moore listed twenty open problems from set theoreti topology whih shouldbe at the enter of researh interest. Problem 1.4.1, whether every Lindelöfspae is D, is number fourteen on their list.Until very reently, there were no progress in solving the above problem,nor a preferred onjeture; it seemed to be plausible to exist a Lindelöf, non
D-spae and also that every Lindelöf spae is D. The aim of this hapter isto present some of the main reent results onerning Lindelöf and D-spaes.One of the �rst and most prominent results is L. Aurihi's following the-orem.Theorem 2.1.4 ([4℄). Every Menger spae is a D-spae.From this, we dedue the following:Corollary 2.1.6 . MA implies that every Lindelöf spae of size less than 2ωis a D-spae.The latter orollary and methods of L. Aurihi were improved by D.Repov², L. Zdomskyy in [23℄ and W. Shi, H. Zhang in [26℄ independently.Theorem 2.1.18 ([23, Corollary 2.6℄ and [26℄ independently). It is onsis-tent that every subparaompat spae of size ℵ1 is a D-spae.On the other hand, the following was proved by P. Szeptyki.Theorem 2.2.1 ([30℄). It is onsistent that there exists a T1-Lindelöf non
D-spae of size ℵ1. 10



The above results might indiate, that Problem 1.4.1 is not deidable inZFC; however, any suh theorem is yet to ome. The rest of this hapter willsummarize the above listed three results.2.1 On Lindelöf implies DIn this setion, our aim is to gather results stating that ertain overingproperties imply property D.2.1.1 Menger spaesDe�nition 2.1.1. A spae X is said to be Menger i� for every sequene ofopen overs {Un : n ∈ ω} of X there are �nite Vn ⊆ Un for every n ∈ ω suhthat ∪{Vn : n ∈ ω} overs X.Note that every σ-ompat spae is Menger. On the other hand, everyMenger spae is Lindelöf; indeed, for any open over U apply the de�nitionof being Menger for the onstant sequene Un = U .The Menger property has an interesting and non-trivial haraterizationby topologial games.De�nition 2.1.2. The Menger-game on a spae X is the following game oflength ω, played by two players, Player I and II. In eah round n ∈ ω, PlayerI hooses an open over Un of X losed under �nite unions and Player IIresponds by hoosing Un ∈ Un. Player II wins i� X =
⋃

n∈ω Un.The following was proved by W. Hurewiz [19℄.Theorem 2.1.3. A spae X is Menger i� Player I does not have a winningstrategy in the Menger-game on X.The next theorem was proved by L. Aurihi.Theorem 2.1.4 ([4℄). Every Menger spae is a D-spae.Proof. Let N be any ONA and let us de�ne a strategy for Player I in theMenger-game on X . First let Player I play {∪N [F ] : F ∈ [X ]<ω}. If PlayerII responds by ∪N [F0] for some F0 ∈ [X ]<ω then let Player I play
{∪N [F0 ∪ F ] : F ∈ [X ]<ω, F ∩ (∪N [F0]) = ∅}.11



Then Player II responds by some F1 ∈ [X ]<ω. In general, suppose that PlayerII responded by F0, ..., Fn−1 ∈ [X ]<ω till step n; more preisely, the respondsare oded by these �nite sets. Let F<n = ∪{Fi : i < n} and let Player I play
{∪N [F<n ∪ F ] : F ∈ [X ]<ω, F ∩ (∪N [F<n]) = ∅}.This de�nes a strategy for Player I in the Menger-game. Sine X is Menger,this strategy is not winning by Theorem 2.1.3. Thus there are �nite subsets

Fn of X for n ∈ ω suh that {∪N [F<n] : n ∈ ω} overs X . Let D = ∪{Fn :
n ∈ ω}, then X = ∪N [D]. It is easy to hek that D is losed and disretein X ; hene, X is a D-spae.Before stating the �rst onsisteny results onerning D-spaes, we needa small laim. Let us reall the de�nition of the dominating number ; a family
D ⊆ ωω is alled dominating i� for every g ∈ ωω there is f ∈ D suh that
g(n) < f(n) for all but �nitely many n ∈ ω. The dominating number d is aardinal de�ned as follows.

d = min{κ : there is a dominating family D ⊆ ωω of size κ}It is lear that ω < d ≤ 2ω and onsistently d an be smaller thanthe ontinuum; it is well known that MA, Martin's Axiom, implies that
ℵ1 < d = 2ω.Claim 2.1.5. Every Lindelöf spae of size less than d is Menger; hene Dby Theorem 2.1.4.Proof. Let us �x a sequene of open overs {Un : n ∈ ω} ofX ; we an supposethat eah Un is ountable by X being Lindelöf. Let Un = {Un,k : k ∈ ω} for
n ∈ ω. For every x ∈ X de�ne fx : ω → ω suh that x ∈ Un,fx(n) forevery n ∈ ω. |X| < d implies that there is a funtion g ∈ ωω suh that
fx(n) ≤ g(n) for in�nitely many n ∈ ω, for every x ∈ X ; observe that
x ∈ ∪{Un,k : k ≤ g(n)} for suh n ∈ ω. Let Vn = {Un,k : k ≤ g(n)} ∈ [Un]

<ωfor n ∈ ω. Clearly, ∪{Vn : n ∈ ω} overs X . Thus X is Menger.Corollary 2.1.6. MA implies that every Lindelöf spae of size less than 2ωis a D-spae.Thus there is no ZFC example of a Lindelöf, non D-spae of size lessthan 2ω. In the next setion, we will reah analogues orollaries onerningparaompat spaes.Let us mention a similar theorem to Claim 2.1.5 without proof. Let Mdenote the ideal of meager sets. 12



Theorem 2.1.7 ([4℄). If a Lindelöf spae X an be overed by fewer than
cov(M) many ompat sets then X is Menger, hene D.Finally, let us ite another appliation of Theorem 2.1.4. A spae X isalled produtively Lindelöf i� X ×Y is Lindelöf for every Lindelöf spae Y .Theorem 2.1.8 ([31, Theorem 2℄). The Continuum Hypothesis implies thatevery produtively Lindelöf spae is Menger, hene D.As a orollary, under CH every Lindelöf P-spae is a D-spae.2.1.2 Subparaompat spaesOur aim in this setion is to present the methods of [23℄ and the proof ofTheorem 2.1.18. If not stated otherwise, the de�nitions and results are from[23℄.Let us introdue a weakening of property D.De�nition 2.1.9. A spae X has property Dκ or X is a Dκ-spae for someardinal κ i� for every ONA N on X there are losed disrete subsets {Dξ :
ξ < κ} of X suh that ∪{N [Dξ] : ξ < κ} overs X.We omit the proof of the following observations.Claim 2.1.10. 1. D = Dn ⇒ Dλ ⇒ Dκ for every ardinal λ ≤ κ and

0 < n < ω.2. Property Dκ is inherited by losed subsets.3. Every Lindelöf spae is a Dω-spae.Next, we will need a notion very similar to the Menger property.De�nition 2.1.11. A spae X has property E∗
ω i� for every sequene ofountable open overs {Un : n ∈ ω} of X there are �nite Vn ⊆ Un for every

n ∈ ω suh that ∪{Vn : n ∈ ω} overs X.Note that property E∗
ω is equivalent to the Menger property in the realmof Lindelöf spaes. Let us de�ne the orresponding E∗

ω-game:De�nition 2.1.12. The E∗
ω-game on a spae X is the following game oflength ω, played by two players, Player I and II. In eah round n ∈ ω, PlayerI hooses a ountable, inreasing open over Un = {Un,k : k ∈ ω} of X andPlayer II responds by hoosing kn ∈ ω. Player II wins i� X =

