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0.1 Introdu
tion
D-spa
es were introdu
ed approximately 40 years ago as a straightforwardgeneralization of 
ompa
tness. Sin
e then, D-spa
es are in the 
enter ofinterest for general topologists. However, we still la
k understanding of therelationship of 
lassi
al 
overing properties to D-spa
es. The purpose of thisthesis is to gather some of the most re
ent results from the theory ofD-spa
esand related 
overing properties.In Chapter 1 we introdu
e the notion of D-spa
es and tend to make thereader familiar with the 
lassi
al results. A further aim of this 
hapter is tode�ne properties 
losely related to property D; that is, we introdu
e linearly
D-spa
es, aD-spa
es, and we state some theorems. Finally, Chapter 1 endswith a short list of open problems 
on
erning D-spa
es.In Chapter 2 our aim is to present the re
ent progress on the long standingproblem whether Lindelöf implies D. First, we present the main result of [4℄whi
h is one of the breakthroughs in the topi
:Theorem 2.1.4 . Every Menger spa
e is a D-spa
e.This theorem is a ni
e appli
ation of topologi
al games to the theory of
D-spa
es. As a 
orollary, we show the following:Corollary 2.1.6 . Martin's Axiom implies that every Lindelöf spa
e of sizeless than 2ω is D.Following this line of resear
h, the previous 
orollary was made strongerby D. Repov², L. Zdomskyy in [23℄ and W. Shi, H. Zhang in [26℄ indepen-dently.Theorem 2.1.18 . Consistently every subpara
ompa
t spa
e of size ω1 is a
D-spa
e.We outline the methods involved. Opposing these results, we summarizeSzepty
ki's [30℄ stating thatTheorem 2.2.1 . ♦ implies the existen
e of a T1-Lindelöf non D-spa
e.Finally, Chapter 3 gathers the author's results in the topi
. aD-spa
esare a well-known generalization of D-spa
es; until re
ently, it was not knownwhether there is an aD, non D-spa
e. Our main result is Theorem 3.1.1,stating that 2



Theorem 3.1.1 ([28, Theorem 1.1℄). There exists a 0-dimensional, Haus-dor�, s
attered aD-spa
e whi
h is not linearly D.This answers a question of Arhangel'skii [3℄ among others; a 
omplete in-trodu
tion to the problem is in Se
tion 3.1. The proof of the theorem requiresadvan
ed set-theoreti
al methods su
h as Shelah's 
lub-guessing theory.Also, we prove the following independen
e result in Se
tion 3.7.Theorem 3.1.2 ([27, Theorem 5.2℄). The existen
e of a lo
ally 
ountable,lo
ally 
ompa
t spa
e X of size ω1 whi
h is aD and non linearly D is inde-pendent of ZFC.The thesis 
ontains 
ertain notions and notations without expli
it de�-nitions; let us refer to Engelking's [14℄ and Kunen's [21℄ for topologi
al andset-theoreti
al ba
kground, respe
tively.I would like to thank the help of the Set Theory and Topology resear
hgroup at the Rényi Institute in preparing [27℄ and [28℄. Also, I would like tothank Assaf Rinot for his ideas and advi
es to look deeper into the theory of
lub guessing in ZFC.
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Chapter 1
D-spa
esAn open neighborhood assignment (ONA, in short) on a topologi
al spa
e
(X, τ) is a map U : X → τ su
h that x ∈ U(x) for every x ∈ X .De�nition 1.0.1. X is said to be a D-spa
e i� for every neighborhoodassignment U on X, there is a 
losed dis
rete D ⊆ X su
h that X =⋃

d∈D U(d) =
⋃

U [D]; su
h a set D is 
alled a kernel for U .The notion of a D-spa
e was probably �rst introdu
ed by van Douwenand E. Mi
hael in the mid-1970's; Mi
hael sent van Douwen a letter witha proof that semistrati�able spa
es are D, and van Douwen replied with analternate proof, in a letter dated June 6, 1975 [15℄. Sin
e than, many workhad been done it the topi
.Property D 
an be thought of as a 
overing property; every 
ompa
tspa
e, moreover σ-
ompa
t spa
e, is a D-spa
e and 
ountably 
ompa
t D-spa
es are 
ompa
t. Let us quote Gary Gruenhage's words from the inspiringsurvey [15℄:Part of the fas
ination with D-spa
es is that, aside from theseeasy fa
ts, very little else is known about the relationship betweenthe D property and many of the standard 
overing properties. Forexample, it is not known if a very strong 
overing property su
h ashereditarily Lindelöf implies D, and yet for all we know it 
ouldbe that a very weak 
overing property su
h as submeta
ompa
t orsubmetalindelöf implies D!Indeed, it is not known whether any of the following properties, evenif one adds "hereditarily", imply D: Lindelöf, para
ompa
t, ultrapara
om-5



pa
t, strongly para
ompa
t, meta
ompa
t, metalindelöf, subpara
ompa
t,submeta
ompa
t, submetalindelöf, paralindelöf, s
reenable, σ-meta
ompa
t.In this 
hapter, our aim is to summarize the basi
 results about D-spa
esand 
orresponding generalizations.1.1 Basi
 resultsThe next proposition is part of the folklore.Proposition 1.1.1. Every σ-
ompa
t spa
e is a D-spa
e and 
ountably 
om-pa
t D-spa
es are 
ompa
t.This implies that R with the usual Eu
lidean topology is D and that ω1with the order topology is not a D-spa
e.Let us say a few words about unions of D-spa
es.Proposition 1.1.2 ([7, Proposition 7.℄). If the spa
e X is the 
ountableunion of 
losed D-subspa
e then X is a D-spa
e.Interestingly, it is not known whether the union of two D-spa
es is a
D-spa
e again. We remark that there is a σ-dis
rete spa
e whi
h is non
D; see the van Douwen-Wi
ke-spa
e Γ in [12℄. Guo and Junnila generalizedProposition 1.1.2.Theorem 1.1.3 ([17℄). Suppose that X =