⋃
n∈ω Un,kn.13



The diret analogue of Theorem 2.1.3 holds in this ase.Proposition 2.1.13. A spae X has property E∗
ω i� Player I has no winningstrategy in the E∗

ω-game on X.The main theorem of this setion is the following.Theorem 2.1.14 ([23, Theorem 2.1℄). Suppose that a spae X has properties
Dω and E∗

ω. Then X is a D-spae.Proof. Let N be any ONA on X and we de�ne a strategy for Player I in the
E∗

ω-game. Let F0 = X ; F0 is a Dω-spae so there is an inreasing sequene
{A0,k : k ∈ ω} of losed disrete subsets of F0 suh that {∪N [A0,k] : k ∈ ω}overs X . Let Player I play {∪N [A0,k] : k ∈ ω}. Player II responds byhoosing A0,k0 for some k0 ∈ ω. Let F1 = X \ ∪N [A0,k0 ], then there is aninreasing sequene {A1,k : k ∈ ω} of losed disrete subsets of F1 suh that
{∪N [A1,k] : k ∈ ω} overs F1. Let Player I play {X \F1∪

⋃
N [A1,k] : k ∈ ω}.Player II responds by hoosing A1,k1 for some k1 ∈ ω. In general, let Fn =

X \
⋃

i<n ∪N [Ai,ki ]. Fn is losed in X , hene a Dω-spae; thus there is aninreasing sequene {An,k : k ∈ ω} of losed disrete subsets of Fn suh that
{∪N [An,k] : k ∈ ω} overs Fn. Let Player I play {X \Fn∪

⋃
N [An,k] : k ∈ ω}.Player II responds by hoosing An,kn for some kn ∈ ω.This strategy is not winning for Player I, hene there are hoies {kn :

n ∈ ω} for Player II suh that
X =

⋃

n∈ω

(
X \ Fn ∪ (∪N [An,kn ])

)
.Then X =

⋃
n∈ω ∪N [An,kn ] sine X \F0 = ∅ and X \Fn =

⋃
i<n ∪N [Ai,ki ] for

n > 0. Finally, it is easy to see that ⋃n∈ω An,kn is losed disrete in X .Subparaompatness is a signi�ant weakening of paraompatness.De�nition 2.1.15. A spae X is subparaompat i� every open over of Xhas a σ-loally �nite losed re�nement.Note that not every Dω1 spae is a Dω spae; indeed, take ω1 with theusual order topology. However, we have the following.Lemma 2.1.16 ([23, Lemma 2.3℄). Suppose that X is a subparaompat spaewhih an be overed by ω1-many of its Lindelöf subspaes. Then X is a Dωspae. In partiular, every subparaompat spae of size ω1 is a Dω-spae.14



Proof. Suppose that X =
⋃

ξ<ω1
Lξ suh that Lξ is Lindelöf for all ξ < ω1;without the loss of generality, we an suppose that Lξ ⊆ Lη for all ξ < η < ω1.Let N be any ONA on X . There are ountable subsets {Cα : α < ω1} of Xsuh that(i) L0 ⊆ ∪N [C0],(ii) Cα ∩

⋃
ξ<α ∪N [Cξ] = ∅ for all α < ω1,(iii) Lα \

⋃
ξ<α ∪N [Cξ] ⊆ ∪N [Cα] for all α < ω1.Let C =

⋃
α<ω1

Cα; it su�es to prove that C is σ-losed disrete. Thesubparaompatness of X implies that there is a losed re�nement F =
∪n∈ωFn of the open over {N(x) : x ∈ C} suh that Fn is loally �nite forevery n ∈ ω. Clearly, F ∩ C is ountable for every F ∈ F . Let C ∩ F =
{xn,F,m : m ∈ ω} for F ∈ Fn for some n ∈ ω if C ∩ F is nonempty. Let
An,m = {xn,F,m : F ∈ Fn, C ∩ F 6= ∅}; it is easy to see that An,m is loseddisrete and C =

⋃
n,m∈ω An,m.Observe that the proof of Claim 2.1.5 atually gave us the following: everyspae X of size less than d is E∗

ω and every Lindelöf, E∗
ω-spae is Menger.Thus, we have the following orollary.Corollary 2.1.17. Suppose that X is a subparaompat spae of size lessthan d whih an be overed by ω1-many of its Lindelöf subspaes. Then Xis a D-spae.Proof. X is E∗

ω by the previous observation and Dω by Lemma 2.1.16. Thus
X is a D-spae by Theorem 2.1.14.Thus, we have proved the following either.Theorem 2.1.18 ([23, Corollary 2.6℄ and [26℄ independently). MA impliesthat every subparaompat spae of size ω1 is a D-spae.Although, we do not know the answer to the following.Problem 2.1.19. Is it onsistent, that ω1 < 2ω and every (sub)paraompatspae of size less than 2ω is a D-spae?
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2.2 On Lindelöf does not imply DIn this setion, we outline a onstrution of Paul Szeptyki and dedue thefollowing:Theorem 2.2.1 ([30℄). It is onsistent that there exists a T1-Lindelöf nonD-spae of size ℵ1.We skip most of the proofs sine the methods involved are greatly ad-vaned. If not stated otherwise, results are from [30℄.2.2.1 PreliminariesThe following lemma will be used later.Lemma 2.2.2. Consider a topology on ω1 generated by sets {Uγ : γ < ω1}as a subbase; sets of the form
UF \H where UF =

⋂
{Uγ : γ ∈ F}for F,H ∈ [ω1]

<ω form a base. If for every unountable family B ⊆ [ω1]
<ωof pairwise disjoint sets there is a ountable B′ ⊆ B suh that

|ω1 \
⋃

{UF : F ∈ B′}| ≤ ωthen the topology is hereditarily T1-Lindelöf.The onstrution uses a well known set theoretial prinipal: Jensen's ♦.De�nition 2.2.3. A ♦-sequene is a sequene {Sβ : β < ω1} of subsets of
ω1 suh that for every S ⊆ ω1 there are stationary many β ∈ ω1 suh that
S ∩ β = Sβ. Let ♦ denote the statement that there exist a ♦-sequene.We need the following observation whih is part of the folklore.Claim 2.2.4. ♦ is equivalent to the following statement: there exists a se-quene {Bβ : β < ω1} suh that Bβ ⊆ [ω1]

<ω for all β < ω1 and for every
B ⊆ [ω1]

<ω there are stationary many β < ω1 suh that B ∩ [β]<ω = Bβ.
16



2.2.2 The onstrutionFrom now on, we assume that ♦ holds; that is, we an �x a sequene {Bβ :
β < ω1} provided by Claim 2.2.4. Also, sine ♦ implies the ContinuumHypothesis, we an �x an enumeration {Cα : α < ω1} of ountable subsetsof ω1 suh that Cα ⊆ α for every α < ω1.Our goals are to onstrut sets {Uγ : γ < ω1} suh that γ ∈ Uγ for every
γ < ω1 and onsider the topology on ω1 generated by this family and theo�nite sets; we will apply Lemma 2.2.2 to prove hereditarily T1-Lindelöfnessand the neighborhood assignment mapping γ to Uγ will show that the spaeis not a D-spae. The next theorem will be the key to ahieve our goals.Theorem 2.2.5. There exist {Uα

γ }γ≤α for α < ω1 with the following proper-ties:IH(1) Uα
γ ⊆ α + 1 and Uα

α = α + 1 for every γ ≤ α < ω1.IH(2) Uα
γ = Uα0

γ ∩ (α + 1).Let τα denote the T1 topology on α+ 1 generated by the sets
Uα
F =

⋂
{Uα

γ : γ ∈ F}for F ∈ [α + 1]<ω and the o�nite sets of α + 1.IH(3) If Cα is τα losed disrete then ⋃
{Uα

γ : γ ∈ Cα} 6= α + 1.IH(4) Let Tα = {β ≤ α : Bβ is a pairwise disjoint family of �nite subsetsof β and there is a ountable elementary submodel M ≺ H(ℵ2) suhthat
• M ∩ ω1 = β

• {Bγ}γ<ω1 ∈ M

• there is an unountable B ∈ M suh that M ∩ B = Bβ, and
• there is {Vγ}γ<ω1 ∈ M suh that Vγ ∩β = Uα

γ ∩β for all β < α}.(a) If β ∈ Tα then Bβ is a loal π-network at β in τα.
17



(b) If β ∈ Tα ∩ α then for every V ∈ τα suh that β ∈ V

{Uα
F : F ∈ Bβ, F ⊆ V }is an ω-over of (β, α].The proof of Theorem 3.7.6 is done by indution on α < ω1 while IH(1)-IH(4) are working as indutive hypothesises. We will not present the proofhere; it involves the deliate use of elementary submodels in topology whihis beyond the sope of this thesis.Let us prove now Theorem 2.2.1.Proof of Theorem 2.2.1. Consider sets {Uα

γ }γ≤α for α < ω1 provided by The-orem 3.7.6 with properties IH(1)-IH(4). Let Uγ = ∪{Uα
γ : γ ≤ α < ω1} for

γ < ω1. Let τ denote the topology on ω1 generated by the sets
UF =

⋂
{Uγ : γ ∈ F}for F ∈ [ω1]

<ω and the o�nite sets of ω1.Lemma 2.2.6. The topology τ on ω1 is hereditarily T1-Lindelöf.Proof. We apply Lemma 2.2.2; �x some unountable family B ⊆ [ω1]
<ω ofpairwise disjoint sets. There is an M ≺ H(ℵ2) suh that B, {Uγ : γ <

ω1}, {Bγ : γ < ω1} ∈ M and
M ∩ ω1 = β and B ∩M = B ∩ [β]<ω = Bβ.We laim that ω1 \

⋃
{UF : F ∈ Bβ} ⊆ β + 1; indeed �x some α ∈ (β, ω1).Then β ∈ Tα, ensured by the model M , and hene there is some F ∈ Bβsuh that α ∈ Uα

F ⊆ UF by IH(4).Now we prove that (ω1, τ) is not a D-spae. Consider the neighborhoodassignment γ 7→ Uγ; we show that ∪{Uγ : γ ∈ C} 6= ω1 for every loseddisrete C ⊆ ω1. Sine (ω1, τ) is T1-Lindelöf, |C| ≤ ω and hene there is
α < ω1 suh that Cα = C. It su�es to note that Cα is τα losed disrete if
τ losed disrete; indeed, then ∪{Uγ : γ ∈ Cα} 6= α + 1 by IH(3).Whether one an modify the above onstrution suh that the sets {Uγ :
γ < ω1} are lopen is of entral interest.18



2.3 RemarksThe Szeptyki-onstrution gives us only a T1 example, not even a Hausdor�spae; although, it is a great step in solving the main problem, we annotonsider the result a omplete (onsistent) answer to Problem 1.4.1.The same holds for the Aurihi and Repov²-Zdomskyy theorems (Theo-rem 2.1.4 and 2.1.18, respetively). They are outstanding ontributions tothe investigations done it the topi, however they only provide partial an-swers.Thus, the question remains open: Is there a Lindelöf or paraompat,non D-spae?
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Chapter 3Properties D and aDIn Setion 1.3, we introdued property aD and stated a few fats; every D-spae is an aD-spae, and even spaes with rather weak overing propertiesare aD, see Theorem 1.3.2. Therefore, it is worth studying whether thereis an aD-spae whih is not a D-spae; a negative answer to this questionwould settle almost all of the questions about the relationship of lassialovering properties to property D.In this Chapter we answer this question, among others, and we show thatthere are aD, non D-spaes.3.1 Questions and answersIn [3℄ Arhangel'skii asked the following:Problem 4.6. Is there a Tyhono� aD-spae whih is not a D-spae?Quite similarly, Guo and Junnila in [18℄ asked the following about a weak-ening of property D:Problem 2.12. Is every aD-spae linearly D?In G. Gruenhage's survey on D-spaes [15℄, another version of this ques-tion is stated (besides the original Arhangel'skii), namely:Question 3.6(2) Is every sattered, aD-spae a D-spae?20



The main results of this Chapter are following answers to the questionsabove.Theorem 3.1.1 ([28, Theorem 1.1℄). There exists a 0-dimensional T2 spae
X suh that X is sattered, aD, and non linearly D.Theorem 3.1.2 ([27, Theorem 5.2℄). The existene of a loally ountable,loally ompat spae X of size ω1 whih is aD and non linearly D is inde-pendent of ZFC.First, we prove Theorem 3.1.1 as follows; in Setion 3.2 and 3.3 we gatherall the neessary fats about MAD families and lub guessing. In Setion 3.4we de�ne spaes X [λ, µ,M, C], where λ and µ = cf(µ) are ardinals, M is aMAD family on µ, and C is a guessing sequene. It is shown in Claim 3.4.2that(0) X [λ, µ,M, C] is always T2, 0-dimensional, and sattered.Setion 3.5 ontains two important results:(1) X [λ, µ,M, C] is not linearly D if cf(λ) ≥ µ (see Corollary 3.5.3),(2) X [λ, µ,M, C] is aD under ertain assumptions (see Corollary 3.5.9).In Setion 3.6 we show how to produe suh spaes X [λ, µ,M, C] de-pending on the ardinal arithmeti and using Shelah's lub guessing.Finally, in Setion 3.7 we prove Theorem 3.1.2 using the set theoretialhypothesis (♦∗) and a result of Zoltán Balogh about "loally nie" spaesunder MAℵ1 . We remark, that Setion 3.7 an be read independently fromthe previous setions.3.2 Notes on MAD familiesAs MAD families will play an essential part in our onstrutions we observesome easy fats about them. Let µ be any in�nite ardinal. We allM ⊆ [µ]µan almost disjoint family if |M ∩N | < µ for all distint M,N ∈ M. M is amaximal almost disjoint family (in short, a MAD family) if for all A ∈ [µ]µthere is some M ∈ M suh that |A ∩M | = µ.We will use the following rather trivial ombinatorial fat.21



Claim 3.2.1. Let M ⊆ [µ]µ be a MAD family and M = {Mϕ : ϕ < κ}.Suppose that N ∈ [µ]µ and |N \∪M′| = µ for all M′ ∈ [M]<µ. Then |Φ| > µfor Φ = {ϕ < κ : |N ∩Mϕ| = µ}.Proof. If |Φ| < µ then with Ñ = N \
⋃
{Mϕ : ϕ ∈ Φ} ∈ [µ]µ we an extendthe MAD family, whih is a ontradition. If |Φ| = µ then let Φ = {ϕζ :

ζ < µ}. By trans�nite indution, onstrut Ñ = {nξ : ξ < µ} suh that
nξ ∈ N \ (

⋃
{Mϕζ : ζ < ξ} ∪ {nζ : ζ < ξ}) for ξ < µ. It is straightforwardthat Ñ /∈ M and M∪ {Ñ} is almost disjoint, whih is a ontradition.From our point of view the sizes of MAD families are important. Clearlythere is a MAD family on ω of size 2ω. The analogue of this does not alwayshold for ω1. Baumgartner in [6℄ proves that it is onsistent with ZFC thatthere is no almost disjoint family on ω1 of size 2ω1 . However, we have thefollowing fat.Claim 3.2.2. If 2ω = ω1 then there is a MAD family M on ω1 of size 2ω1.In Setion 3.6 we use nonstationary MAD families MNS ⊆ [µ]µ meaningthatMNS is a MAD family suh that every M ∈ MNS is nonstationary in µ.Observe, that using Zorn's lemma to almost disjoint families of nonstationarysets of µ we an get nonstationary MAD families.3.3 Fragments of Shelah's lub guessingThe onstrutions of the upoming setions will use the following amazingresults of Shelah. For a ardinal λ and a regular ardinal µ let Sλ