⋃
α<λ Xα su
h that Xα is D and⋃

α′<αXα′ is 
losed for every α < λ. Then X is a D-spa
e.In many 
ases, spa
es with some additional stru
ture are D-spa
es; thisis the 
ase with generalized metri
 spa
es or spa
es with ni
e bases.Theorem 1.1.4. The following are D-spa
es:(1) semistrati�able spa
es [7℄,(2) subspa
es of symmetrizable spa
es [8℄,(3) spa
es having a point-
ountable base [2℄.The �rst two properties are both well-known weakenings of metrizability;for de�nitions see [16℄. The proof of "metrizable spa
e are D" works in the�rst two 
ases with minor re�nements.Monotone normal spa
es generalize both ordered and metri
 spa
es. Wehave the following 
lassi
 result from [7℄.6



Theorem 1.1.5. Every monotone normal D-spa
e is para
ompa
t.At the end of this 
hapter, in Se
tion 1.4, we 
ite various open problems
on
erning D-spa
es.1.2 Linearly D-spa
esA straightforward generalization of property D is due to Guo and Junnila[18℄. For a spa
e X a 
over U is monotone i� it is linearly ordered byin
lusion.De�nition 1.2.1. A spa
e (X, τ) is said to be linearly D i� for any ONA
U : X → τ for whi
h {U(x) : x ∈ X} is monotone, one 
an �nd a 
loseddis
rete set D ⊆ X su
h that X =

⋃
U [D].The 
onne
tion between 
lassi
al 
overing properties and linearD-propertyis determined by the next theorem.Theorem 1.2.2 ([18, Proposition 2.11℄). Every submetalindelöf T1 spa
e islinearly D.Submetalindelöfness is a signi�
ant weakening of both Lindelöfness andpara
ompa
tness.De�nition 1.2.3. A spa
e X is submetalindelöf i� for every open 
over Uof X there are {Un : n ∈ ω} open re�nements of U 
overing X su
h that forevery x ∈ X there is n ∈ ω su
h that |{U ∈ Un : x ∈ U}| ≤ ω.We will later use the following 
hara
terization of linear D property. Aset D ⊆ X is said to be U-big for a 
over U i� there is no U ∈ U su
h that

D ⊆ U .Theorem 1.2.4 ([18, Theorem 2.2℄). The following are equivalent for a T1-spa
e X:1. X is linearly D,2. for every non-trivial monotone open 
over U of X, there exists a 
loseddis
rete U-big set in X. 7



We remark that there are linearly D, non D-spa
es; for example, anylinearly Lindelöf, non Lindelöf spa
e is su
h. This 
an be easily seen fromthe following:Proposition 1.2.5 ([18℄). A spa
e X is linearly Lindelöf i� X is linearly Dand there are no un
ountable 
losed dis
rete sets in X.For various examples of linearly Lindelöf, non Lindelöf spa
es see [22℄.1.3 aD-spa
esInvestigating the properties of D-spa
es and the 
onne
tions between other
overing properties led to the de�nition of aD-spa
es, de�ned by Arhangel'skiiand Buzyakova in [2℄.De�nition 1.3.1. A spa
e (X, τ) is said to be aD i� for ea
h 
losed F ⊆ Xand for ea
h open 
over U of X there is a 
losed dis
rete D ⊆ F and U :
D → U with x ∈ U(x) for all x ∈ D su
h that F ⊆ ∪U [D].It is 
lear that D-spa
es are aD. As it turned out, property aD is mu
hmore do
ile than property D.Theorem 1.3.2 ([3, Theorem 1.15℄). Every submetalindelöf T1 spa
e is aD.Thus, until the re
ent results of [28℄, there was the hope to prove aD ⇒ Dand settle the problems listed in the introdu
tion.Proving that a spa
e is aD, the notion of an irredu
ible spa
e will play akey role.De�nition 1.3.3. A spa
e X is irredu
ible i� every open 
over U has aminimal open re�nement U0; meaning that no proper subfamily of U0 
overs
X. In [3℄ Arhangel'skii showed the following equivalen
e.Theorem 1.3.4 ([3, Theorem 1.8℄). A T1-spa
e X is an aD-spa
e if andonly if every 
losed subspa
e of X is irredu
ible.In Chapter 3, we deal with existen
e of aD, non D-spa
es.8