µ denotethe ordinals in λ with o�nality µ. For an S ⊆ Sλ
µ an S-lub sequene is asequene C = 〈Cδ : δ ∈ S〉 suh that Cδ ⊆ δ is a lub in δ of order type µ.Theorem 3.3.1 ([24, Claim 2.3℄). Let λ be a ardinal suh that cf(λ) ≥ µ++for some regular µ and let S ⊆ Sλ

µ stationary. Then there is an S-lubsequene C = 〈Cδ : δ ∈ S〉 suh that for every lub E ⊆ λ there is δ ∈ S(equivalently, stationary many) suh that Cδ ⊆ E.A detailed proof of Theorem 3.3.1 an be found in [1, Theorem 2.17℄.Theorem 3.3.2 ([25, Claim 3.5℄). Let λ be a ardinal suh that λ = µ+ forsome unountable, regular µ and S ⊆ Sλ
µ stationary. Then there is an S-lub22



sequene C = 〈Cδ : δ ∈ S〉 suh that Cδ = {αδ
ζ : ζ < µ} ⊆ δ and for everylub E ⊆ λ there is δ ∈ S (equivalently, stationary many) suh that:

{ζ < µ : αδ
ζ+1 ∈ E} is stationary.For a detailed proof, see [29℄.3.4 The general onstrutionDe�nition 3.4.1. Let λ > µ = cf(µ) be in�nite ardinals. Let M ⊆ [µ]µbe a MAD family, M = {Mϕ : ϕ < κ} and let C = {Cα : α ∈ Sλ

µ} denotean Sλ
µ-lub sequene. We de�ne a topologial spae X = X [λ, µ,M, C] asfollows. The underlying set of our topology will be a subset of the produt

λ× κ. Let
• Xα = {〈α, 0〉} for α ∈ λ \ Sλ

µ,
• Xα = {α} × κ for α ∈ Sλ

µ ,
• X =

⋃
{Xα : α < λ}.Let Cα = {aξα : ξ < µ} denote the inreasing enumeration for α ∈ Sλ

µ. Foreah α ∈ Sλ
µ let

• Iξα = (aξα, a
ξ+1
α ] for ξ ∈ su(µ) ∪ {0},

• Iξα = [aξα, a
ξ+1
α ] for ξ ∈ lim(µ).Note that ⋃{Iξα : ξ < µ} = (a0α, α) is a disjoint union.De�ne the topology on X by neighborhood bases as follows;(i) for α ∈ Sλ

µ and ϕ < κ let
U(〈α, ϕ〉, η) = {〈α, ϕ〉} ∪

⋃
{Xγ : γ ∈ ∪{Iξα : ξ ∈ Mϕ \ η}} for η < µand let

B(α, ϕ) = {U(〈α, ϕ〉, η) : η < µ}be a base for the point 〈α, ϕ〉. 23
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α(ii) for α ∈ Sλ
<µ ∪ su(λ) ∪ {0} let 〈α, 0〉 be an isolated point,(iii) for α ∈ Sλ
µ′ where µ′ > µ let

U(α, β) =
⋃

{Xγ : β < γ ≤ α} for β < αand let
B(α) = {U(α, β) : β < α}be a base for the point 〈α, 0〉.It is straightforward to hek that these basi open sets form neighborhoodbases.

⋆Fix some ardinals λ > µ = cf(µ), a MAD family M = {Mϕ : ϕ < κ} ⊆
[µ]µ, and Sλ

µ-lub sequene C. In the following X = X [λ, µ,M, C].Claim 3.4.2. The spae X [λ, µ,M, C] is 0-dimensional, T2, and sattered.Observe that(a) Xα is losed disrete for all α < λ, moreover(b) ⋃
{Xα : α ∈ A} is losed disrete for all A ∈ [λ]<µ,() X≤α =

⋃
{Xβ : β ≤ α} is lopen for all α < λ.Proof. First we prove that X [λ, µ,M, C] is T2. Note that(∗) ⋃

{Xγ : β < γ ≤ α} is lopen for all β < α < λ.24



Thus 〈α, ϕ〉, 〈α′, ϕ′〉 ∈ X an be separated trivially if α 6= α′. Suppose that
α = α′ ∈ Sλ

µ and ϕ 6= ϕ′ < κ. There is η < µ suh that (Mϕ ∩Mϕ′

) \ η = ∅sine |Mϕ ∩Mϕ′

| < µ. Thus U(〈α, ϕ〉, η) ∩ U(〈α, ϕ′〉, η) = ∅.Next we show that X [λ, µ,M, C] is 0-dimensional. By (∗) it is enough toprove that U(〈α, ϕ〉, η) is losed for all α ∈ Sλ
µ , ϕ < κ and η < µ. Suppose

x = 〈α′, ϕ′〉 ∈ X \ U(〈α, ϕ〉, η), we want to separate x from U(〈α, ϕ〉, η) byan open set. Let α = α′. There is η′ < µ suh that (Mϕ ∩ Mϕ′

) \ η′ = ∅,thus U(〈α, ϕ〉, η)∩U(〈α, ϕ′〉, η′) = ∅. Let α 6= α′. If α′ ∈ Sλ
<µ∪ su(λ)∪{0}then x is isolated, thus we are done. Suppose α′ ∈ Sλ

µ′ where µ′ ≥ µ. Then
β = sup(Cα \ α′) < α′ thus the lopen set ⋃{Xγ : β < γ ≤ α′}, ontaining
〈α′, ϕ′〉, is disjoint from U(〈α, ϕ〉, η).

X [λ, µ,M, C] is sattered sine X [λ, µ,M, C] is right separated by thelexiographial ordering on λ× κ.(a) and () are trivial, we prove (b). Suppose x = 〈α′, ϕ′〉 ∈ X , we provethat there is a neighborhood U of x suh that |U ∩
⋃
{Xα : α ∈ A}| ≤ 1.If α′ ∈ Sλ

<µ ∪ su(λ) ∪ {0} then x is isolated, thus we are done. Suppose
α ∈ Sλ

µ′ where µ′ ≥ µ. Then β = sup(A \ α′) < α′ thus the open set
U = {x} ∪

⋃
{Xγ : β < γ < α} will do the job.3.5 Fousing on property D and aDAgain �x some ardinals λ > µ = cf(µ), a MAD family M = {Mϕ : ϕ <

κ} ⊆ [µ]µ, and Sλ
µ-lub sequene C. Our next aim is to investigate the spaes

X = X [λ, µ,M, C] onerning property D and aD.De�nition 3.5.1. Let π(F ) = {α < λ : F ∩Xα 6= ∅} for F ⊆ X. F is saidto be (un)bounded if π(F ) is (un)bounded in λ.Let F ′ denote the set of aumulation points of a subset F of X .Claim 3.5.2. If F ⊆ X and π(F ) aumulates to α ∈ Sλ
η suh that µ ≤ η < λthen F ′ ∩Xα 6= ∅.Proof. If η > µ then Xα = {〈α, 0〉} and eah neighborhood U(α, β) of 〈α, 0〉intersets F . Thus F ′ ∩ Xα 6= ∅. Let us suppose that π(F ) aumulates to

α ∈ Sλ
µ . Sine ⋃{Iξα : ξ < µ} = (a0α, α), the set N = {ξ < µ : Iξα ∩ π(F ) 6= ∅}has ardinality µ. Thus there is some ϕ < κ suh that |N∩Mϕ| = µ, sineMis MAD family. It is straightforward that 〈α, ϕ〉 ∈ F ′ sine U(〈α, ϕ〉, η)∩F 6=

∅ for all η < µ. 25



Corollary 3.5.3. If cf(λ) ≥ µ then a losed unbounded subspae F ⊆ Xis not a linearly D-subspae of X. Hene X [λ, µ,M, C] is not a linearly
D-spae.Proof. Let F ⊆ X be losed unbounded. |π(D)| < µ for every losed disrete
D ⊆ X by Claim 3.5.2. Thus there is no big losed disrete set for the openover {X≤α : α < λ} whih shows that F is not linearly D by Theorem1.2.4.Our aim now is to prove that in ertain ases the spae X [λ, µ,M, C] isan aD-spae, equivalently every losed subspae of it is irreduible.Claim 3.5.4. Every losed, bounded subspae F ⊆ X is a D-subspae of X;hene F is irreduible.Proof. Sine property D is inherited by losed subspaes, it su�es to provethat F = X≤α = ∪{Xβ : β ≤ α} is a D-spae.We do this by indution on α < λ. Let U : F → τ be an ONA. If α is asuessor (or α = 0), then F0 = F \U(〈α, 0〉) is losed and sup(F0) < α thuswe are easily done by indution.Let α ∈ Sλ

µ′ where µ ≤ µ′ < λ. Then sup π(F0) < α where F0 =
F \ ∪U [Xα ∩ F ] by Claim 3.5.2. Thus we are easily done by indution andthe fat that Xα is losed disrete.Now let ν = cf(α) < µ, let sup{αξ : ξ < ν} = α suh that α0 = 0 and
{αξ : ξ < ν} is stritly inreasing. Let F ξ =

⋃
{Xγ : αξ ≤ γ ≤ αξ+1} if ξ < νis limit or ξ = 0 and F ξ =

⋃
{Xγ : αξ < γ ≤ αξ+1} if ξ < ν is a suessor.Let F ν = Xα. Clearly {F ξ : ξ ≤ ν} is a disrete family of disjoint lopen setssuh that ⋃{F ξ : ξ ≤ ν} = X≤α. By indution, for all ξ < ν there is somelosed disrete kernel Dξ ⊆ F ξ for the restrition of U to F ξ. Let Dν = F ν .Then D =

⋃
{Dξ : ξ ≤ ν} is losed disrete and X≤α ⊆ ∪U [D].To handle the unbounded losed subsets we need the following de�nition.De�nition 3.5.5. Let Fα = F ∩Xα for F ⊆ X and α < λ. A subset F ⊆ Xis high enough if

|{α < λ : |Fα| = |F |}| ≥ µ.We say that a subset F ⊆ X is high if every losed unbounded subset of Fis high enough. 26



The following rather tehnial laim will be useful.Claim 3.5.6. For any F ⊆ X and ONA U : F → τ suh that U(x) is abasi open neighborhood of x ∈ F , let
YF = {x ∈ F : ∃α < λ : Fα ⊆ U(x), |Fα| = |F |},

ΓF = {α < λ : |Fα| = |F |, ∃x ∈ F : Fα ⊆ U(x)}.If F is losed and high enough then YF ,ΓF 6= ∅.Proof. Sine YF 6= ∅ i� ΓF 6= ∅, it is enough to show that there is some
x ∈ YF . Sine F is high enough, |Z| ≥ µ for Z = {α′ < λ : |F | = |Fα′ |}.Let D =

⋃
{Fα′ : α′ ∈ Z} ⊆ F . Let β ∈ Sλ

µ be an aumulation point of
Z = π(D). Then by Claim 3.5.2 there is some x ∈ D′ ∩ Xβ thus x ∈ F .Clearly x ∈ YF .Theorem 3.5.7. If the losed unbounded F ⊆ X is high then F is irreduible.Proof. Suppose that U is an open over of F . We an suppose that we re�nedit to the form {U(x) : x ∈ F} where eah U(x) is basi open. From Claim3.5.6 we know that YF ,ΓF 6= ∅. We de�ne Y ξ ⊆ F by indution.

• Let α0 ∈ ΓF and Y 0 = {x ∈ YF : Fα0 ⊆ U(x)}. Fix some h0 : Y 0 → Fα0injetion; this exists beause |Fα0 | = |F | ≥ |YF | ≥ |Y 0|.
• Suppose we de�ned αζ < λ and Y ζ for ζ < ξ. Let

F ξ = F \
(⋃{

U(x) : x ∈ ∪{Y ζ : ζ < ξ}
}
∪X≤α

)where α = sup{αζ : ζ < ξ}.
• If F ξ is bounded then stop. Notie that Fξ is bounded i� F \

⋃{
U(x) :

x ∈ ∪{Y ζ : ζ < ξ}
} is bounded.

• Suppose F ξ is unbounded. F ξ ⊆ F is losed too. Thus F ξ is highenough sine F is high. Hene YF ξ ,ΓF ξ 6= ∅.
• Let αξ ∈ ΓF ξ ; thus |F ξ

αξ
| = |F ξ| and F ξ

αξ
is overed by some U(x) for

x ∈ F ξ. Let Y ξ = {x ∈ YF ξ : F ξ
αξ

⊆ U(x)}. Fix some hξ : Y ξ → F ξ
αξinjetion; this exists beause |F ξ

αξ
| = |F ξ| ≥ |YF ξ | ≥ |Y ξ|.27



Lemma 3.5.8. The indution stops before µ many steps.Proof. Suppose we de�ned this way {αξ : ξ < µ} and let α = sup{αξ : ξ <
µ} ∈ Sλ

µ . LetD =
⋃
{Fαξ

: ξ < µ}. By Claim 3.5.2 there is some x ∈ D′∩Xα,thus x ∈ F as well. Clearly Fαξ
⊆ U(x) for µ many ξ < µ. By the de�nitionof the indution

(∗) for every ζ < ξ < µ and every y ∈ Y ζ : F ξ
αξ

∩ U(y) = ∅Clearly by (∗), x /∈ Y ζ for all ζ < µ sine there is ζ < ξ < µ suh that
F ξ
αξ

⊆ U(x). Moreover x /∈ U(y) for every y ∈ Y ζ and ζ < µ; if x ∈ U(y) thensine x 6= y there is some β < α suh that ⋃{Xγ : β < γ ≤ α} ⊆ U(y). Thisontradits (∗) sine there is ζ < ξ < µ suh that β < αξ, thus F ξ
αξ

⊆ U(y).Thus x ∈ F ξ for all ξ < µ. Then x ∈ Y ξ for all ξ < µ suh that Fαξ
⊆ U(x).This is a ontradition.Thus let us suppose that the indution stopped at step ξ < µ, meaning that

F̃ = F \
⋃
{U(x) : x ∈ Y } is bounded where Y = ∪{Y ζ : ζ < ξ}. Let

h =
⋃
{hζ : ζ < ξ}, h : Y → F is a 1-1 funtion sine the sets dom(hζ) = Y ζand ran(hζ) ⊆ F ζ

αζ
are pairwise disjoint for ζ < ξ. Note that ran(h) ⊆⋃

{Fαζ
: ζ < ξ} is losed disrete by Claim 3.4.2. For x ∈ Y let

U0(x) = (U(x) \ ran(h)) ∪ {h(x)},note that U0(x) is open. Then
⋃

{U0(x) : x ∈ Y } =
⋃

{U(x) : x ∈ Y }is a minimal open re�nement, sine h(x) is only overed by U0(x) for all
x ∈ Y . Let U0 = {U0(x) : x ∈ Y }Let V (x) = U(x) \