1.4 Various open problemsFirst, let us state some open problems asking if 
ertain spa
es are D. Of
ourse, the main interest is in the following.Problem 1.4.1. Is every (hereditarily) Lindelöf spa
e a D-spa
e?We will deal with this question in Chapter 2. Let us remark again, that itis not known whether any of the following strong 
overing properties imply
D: Lindelöf, para
ompa
t, ultrapara
ompa
t, strongly para
ompa
t; simi-larly, it is unknown whether there is a non D-spa
e with any of the followingweak 
overing properties: meta
ompa
t, metalindelöf, subpara
ompa
t, sub-meta
ompa
t, submetalindelöf, paralindelöf, s
reenable, σ-meta
ompa
t.Another main question in the area is the following from Arhangel'skii [3℄.Problem 1.4.2. Is the union of two D-spa
es a D-spa
e again? Is it aD?Let us 
ite this 
lassi
 problem of Borges and Wehrly 
onne
ted to The-orem 1.1.5.Problem 1.4.3 ([7℄). Is every para
ompa
t, monotoni
ally normal spa
e a
D-spa
e?The following is from [9℄.Problem 1.4.4. Suppose that X is a 
ontinuous image of a Lindelöf D-spa
e. Is X a D-spa
e?Now, we turn to a possibly easier open problems. Suppose that S isthe Sorgenfrey-line. Van Douwen and Pfe�er in [11℄ proved that S and its�nite powers are D-spa
es; later, de Caux [10℄ showed that these spa
e arehereditarily D-spa
es. However, the following is still open.Problem 1.4.5. ([10℄) Is Sω a (hereditarily) D-spa
e?Suppose that M is a metri
 spa
e with topology τ . If τ ′ re�nes τ su
hthat every point p ∈ M has a base B in τ ′ su
h that U \ {p} ∈ τ for every
U ∈ B then (M, τ ′) is 
alled a butter�y spa
e over the metri
 spa
e (M, τ).For example, the Sorgenfrey line or its �nite powers are butter�y spa
es overthe appropriate Eu
lidean metri
 spa
es. The following question is from [15℄.Problem 1.4.6. Is every butter�y spa
e over a separable metri
 spa
e a
D-spa
e?The reader 
an �nd many more fas
inating questions in [13℄ and in thesurvey [15℄. 9



Chapter 2Is every Lindelöf spa
e a D-spa
e?In their arti
le [20℄ in Open Problems in Topology II, M. Hru²ák and J. T.Moore listed twenty open problems from set theoreti
 topology whi
h shouldbe at the 
enter of resear
h interest. Problem 1.4.1, whether every Lindelöfspa
e is D, is number fourteen on their list.Until very re
ently, there were no progress in solving the above problem,nor a preferred 
onje
ture; it seemed to be plausible to exist a Lindelöf, non
D-spa
e and also that every Lindelöf spa
e is D. The aim of this 
hapter isto present some of the main re
ent results 
on
erning Lindelöf and D-spa
es.One of the �rst and most prominent results is L. Auri
hi's following the-orem.Theorem 2.1.4 ([4℄). Every Menger spa
e is a D-spa
e.From this, we dedu
e the following:Corollary 2.1.6 . MA implies that every Lindelöf spa
e of size less than 2ωis a D-spa
e.The latter 
orollary and methods of L. Auri
hi were improved by D.Repov², L. Zdomskyy in [23℄ and W. Shi, H. Zhang in [26℄ independently.Theorem 2.1.18 ([23, Corollary 2.6℄ and [26℄ independently). It is 
onsis-tent that every subpara
ompa
t spa
e of size ℵ1 is a D-spa
e.On the other hand, the following was proved by P. Szepty
ki.Theorem 2.2.1 ([30℄). It is 
onsistent that there exists a T1-Lindelöf non
D-spa
e of size ℵ1. 10



The above results might indi
ate, that Problem 1.4.1 is not de
idable inZFC; however, any su
h theorem is yet to 
ome. The rest of this 
hapter willsummarize the above listed three results.2.1 On Lindelöf implies DIn this se
tion, our aim is to gather results stating that 
ertain 
overingproperties imply property D.2.1.1 Menger spa
esDe�nition 2.1.1. A spa
e X is said to be Menger i� for every sequen
e ofopen 
overs {Un : n ∈ ω} of X there are �nite Vn ⊆ Un for every n ∈ ω su
hthat ∪{Vn : n ∈ ω} 
overs X.Note that every σ-
ompa
t spa
e is Menger. On the other hand, everyMenger spa
e is Lindelöf; indeed, for any open 
over U apply the de�nitionof being Menger for the 
onstant sequen
e Un = U .The Menger property has an interesting and non-trivial 
hara
terizationby topologi
al games.De�nition 2.1.2. The Menger-game on a spa
e X is the following game oflength ω, played by two players, Player I and II. In ea
h round n ∈ ω, PlayerI 
hooses an open 
over Un of X 
losed under �nite unions and Player IIresponds by 
hoosing Un ∈ Un. Player II wins i� X =
⋃

n∈ω Un.The following was proved by W. Hurewi
z [19℄.Theorem 2.1.3. A spa
e X is Menger i� Player I does not have a winningstrategy in the Menger-game on X.The next theorem was proved by L. Auri
hi.Theorem 2.1.4 ([4℄). Every Menger spa
e is a D-spa
e.Proof. Let N be any ONA and let us de�ne a strategy for Player I in theMenger-game on X . First let Player I play {∪N [F ] : F ∈ [X ]<ω}. If PlayerII responds by ∪N [F0] for some F0 ∈ [X ]<ω then let Player I play
{∪N [F0 ∪ F ] : F ∈ [X ]<ω, F ∩ (∪N [F0]) = ∅}.11



Then Player II responds by some F1 ∈ [X ]<ω. In general, suppose that PlayerII responded by F0, ..., Fn−1 ∈ [X ]<ω till step n; more pre
isely, the respondsare 
oded by these �nite sets. Let F<n = ∪{Fi : i < n} and let Player I play
{∪N [F<n ∪ F ] : F ∈ [X ]<ω, F ∩ (∪N [F<n]) = ∅}.This de�nes a strategy for Player I in the Menger-game. Sin
e X is Menger,this strategy is not winning by Theorem 2.1.3. Thus there are �nite subsets

Fn of X for n ∈ ω su
h that {∪N [F<n] : n ∈ ω} 
overs X . Let D = ∪{Fn :
n ∈ ω}, then X = ∪N [D]. It is easy to 
he
k that D is 
losed and dis
retein X ; hen
e, X is a D-spa
e.Before stating the �rst 
onsisten
y results 
on
erning D-spa
es, we needa small 
laim. Let us re
all the de�nition of the dominating number ; a family
D ⊆ ωω is 
alled dominating i� for every g ∈ ωω there is f ∈ D su
h that
g(n) < f(n) for all but �nitely many n ∈ ω. The dominating number d is a
ardinal de�ned as follows.

d = min{κ : there is a dominating family D ⊆ ωω of size κ}It is 
lear that ω < d ≤ 2ω and 
onsistently d 
an be smaller thanthe 
ontinuum; it is well known that MA, Martin's Axiom, implies that
ℵ1 < d = 2ω.Claim 2.1.5. Every Lindelöf spa
e of size less than d is Menger; hen
e Dby Theorem 2.1.4.Proof. Let us �x a sequen
e of open 
overs {Un : n ∈ ω} ofX ; we 
an supposethat ea
h Un is 
ountable by X being Lindelöf. Let Un = {Un,k : k ∈ ω} for
n ∈ ω. For every x ∈ X de�ne fx : ω → ω su
h that x ∈ Un,fx(n) forevery n ∈ ω. |X| < d implies that there is a fun
tion g ∈ ωω su
h that
fx(n) ≤ g(n) for in�nitely many n ∈ ω, for every x ∈ X ; observe that
x ∈ ∪{Un,k : k ≤ g(n)} for su
h n ∈ ω. Let Vn = {Un,k : k ≤ g(n)} ∈ [Un]

<ωfor n ∈ ω. Clearly, ∪{Vn : n ∈ ω} 
overs X . Thus X is Menger.Corollary 2.1.6. MA implies that every Lindelöf spa
e of size less than 2ωis a D-spa
e.Thus there is no ZFC example of a Lindelöf, non D-spa
e of size lessthan 2ω. In the next se
tion, we will rea
h analogues 
orollaries 
on
erningpara
ompa
t spa
es.Let us mention a similar theorem to Claim 2.1.5 without proof. Let Mdenote the ideal of meager sets. 12



Theorem 2.1.7 ([4℄). If a Lindelöf spa
e X 
an be 
overed by fewer than
cov(M) many 
ompa
t sets then X is Menger, hen
e D.Finally, let us 
ite another appli
ation of Theorem 2.1.4. A spa
e X is
alled produ
tively Lindelöf i� X ×Y is Lindelöf for every Lindelöf spa
e Y .Theorem 2.1.8 ([31, Theorem 2℄). The Continuum Hypothesis implies thatevery produ
tively Lindelöf spa
e is Menger, hen
e D.As a 
orollary, under CH every Lindelöf P-spa
e is a D-spa
e.2.1.2 Subpara
ompa
t spa
esOur aim in this se
tion is to present the methods of [23℄ and the proof ofTheorem 2.1.18. If not stated otherwise, the de�nitions and results are from[23℄.Let us introdu
e a weakening of property D.De�nition 2.1.9. A spa
e X has property Dκ or X is a Dκ-spa
e for some
ardinal κ i� for every ONA N on X there are 
losed dis
rete subsets {Dξ :
ξ < κ} of X su
h that ∪{N [Dξ] : ξ < κ} 
overs X.We omit the proof of the following observations.Claim 2.1.10. 1. D = Dn ⇒ Dλ ⇒ Dκ for every 
ardinal λ ≤ κ and

0 < n < ω.2. Property Dκ is inherited by 
losed subsets.3. Every Lindelöf spa
e is a Dω-spa
e.Next, we will need a notion very similar to the Menger property.De�nition 2.1.11. A spa
e X has property E∗
ω i� for every sequen
e of
ountable open 
overs {Un : n ∈ ω} of X there are �nite Vn ⊆ Un for every

n ∈ ω su
h that ∪{Vn : n ∈ ω} 
overs X.Note that property E∗
ω is equivalent to the Menger property in the realmof Lindelöf spa
es. Let us de�ne the 
orresponding E∗

ω-game:De�nition 2.1.12. The E∗
ω-game on a spa
e X is the following game oflength ω, played by two players, Player I and II. In ea
h round n ∈ ω, PlayerI 
hooses a 
ountable, in
reasing open 
over Un = {Un,k : k ∈ ω} of X andPlayer II responds by 
hoosing kn ∈ ω. Player II wins i� X =

⋃
n∈ω Un,kn.13



The dire
t analogue of Theorem 2.1.3 holds in this 
ase.Proposition 2.1.13. A spa
e X has property E∗
ω i� Player I has no winningstrategy in the E∗

ω-game on X.The main theorem of this se
tion is the following.Theorem 2.1.14 ([23, Theorem 2.1℄). Suppose that a spa
e X has properties
Dω and E∗

ω. Then X is a D-spa
e.Proof. Let N be any ONA on X and we de�ne a strategy for Player I in the
E∗