⋃
{Fαζ

: ζ < ξ}. Then V = {V (x) : x ∈ F̃} is an openover of F̃ , re�ning U ; Fαζ
∩ F̃ = ∅ by onstrution for all ζ < ξ. F̃ is losedand bounded thus irreduible by Claim 3.5.4, hene there is an irreduibleopen re�nement V0 of V. It is straightforward that V0∪U0 is a minimal openre�nement of U overing F .Corollary 3.5.9. Suppose that λ > µ = cf(µ) are in�nite ardinals suhthat cf(λ) ≥ µ. Let M = {Mϕ : ϕ < κ} ⊆ [µ]µ be a MAD family and

C an Sλ
µ-lub sequene. If X [λ, µ,M, C] is high then X [λ, µ,M, C] is a0-dimensional, Hausdor�, sattered spae whih is aD however not linearly

D. 28



Proof. X [λ, µ,M, C] is 0-dimensional, Hausdor�, and sattered by Claim3.4.2 and not linearly D by Corollary 3.5.3. It su�es to show that everylosed F ⊆ X is irreduible. If F is bounded then F is a D-spae by Claim3.5.4 hene irreduible. If F is unbounded then F is high sine X is high.Hene F is irreduible by Theorem 3.5.7.3.6 Examples of aD, non linearly D-spaesIn this setion we give examples of aD, non linearly D-spaes of the form
X = X [λ, µ,M, C]. First let us make an observation.Claim 3.6.1. If Cα ⊆ π(F )′ for a losed F ⊆ X and α ∈ Sλ

µ then Fα = Xα.Proof. Clearly ⋃
{Xγ : γ ∈ Iξα} ∩ F 6= ∅ for all ξ < µ. Thus every point in

Xα is an aumulation point of F , thus Fα = Xα sine F is losed.Corollaries 3.6.3 and 3.6.5 below give ertain examples of highX [λ, µ,M, C]spaes.Proposition 3.6.2. Suppose that µ is a regular ardinal, cf(λ) ≥ µ++. Let
C be an Sλ

µ-lub guessing sequene from Theorem 3.3.1. If M ⊆ [µ]µ is aMAD family of size at least λ then X [λ, µ,M, C] is high.Proof. Let F ⊆ X be losed and unbounded. Then π(F )′ is a lub in λ,hene there exists a stationary S ⊆ Sλ
µ suh that Cα ⊆ π(F )′ for all α ∈ S.Thus Fα = Xα by Claim 3.6.1 hene |Fα| = |M| = |X| for all α ∈ S.Corollary 3.6.3. 1. Suppose that 2ω ≥ ω2. Let M be a MAD family on

ω of size 2ω and let C be an Sω2
ω -lub guessing sequene from Theorem3.3.1. Then X [ω2, ω,M, C] is high.2. Suppose that 2ω = ω1 and 2ω1 ≥ ω3. Let M be a MAD family on ω1of size 2ω1 (exists by Claim 3.2.2) and let C be an Sω3

ω1
-lub guessingsequene from Theorem 3.3.1. Then X [ω3, ω1,M, C] is high.Proposition 3.6.4. Suppose that λ = µ+ > µ = cf(µ) > ω and let Cbe an Sµ+

µ -lub guessing sequene from Theorem 3.3.2. If there is a non-stationary MAD family MNS ⊆ [µ]µ suh that |MNS| = µ+ then X =
X [µ+, µ,MNS, C] is high. 29



Proof. Let MNS = {Mϕ : ϕ < µ+} and C = 〈Cα : α ∈ Sµ+

µ 〉 suh that
Cα = {aξα : ξ < µ} ⊆ α. Suppose that the losed F ⊆ X is unbounded.Then π(F )′ is a lub in µ+, hene there exists a stationary S ⊆ Sµ+

µ suhthat
Nα = {ξ < µ : aξ+1

α ∈ π(F )′} is stationary in µfor all α ∈ S. Fix any α ∈ S, we prove that |Fα| = |F |. Nα is stationaryso by applying Claim 3.2.1 we get that |Φα| = µ+ for Φα = {ϕ < µ+ :
|Nα ∩ Mϕ| = µ}. Note that F ∩

⋃
{Xγ : γ ∈ Iξα} 6= ∅ for ξ ∈ Nα. Thus

〈α, ϕ〉 is an aumulation point of F for ϕ ∈ Φα, hene {α}×Φα ⊆ Fα. Thus
|Fα| = µ+ = |X|.Corollary 3.6.5. Suppose that 2ω1 = ω2. Let C be an Sω2

ω1
-lub guessingsequene from Theorem 3.3.2 and let MNS be a nonstationary MAD familyon ω1. Then X [ω2, ω1,MNS, C] is high.Thus, by all means we an dedue the proof of Theorem 3.1.1.Proof of Theorem 3.1.1. Note that in any model of ZFC, either (2ω ≥ ω2)or (2ω = ω1 ∧ 2ω1 ≥ ω3) or (2ω1 = ω2). Using Corollaries 3.6.3 and 3.6.5above, depending on the sizes of 2ω and 2ω1 , we see that there exists a high

X [λ, µ,M, C] spae. We are done by Corollary 3.5.9.3.7 Consistently on property D and aDOur main goal in this setion is to onstrut a "loally nie" spae whihis not linearly D, however every losed subset of it is irreduible; hene aDby Theorem 1.3.4. Then we dedue that suh a spae, with size less thanontinuum, annot exist in ZFC.3.7.1 PreliminariesWe will use the following set-theoretial assumption:
(♦∗) there is a ♦∗-sequene, meaning that there exists an {Aα : α ∈ lim(ω1)}suh that Aα ⊆ [α]ω is ountable and for every X ⊆ ω1 there is a lub

C ⊆ ω1 suh that X ∩ α ∈ Aα for all α ∈ C.Also, we need the following easy laim about MAD families.30



Claim 3.7.1. If {Ni : i ∈ ω} ⊆ [ω]ω then there is a MAD family M ⊆ [ω]ωof size 2ω suh that for all M ∈ M and i ∈ ω: |M ∩Ni| = ω.Proof. We will onstrut the MAD family M on Q. We an suppose thateah Ni is dense in Q. Let R = {xα : α < 2ω} and for all α < 2ω let
Sα ⊆ Q suh that Sα is a onvergent sequene with limit point xα and
|Sα ∩ Ni| = ω for all i ∈ ω. Then S = {Sα : α < 2ω} is almost disjoint, let
T = {Tα : α < λ} ⊆ [Q]ω suh that S ∪ T is MAD. Then M = {Sα ∪ Tα :
α < λ} ∪ {Sα : λ ≤ α < 2ω} is a MAD family with the desired property.The following result of Zoltán Balogh will play a key role in proving ourindependene result.De�nition 3.7.2. A spae X is said to be loally nie i� X is loally ount-able and loally ompat.Let us note that every loally nie spae is 0-dimensional, Tyhono� and�rst-ountable.Theorem 3.7.3 ([5, Theorem 2.2℄). Suppose MA. Then for any loally niespae X of ardinality < 2ω exatly one of the following is true:

• X is the ountable union of losed disrete subspaes,
• X ontains a perfet preimage of ω1 with the order topology.Let us state a �nal laim, whih will be used later.Claim 3.7.4. (i) If the spae F is a perfet preimage of ω1 then F is ount-ably ompat, non ompat.(ii) If X is �rst-ountable and F ⊆ X is a perfet preimage of ω1 then Fis losed in X.Proof. (i) It is known that under perfet mappings, the preimage of a om-pat spae is ompat (see [14, Theorem 3.7.2℄). Take any ountably in�nite

A ⊆ F and perfet surjetion f : F → ω1. There is some α < ω1 suh that
f [A] ⊆ α + 1. Thus A is the subset of the ompat set f−1[α + 1]. (ii) is aonsequene of (i).The following an be easily seen now.Corollary 3.7.5. Suppose that X is a �rst-ountable spae whih is aD orlinearly D. Then X does not ontain a perfet preimage of ω1.31