ω-game. Let F0 = X ; F0 is a Dω-spa
e so there is an in
reasing sequen
e
{A0,k : k ∈ ω} of 
losed dis
rete subsets of F0 su
h that {∪N [A0,k] : k ∈ ω}
overs X . Let Player I play {∪N [A0,k] : k ∈ ω}. Player II responds by
hoosing A0,k0 for some k0 ∈ ω. Let F1 = X \ ∪N [A0,k0 ], then there is anin
reasing sequen
e {A1,k : k ∈ ω} of 
losed dis
rete subsets of F1 su
h that
{∪N [A1,k] : k ∈ ω} 
overs F1. Let Player I play {X \F1∪

⋃
N [A1,k] : k ∈ ω}.Player II responds by 
hoosing A1,k1 for some k1 ∈ ω. In general, let Fn =

X \
⋃

i<n ∪N [Ai,ki ]. Fn is 
losed in X , hen
e a Dω-spa
e; thus there is anin
reasing sequen
e {An,k : k ∈ ω} of 
losed dis
rete subsets of Fn su
h that
{∪N [An,k] : k ∈ ω} 
overs Fn. Let Player I play {X \Fn∪

⋃
N [An,k] : k ∈ ω}.Player II responds by 
hoosing An,kn for some kn ∈ ω.This strategy is not winning for Player I, hen
e there are 
hoi
es {kn :

n ∈ ω} for Player II su
h that
X =

⋃

n∈ω

(
X \ Fn ∪ (∪N [An,kn ])

)
.Then X =

⋃
n∈ω ∪N [An,kn ] sin
e X \F0 = ∅ and X \Fn =

⋃
i<n ∪N [Ai,ki ] for

n > 0. Finally, it is easy to see that ⋃n∈ω An,kn is 
losed dis
rete in X .Subpara
ompa
tness is a signi�
ant weakening of para
ompa
tness.De�nition 2.1.15. A spa
e X is subpara
ompa
t i� every open 
over of Xhas a σ-lo
ally �nite 
losed re�nement.Note that not every Dω1 spa
e is a Dω spa
e; indeed, take ω1 with theusual order topology. However, we have the following.Lemma 2.1.16 ([23, Lemma 2.3℄). Suppose that X is a subpara
ompa
t spa
ewhi
h 
an be 
overed by ω1-many of its Lindelöf subspa
es. Then X is a Dωspa
e. In parti
ular, every subpara
ompa
t spa
e of size ω1 is a Dω-spa
e.14



Proof. Suppose that X =
⋃

ξ<ω1
Lξ su
h that Lξ is Lindelöf for all ξ < ω1;without the loss of generality, we 
an suppose that Lξ ⊆ Lη for all ξ < η < ω1.Let N be any ONA on X . There are 
ountable subsets {Cα : α < ω1} of Xsu
h that(i) L0 ⊆ ∪N [C0],(ii) Cα ∩

⋃
ξ<α ∪N [Cξ] = ∅ for all α < ω1,(iii) Lα \

⋃
ξ<α ∪N [Cξ] ⊆ ∪N [Cα] for all α < ω1.Let C =

⋃
α<ω1

Cα; it su�
es to prove that C is σ-
losed dis
rete. Thesubpara
ompa
tness of X implies that there is a 
losed re�nement F =
∪n∈ωFn of the open 
over {N(x) : x ∈ C} su
h that Fn is lo
ally �nite forevery n ∈ ω. Clearly, F ∩ C is 
ountable for every F ∈ F . Let C ∩ F =
{xn,F,m : m ∈ ω} for F ∈ Fn for some n ∈ ω if C ∩ F is nonempty. Let
An,m = {xn,F,m : F ∈ Fn, C ∩ F 6= ∅}; it is easy to see that An,m is 
loseddis
rete and C =

⋃
n,m∈ω An,m.Observe that the proof of Claim 2.1.5 a
tually gave us the following: everyspa
e X of size less than d is E∗

ω and every Lindelöf, E∗
ω-spa
e is Menger.Thus, we have the following 
orollary.Corollary 2.1.17. Suppose that X is a subpara
ompa
t spa
e of size lessthan d whi
h 
an be 
overed by ω1-many of its Lindelöf subspa
es. Then Xis a D-spa
e.Proof. X is E∗

ω by the previous observation and Dω by Lemma 2.1.16. Thus
X is a D-spa
e by Theorem 2.1.14.Thus, we have proved the following either.Theorem 2.1.18 ([23, Corollary 2.6℄ and [26℄ independently). MA impliesthat every subpara
ompa
t spa
e of size ω1 is a D-spa
e.Although, we do not know the answer to the following.Problem 2.1.19. Is it 
onsistent, that ω1 < 2ω and every (sub)para
ompa
tspa
e of size less than 2ω is a D-spa
e?

15



2.2 On Lindelöf does not imply DIn this se
tion, we outline a 
onstru
tion of Paul Szepty
ki and dedu
e thefollowing:Theorem 2.2.1 ([30℄). It is 
onsistent that there exists a T1-Lindelöf nonD-spa
e of size ℵ1.We skip most of the proofs sin
e the methods involved are greatly ad-van
ed. If not stated otherwise, results are from [30℄.2.2.1 PreliminariesThe following lemma will be used later.Lemma 2.2.2. Consider a topology on ω1 generated by sets {Uγ : γ < ω1}as a subbase; sets of the form
UF \H where UF =

⋂
{Uγ : γ ∈ F}for F,H ∈ [ω1]