3.7.2 The main resultTheorem 3.7.6. Suppose (♦∗). There is a loally nie, 0-dimensional T2spae X of size ω1 suh that X is not linearly D, however every losed subset
F ⊆ X is irreduible; equivalently X is an aD-spae.Proof. We will de�ne a topology on X = ω1 × ω1. Let Xα = {α} × ω1 and
X<α = α× ω1 for α < ω1.De�nition 3.7.7. The set A ∈ [X ]ω runs up to α < ω1 i� A = {(αn, βn) :
n ∈ ω)} ⊆ X<α suh that α0 ≤ ... ≤ αn ≤ ... and sup{αn : n ∈ ω} = α.Note that if A ⊆ X runs up to some α < ω1 then A ∩Xβ is �nite for all
β < ω1.We need the following onsequene of (♦∗). Let π(A) = {α ∈ ω1 :
A ∩Xα 6= ∅} for A ⊆ X .Claim 3.7.8. (♦∗) There exists a sequene {Aα : α ∈ lim(ω1)} ⊆ [X ]ω with
Aα =

⋃
{An

α : n ∈ ω} for all α ∈ lim(ω1) suh that1. |An
α| = ω for all n ∈ ω,2. Aα runs up to α,3. for all Y ⊆ X if |π(Y )| = ω1 then

∃ lub C ⊆ ω1 suh that ∀α ∈ C∃n ∈ ω(An
α ⊆ Y ).Proof. Let {Aα : α ∈ lim(ω1)} denote a ♦∗-sequene. Let i : ω1 × ω1 → ω1denote a bijetion whih maps ((α+1)×(α+1)

)
\(α×α) to ω ·(α+1)\ω ·α.Let

Ãα = {i−1(A) : A ∈ Aω·α, sup
(
π(i−1(A))

)
= α}and let Aα =

⋃
{An

α : n ∈ ω} suh that1. |An
α| = ω for all n ∈ ω,2. Aα runs up to α,

(3)′ for all B ∈ Ãα there is n ∈ ω suh that An
α ⊆ B,
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for all α ∈ lim(ω1). We laim that the sequene {Aα : α ∈ lim(ω1)} hasthe desired properties. Let Y ⊆ X suh that |π(Y )| = ω1. There is somelub C0 ⊆ ω1 suh that Y ∩ X<α ⊆ α × α for α ∈ C0. There is some lub
C1 ⊆ ω1 suh that α∩ i[Y ] ∈ Aα for α ∈ C1. Let C2 = {α < ω1 : ω ·α ∈ C1};learly, C2 is a lub. Let C = C0 ∩ C2 ∩ π(Y )′. Fix some α ∈ C. Then
ω ·α∩ i[Y ] = A for some A ∈ Aω·α, thus i[Y ∩X<α] = A sine ω ·α = i[α×α]and Y ∩X<α ⊆ α × α. Hene i−1(A) = Y ∩X<α and i−1(A) ∈ Ãα beause
α ∈ π(Y )′. Thus there is n ∈ ω suh that An

α ⊆ Y by (3)′.Let {Aα : α ∈ lim(ω1)} ⊆ [X ]ω denote a sequene with Aα =
⋃
{An

α : n ∈
ω} for α ∈ lim(ω1) from Claim 3.7.8. We want to de�ne the topology on Xsuh that

• Xα is losed disrete for all α < ω1,
• X<α is open for all α ∈ ω1,
• if A ∈ [X ]ω runs up to α then A has an aumulation point in Xα,
• Xα ⊆ An

α for all α ∈ lim(ω1) and n ∈ ω.Let Mα ⊆ [Aα]
ω denote a MAD family on Aα for α ∈ lim(ω1) suh that

|M ∩An
α| = ω for all M ∈ Mα and n ∈ ω; suh an Mα exists by Claim 3.7.1.Enumerate Mα = {Mβ

α : β < ω1}.We de�ne topologies τ<α on X<α by indution on α < ω1 suh that
τ<α ∩ P(X<β) = τ<β for all β < α < ω1. This way we will get a topology τon X if we take ∪{τ<α : α < ω1} as a base.Suppose α < ω1 and we have de�ned the topology (X<α, τ<α) suh that(i) (X<α, τ<α) is a loally ountable, loally ompat, 0-dimensional T2spae,(ii) for all α′ < α and x ∈ Xα′ there is some neighborhood G of x suh that

G ∩Xα′ = {x},(iii) (α0, α1]× ω1 ⊆ X<α is lopen for all α0 < α1 < α.If α ∈ ω1 \ lim(ω1) then let Xα be disrete. Suppose α ∈ lim(ω1) and let usenumerate {F ⊆ X<α \ Aα : F runs up to α} as {F β
α : β < ω1}.De�nition 3.7.9. A subspae A ⊆ T of a topologial spae T is ompletelydisrete i� there is a disrete family of open sets {Ga : a ∈ A} suh that

a ∈ Ga for all a ∈ A. 33



The following laim will be useful later.Claim 3.7.10. Suppose that A = {(αn, βn) : n ∈ ω} ⊆ X runs up to α.Then A is ompletely disrete in X<α; hene losed disrete.Proof. Let G0 = (0, α0] × ω1 and Gn+1 = (αn, αn+1] × ω1 for n ∈ ω. Gn isopen for all n ∈ ω by indutional hypothesis (iii). Note that {Gn : n ∈ ω}is a disrete family of open sets suh that A ∩Gn is �nite for all n ∈ ω. Let
Gn denote a �nite, disjoint family of lopen subsets of Gn suh that for all
a ∈ A ∩Gn there is exatly one G ∈ Gn suh that a ∈ G. Then the disretefamily ∪{Gn : n ∈ ω} shows that A is ompletely disrete.In step α ∈ lim(ω1) we de�ne the neighborhoods of points in Xα =
{(α, β) : β < ω1} by indution on β < ω1 suh that:
(a) X<α ∪ {(α, β ′) : β ′ ≤ β} is loally ountable, loally ompat and 0-dimensional T2,
(b) there is some neighborhood U of (α, β) suh that U ∩ Aα ⊆ Mβ

α ,
(c) Mβ

α onverges to (α, β),
(d) F β

α aumulates to (α, β ′) for some β ′ ≤ β.We need the following lemma to arry out the indution on β < ω1.Lemma 3.7.11. Suppose that (T∪S, τ) is a loally ountable, loally ompatand 0-dimensional T2 spae suh that T is open and S is ountable. Let
D = {dn : n ∈ ω} ⊆ T losed disrete in T ∪S and ompletely disrete in T .Let r /∈ T ∪ S. Then there is a topology ρ on R = T ∪ S ∪ {r} suh that

• (R, ρ) is loally ountable, loally ompat and 0-dimensional T2,
• ρ|(T∪S) = τ ,
• D onverges to r and r /∈ S in (R, ρ).Proof. Suppose that dn ∈ Gn suh that {Gn : n ∈ ω} is a family of open setswhih is disrete in T . For eah n ∈ ω let {Bn

i : i ∈ ω} denote a neighborhoodbase of dn suh that
• Gn ⊇ Bn

0 ⊇ Bn
1 ⊇ ... and

• Bn
i is ountable, ompat and lopen for all n, i ∈ ω.34



Sine S ∩ D = ∅ there is some lopen neighborhood Us of eah s ∈ S suhthat Us ∩D = ∅. There is gs : ω → ω suh that
Us ∩Bn

gs(n) = ∅ for all n ∈ ω.Sine S is ountable, there is g : ω → ω suh that for all s ∈ S there is some
N ∈ ω suh that gs(n) ≤ g(n) for all n ≥ N . De�ne the topology ρ on R asfollows. Let