<ω form a base. If for every un
ountable family B ⊆ [ω1]
<ωof pairwise disjoint sets there is a 
ountable B′ ⊆ B su
h that

|ω1 \
⋃

{UF : F ∈ B′}| ≤ ωthen the topology is hereditarily T1-Lindelöf.The 
onstru
tion uses a well known set theoreti
al prin
ipal: Jensen's ♦.De�nition 2.2.3. A ♦-sequen
e is a sequen
e {Sβ : β < ω1} of subsets of
ω1 su
h that for every S ⊆ ω1 there are stationary many β ∈ ω1 su
h that
S ∩ β = Sβ. Let ♦ denote the statement that there exist a ♦-sequen
e.We need the following observation whi
h is part of the folklore.Claim 2.2.4. ♦ is equivalent to the following statement: there exists a se-quen
e {Bβ : β < ω1} su
h that Bβ ⊆ [ω1]

<ω for all β < ω1 and for every
B ⊆ [ω1]

<ω there are stationary many β < ω1 su
h that B ∩ [β]<ω = Bβ.
16



2.2.2 The 
onstru
tionFrom now on, we assume that ♦ holds; that is, we 
an �x a sequen
e {Bβ :
β < ω1} provided by Claim 2.2.4. Also, sin
e ♦ implies the ContinuumHypothesis, we 
an �x an enumeration {Cα : α < ω1} of 
ountable subsetsof ω1 su
h that Cα ⊆ α for every α < ω1.Our goals are to 
onstru
t sets {Uγ : γ < ω1} su
h that γ ∈ Uγ for every
γ < ω1 and 
onsider the topology on ω1 generated by this family and the
o�nite sets; we will apply Lemma 2.2.2 to prove hereditarily T1-Lindelöfnessand the neighborhood assignment mapping γ to Uγ will show that the spa
eis not a D-spa
e. The next theorem will be the key to a
hieve our goals.Theorem 2.2.5. There exist {Uα

γ }γ≤α for α < ω1 with the following proper-ties:IH(1) Uα
γ ⊆ α + 1 and Uα

α = α + 1 for every γ ≤ α < ω1.IH(2) Uα
γ = Uα0

γ ∩ (α + 1).Let τα denote the T1 topology on α+ 1 generated by the sets
Uα
F =

⋂
{Uα

γ : γ ∈ F}for F ∈ [α + 1]<ω and the 
o�nite sets of α + 1.IH(3) If Cα is τα 
losed dis
rete then ⋃
{Uα

γ : γ ∈ Cα} 6= α + 1.IH(4) Let Tα = {β ≤ α : Bβ is a pairwise disjoint family of �nite subsetsof β and there is a 
ountable elementary submodel M ≺ H(ℵ2) su
hthat
• M ∩ ω1 = β

• {Bγ}γ<ω1 ∈ M

• there is an un
ountable B ∈ M su
h that M ∩ B = Bβ, and
• there is {Vγ}γ<ω1 ∈ M su
h that Vγ ∩β = Uα

γ ∩β for all β < α}.(a) If β ∈ Tα then Bβ is a lo
al π-network at β in τα.
17



(b) If β ∈ Tα ∩ α then for every V ∈ τα su
h that β ∈ V

{Uα
F : F ∈ Bβ, F ⊆ V }is an ω-
over of (β, α].The proof of Theorem 3.7.6 is done by indu
tion on α < ω1 while IH(1)-IH(4) are working as indu
tive hypothesises. We will not present the proofhere; it involves the deli
ate use of elementary submodels in topology whi
his beyond the s
ope of this thesis.Let us prove now Theorem 2.2.1.Proof of Theorem 2.2.1. Consider sets {Uα

γ }γ≤α for α < ω1 provided by The-orem 3.7.6 with properties IH(1)-IH(4). Let Uγ = ∪{Uα
γ : γ ≤ α < ω1} for

γ < ω1. Let τ denote the topology on ω1 generated by the sets
UF =

⋂
{Uγ : γ ∈ F}for F ∈ [ω1]

<ω and the 
o�nite sets of ω1.Lemma 2.2.6. The topology τ on ω1 is hereditarily T1-Lindelöf.Proof. We apply Lemma 2.2.2; �x some un
ountable family B ⊆ [ω1]
<ω ofpairwise disjoint sets. There is an M ≺ H(ℵ2) su
h that B, {Uγ : γ <

ω1}, {Bγ : γ < ω1} ∈ M and
M ∩ ω1 = β and B ∩M = B ∩ [β]<ω = Bβ.We 
laim that ω1 \

⋃
{UF : F ∈ Bβ} ⊆ β + 1; indeed �x some α ∈ (β, ω1).Then β ∈ Tα, ensured by the model M , and hen
e there is some F ∈ Bβsu
h that α ∈ Uα

F ⊆ UF by IH(4).Now we prove that (ω1, τ) is not a D-spa
e. Consider the neighborhoodassignment γ 7→ Uγ; we show that ∪{Uγ : γ ∈ C} 6= ω1 for every 
loseddis
rete C ⊆ ω1. Sin
e (ω1, τ) is T1-Lindelöf, |C| ≤ ω and hen
e there is
α < ω1 su
h that Cα = C. It su�
es to note that Cα is τα 
losed dis
rete if
τ 
losed dis
rete; indeed, then ∪{Uγ : γ ∈ Cα} 6= α + 1 by IH(3).Whether one 
an modify the above 
onstru
tion su
h that the sets {Uγ :
γ < ω1} are 
lopen is of 
entral interest.18



2.3 RemarksThe Szepty
ki-
onstru
tion gives us only a T1 example, not even a Hausdor�spa
e; although, it is a great step in solving the main problem, we 
annot
onsider the result a 
omplete (
onsistent) answer to Problem 1.4.1.The same holds for the Auri
hi and Repov²-Zdomskyy theorems (Theo-rem 2.1.4 and 2.1.18, respe
tively). They are outstanding 
ontributions tothe investigations done it the topi
, however they only provide partial an-swers.Thus, the question remains open: Is there a Lindelöf or para
ompa
t,non D-spa
e?
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Chapter 3Properties D and aDIn Se
tion 1.3, we introdu
ed property aD and stated a few fa
ts; every D-spa
e is an aD-spa
e, and even spa
es with rather weak 
overing propertiesare aD, see Theorem 1.3.2. Therefore, it is worth studying whether thereis an aD-spa
e whi
h is not a D-spa
e; a negative answer to this questionwould settle almost all of the questions about the relationship of 
lassi
al
overing properties to property D.In this Chapter we answer this question, among others, and we show thatthere are aD, non D-spa
es.3.1 Questions and answersIn [3℄ Arhangel'skii asked the following:Problem 4.6. Is there a Ty
hono� aD-spa
e whi
h is not a D-spa
e?Quite similarly, Guo and Junnila in [18℄ asked the following about a weak-ening of property D:Problem 2.12. Is every aD-spa
e linearly D?In G. Gruenhage's survey on D-spa
es [15℄, another version of this ques-tion is stated (besides the original Arhangel'skii), namely:Question 3.6(2) Is every s
attered, aD-spa
e a D-spa
e?20



The main results of this Chapter are following answers to the questionsabove.Theorem 3.1.1 ([28, Theorem 1.1℄). There exists a 0-dimensional T2 spa
e
X su
h that X is s
attered, aD, and non linearly D.Theorem 3.1.2 ([27, Theorem 5.2℄). The existen
e of a lo
ally 
ountable,lo
ally 
ompa
t spa
e X of size ω1 whi
h is aD and non linearly D is inde-pendent of ZFC.First, we prove Theorem 3.1.1 as follows; in Se
tion 3.2 and 3.3 we gatherall the ne
essary fa
ts about MAD families and 
lub guessing. In Se
tion 3.4we de�ne spa
es X [λ, µ,M, C], where λ and µ = cf(µ) are 
ardinals, M is aMAD family on µ, and C is a guessing sequen
e. It is shown in Claim 3.4.2that(0) X [λ, µ,M, C] is always T2, 0-dimensional, and s
attered.Se
tion 3.5 
ontains two important results:(1) X [λ, µ,M, C] is not linearly D if cf(λ) ≥ µ (see Corollary 3.5.3),(2) X [λ, µ,M, C] is aD under 
ertain assumptions (see Corollary 3.5.9).In Se
tion 3.6 we show how to produ
e su
h spa
es X [λ, µ,M, C] de-pending on the 
ardinal arithmeti
 and using Shelah's 
lub guessing.Finally, in Se
tion 3.7 we prove Theorem 3.1.2 using the set theoreti
alhypothesis (♦∗) and a result of Zoltán Balogh about "lo
ally ni
e" spa
esunder MAℵ1 . We remark, that Se
tion 3.7 
an be read independently fromthe previous se
tions.3.2 Notes on MAD familiesAs MAD families will play an essential part in our 
onstru
tions we observesome easy fa
ts about them. Let µ be any in�nite 
ardinal. We 
allM ⊆ [µ]µan almost disjoint family if |M ∩N | < µ for all distin
t M,N ∈ M. M is amaximal almost disjoint family (in short, a MAD family) if for all A ∈ [µ]µthere is some M ∈ M su
h that |A ∩M | = µ.We will use the following rather trivial 
ombinatorial fa
t.21



Claim 3.2.1. Let M ⊆ [µ]µ be a MAD family and M = {Mϕ : ϕ < κ}.Suppose that N ∈ [µ]µ and |N \∪M′| = µ for all M′ ∈ [M]<µ. Then |Φ| > µfor Φ = {ϕ < κ : |N ∩Mϕ| = µ}.Proof. If |Φ| < µ then with Ñ = N \
⋃
{Mϕ : ϕ ∈ Φ} ∈ [µ]µ we 
an extendthe MAD family, whi
h is a 
ontradi
tion. If |Φ| = µ then let Φ = {ϕζ :

ζ < µ}. By trans�nite indu
tion, 
onstru
t Ñ = {nξ : ξ < µ} su
h that
nξ ∈ N \ (

⋃
{Mϕζ : ζ < ξ} ∪ {nζ : ζ < ξ}) for ξ < µ. It is straightforwardthat Ñ /∈ M and M∪ {Ñ} is almost disjoint, whi
h is a 
ontradi
tion.From our point of view the sizes of MAD families are important. Clearlythere is a MAD family on ω of size 2ω. The analogue of this does not alwayshold for ω1. Baumgartner in [6℄ proves that it is 
onsistent with ZFC thatthere is no almost disjoint family on ω1 of size 2ω1 . However, we have thefollowing fa
t.Claim 3.2.2. If 2ω = ω1 then there is a MAD family M on ω1 of size 2ω1.In Se
tion 3.6 we use nonstationary MAD families MNS ⊆ [µ]µ meaningthatMNS is a MAD family su
h that every M ∈ MNS is nonstationary in µ.Observe, that using Zorn's lemma to almost disjoint families of nonstationarysets of µ we 
an get nonstationary MAD families.3.3 Fragments of Shelah's 
lub guessingThe 
onstru
tions of the up
oming se
tions will use the following amazingresults of Shelah. For a 
ardinal λ and a regular 
ardinal µ let Sλ