BN = {r} ∪
⋃

{Bn
g(n)

: n ≥ N} and B = {BN : N ∈ ω}.Let ρ be the topology on R generated by τ ∪ B.Clearly ρ|(T∪S) = τ . We laim that (R, ρ) is loally ountable, loallyompat and 0-dimensional. Sine B is a neighborhood base for r, it su�esto prove that eah B ∈ B is ountable, ompat (trivial) and lopen. Let
N ∈ ω then BN is lopen in T sine ⋃

{Bn
g(n) : n ∈ ω} is a family of lopensets whih is disrete in T guaranteed by the disrete family {Gn : n ∈ ω}.Let s ∈ S. There is N ∈ ω suh that Us ∩ Bn

g(n) = ∅ for n ≥ N . There issome neighborhood V ∈ τ of s suh that V ∩
⋃
{Bn

g(n) : n < N} = ∅ sine sis not in the losed set ⋃{Bn
g(n) : n < N}. Thus (Us ∩ V ) ∩ BN = ∅. Thisproves that BN is lopen.We laim that (R, ρ) is T2. Let s ∈ S, then there is N ∈ ω suh that

Us ∩ Bn
g(n) = ∅ for n ≥ N , thus BN ∩ Us = ∅. As noted before BN ∩ T islosed and learly ⋂

{BN ∩T : N ∈ ω} = ∅. This yields that any point t ∈ Tand r an be separated, thus (R, ρ) is T2.Clearly D onverges to r and S ∩B = ∅ for any B ∈ B thus r /∈ S.Suppose we are in step β < ω1 and we de�ned the neighborhoods of pointsinX<α∪{(α, β
′) : β ′ < β}. We use Lemma 3.7.11 to de�ne the neighborhoodsof r = (α, β). Let T = X<α and S = {(α, β ′) : β ′ < β} ∪ (Aα \Mβ

α ). Notethat F β
α ∪Mβ

α runs up to α thus losed and ompletely disrete in T by Claim3.7.10. Also, Mβ
α is losed disrete in T ∪S by indutional hypothesis (b) for

(α, β ′) where β ′ < β.
• If F β

α aumulates to xβ′ for some β ′ < β then let D = Mβ
α .

• If F β
α is losed disrete in T ∪ S then let D = Mβ

α ∪ F β
α .Note that D is losed disrete in T ∪ S. By Claim 3.7.11 we an de�ne theneighborhoods of r = (α, β) suh that the resulting spae satis�es onditions35



(a), (b),() and (d). After arrying out the indution on β, the resultingtopology on Xα learly satis�es onditions (i),(ii) and (iii). This ompletesthe indution.As a base, the family ⋃
{τ<α : α ∈ lim(ω1)} generates a topology τ on Xwhih is loally ountable, loally ompat and 0-dimensional T2. Observethat Xα is losed disrete and X<α is open for all α < ω1 (by indutionalhypothesises (ii) and (iii)) .Claim 3.7.12. Suppose that F ⊆ X runs up to some α ∈ lim(ω1). Thenthere is some β < ω1 suh that F aumulates to (α, β). Equivalently, if G ⊆

X is open and Xα ⊆ G then there is some α′ < α suh that (α′, α]×ω1 ⊆ G.Proof. There is some β < ω1 suh that F = F β
α . Thus by indutional hy-pothesis (d) there is some β ′ ≤ β suh that F aumulates to (α, β ′).Claim 3.7.13. X is not linearly D.Proof. If D ⊆ X is losed disrete then π(D) is �nite by Claim 3.7.12. Thusthere is no big losed disrete set for the over {X<α : α < ω1}.Our next aim is to prove that all losed subspaes of X are irreduible.Claim 3.7.14. If |π(F )| = ω for a losed F ⊆ X then F is a D-spae, heneirreduible.Proof. Sine F = ∪{F ∩ Xα : α ∈ π(F )} is a ountable union of loseddisrete sets, F is a D-spae by Proposition 1.1.2. We mention that if theONA U on F has losed disrete kernel D then we get an irreduible overby taking the following open re�nement: {(U(d) \D) ∪ {d} : d ∈ D}.Claim 3.7.15. If |π(A)| = ω1 for A ⊆ X then there is a lub C ⊆ ω1 suhthat C×ω1 ⊆ A′. As a onsequene, if π(U) is stationary for the open U ⊆ Xthen there is some α < ω1 suh that X \ U ⊆ α× ω1.Proof. There is a lub C ⊆ ω1 by Claim 3.7.8 suh that for all α ∈ C thereis n ∈ ω suh that An

α ⊆ A. We will prove that Xα ⊆ A′ for α ∈ C. Takeany point (α, β) ∈ Xα. |Mβ
α ∩ An

α| = ω for all β < ω1 by the onstrution ofthe MAD family Mα and Mβ
α onverges to (α, β) by indutional hypothesis(). Thus An

α aumulates to (α, β), hene Xα ⊆ A′.Claim 3.7.16. If |π(F )| = ω1 for a losed F ⊆ X then F is irreduible.36



Proof. Take an open over of F , say U . We an suppose that we re�ned it tothe form U = {U(x) : x ∈ F}, where U(x) is a neighborhood of x ∈ F . FromClaim 3.7.15 we know that there is some lub C ⊆ ω1 suh that C×ω1 ⊆ F .For α ∈ C de�ne the open set Gα = ∪{U(x) : x ∈ Xα}. For every α ∈ Cthere is some δ(α) < α suh that (δ(α), α]× ω1 ⊆ Gα; by Claim 3.7.12. Sothere is some δ < ω1 and a stationary S ⊆ C suh that (δ, α] × ω1 ⊆ Gαfor all α ∈ S. Fix some δ0 > δ suh that Xδ0 ⊆ F . Let S0 = S \ (δ0 + 1).For all α ∈ S0 there is dα ∈ Xα ⊆ F suh that (δ0, α) ∈ U(dα). Let usre�ne these sets: U0(dα) =
(
U(dα) \ ({δ0} × S0)

)
∪ {(δ0, α)} for all α ∈ S0;let U0 = {U0(dα) : α ∈ S0}. Clearly U0 is an open re�nement of U whih isminimal and {dα : α ∈ ω1} ⊆ ∪U0. Sine S0 is stationary and S0 ⊆ π[∪U0]we get that there is some γ < ω1 suh that F1 = F \ ∪U0 ⊆ γ × ω1 by Claim3.7.15. So by Claim 3.7.14 the losed set F1 is a D-spae, hene irreduible.Take a minimal open re�nement of the over {U(x) \ ({δ0} × S0) : x ∈ F1},let this be U1. The union U0 ∪ U1 is an open re�nement of U whih overs Fand minimal.This proves that all losed subspaes of X are irreduible. Hene X is an

aD-spae by Theorem 1.3.4.Finally, we an observe the following.Proposition 3.7.17. Suppose MA. Let X be a loally nie spae of ardi-nality < 2ω. Then the following are equivalent:(1) X is a D-spae,(2) X is a linearly D-spae,(3) X is an aD-spae.Proof. In eah ase, X does not ontain a perfet preimage of ω1 by Corollary3.7.5. Hene, X is σ-losed disrete by Balogh's Theorem 3.7.3 whih �nishesthe proof.Thus we an dedue the proof of Theorem 3.1.2.Proof of Theorem 3.1.2. If MAℵ1 holds, then every loally nie aD-spae ofardinality ω1 is a D-spae by Proposition 3.7.17. If (♦∗) holds, then there isa loally nie, 0-dimensional T2 spae X of size ω1 suh that X is not linearly
D, but aD by Theorem 3.7.6. This ompletes the proof.37



However, the following remain open.Problem 3.7.18. Is there a ZFC example of a loally nie, T2 spae X suhthat X is not (linearly) D however aD?
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