µ denotethe ordinals in λ with 
o�nality µ. For an S ⊆ Sλ
µ an S-
lub sequen
e is asequen
e C = 〈Cδ : δ ∈ S〉 su
h that Cδ ⊆ δ is a 
lub in δ of order type µ.Theorem 3.3.1 ([24, Claim 2.3℄). Let λ be a 
ardinal su
h that cf(λ) ≥ µ++for some regular µ and let S ⊆ Sλ

µ stationary. Then there is an S-
lubsequen
e C = 〈Cδ : δ ∈ S〉 su
h that for every 
lub E ⊆ λ there is δ ∈ S(equivalently, stationary many) su
h that Cδ ⊆ E.A detailed proof of Theorem 3.3.1 
an be found in [1, Theorem 2.17℄.Theorem 3.3.2 ([25, Claim 3.5℄). Let λ be a 
ardinal su
h that λ = µ+ forsome un
ountable, regular µ and S ⊆ Sλ
µ stationary. Then there is an S-
lub22



sequen
e C = 〈Cδ : δ ∈ S〉 su
h that Cδ = {αδ
ζ : ζ < µ} ⊆ δ and for every
lub E ⊆ λ there is δ ∈ S (equivalently, stationary many) su
h that:

{ζ < µ : αδ
ζ+1 ∈ E} is stationary.For a detailed proof, see [29℄.3.4 The general 
onstru
tionDe�nition 3.4.1. Let λ > µ = cf(µ) be in�nite 
ardinals. Let M ⊆ [µ]µbe a MAD family, M = {Mϕ : ϕ < κ} and let C = {Cα : α ∈ Sλ

µ} denotean Sλ
µ-
lub sequen
e. We de�ne a topologi
al spa
e X = X [λ, µ,M, C] asfollows. The underlying set of our topology will be a subset of the produ
t

λ× κ. Let
• Xα = {〈α, 0〉} for α ∈ λ \ Sλ

µ,
• Xα = {α} × κ for α ∈ Sλ

µ ,
• X =

⋃
{Xα : α < λ}.Let Cα = {aξα : ξ < µ} denote the in
reasing enumeration for α ∈ Sλ

µ. Forea
h α ∈ Sλ
µ let

• Iξα = (aξα, a
ξ+1
α ] for ξ ∈ su

(µ) ∪ {0},

• Iξα = [aξα, a
ξ+1
α ] for ξ ∈ lim(µ).Note that ⋃{Iξα : ξ < µ} = (a0α, α) is a disjoint union.De�ne the topology on X by neighborhood bases as follows;(i) for α ∈ Sλ

µ and ϕ < κ let
U(〈α, ϕ〉, η) = {〈α, ϕ〉} ∪

⋃
{Xγ : γ ∈ ∪{Iξα : ξ ∈ Mϕ \ η}} for η < µand let

B(α, ϕ) = {U(〈α, ϕ〉, η) : η < µ}be a base for the point 〈α, ϕ〉. 23



PSfrag repla
ements
α

〈α, ϕ〉

λ

Xα

aξ
α aξ+1

α(ii) for α ∈ Sλ
<µ ∪ su

(λ) ∪ {0} let 〈α, 0〉 be an isolated point,(iii) for α ∈ Sλ
µ′ where µ′ > µ let

U(α, β) =
⋃

{Xγ : β < γ ≤ α} for β < αand let
B(α) = {U(α, β) : β < α}be a base for the point 〈α, 0〉.It is straightforward to 
he
k that these basi
 open sets form neighborhoodbases.

⋆Fix some 
ardinals λ > µ = cf(µ), a MAD family M = {Mϕ : ϕ < κ} ⊆
[µ]µ, and Sλ

µ-
lub sequen
e C. In the following X = X [λ, µ,M, C].Claim 3.4.2. The spa
e X [λ, µ,M, C] is 0-dimensional, T2, and s
attered.Observe that(a) Xα is 
losed dis
rete for all α < λ, moreover(b) ⋃
{Xα : α ∈ A} is 
losed dis
rete for all A ∈ [λ]<µ,(
) X≤α =

⋃
{Xβ : β ≤ α} is 
lopen for all α < λ.Proof. First we prove that X [λ, µ,M, C] is T2. Note that(∗) ⋃

{Xγ : β < γ ≤ α} is 
lopen for all β < α < λ.24



Thus 〈α, ϕ〉, 〈α′, ϕ′〉 ∈ X 
an be separated trivially if α 6= α′. Suppose that
α = α′ ∈ Sλ

µ and ϕ 6= ϕ′ < κ. There is η < µ su
h that (Mϕ ∩Mϕ′

) \ η = ∅sin
e |Mϕ ∩Mϕ′

| < µ. Thus U(〈α, ϕ〉, η) ∩ U(〈α, ϕ′〉, η) = ∅.Next we show that X [λ, µ,M, C] is 0-dimensional. By (∗) it is enough toprove that U(〈α, ϕ〉, η) is 
losed for all α ∈ Sλ
µ , ϕ < κ and η < µ. Suppose

x = 〈α′, ϕ′〉 ∈ X \ U(〈α, ϕ〉, η), we want to separate x from U(〈α, ϕ〉, η) byan open set. Let α = α′. There is η′ < µ su
h that (Mϕ ∩ Mϕ′

) \ η′ = ∅,thus U(〈α, ϕ〉, η)∩U(〈α, ϕ′〉, η′) = ∅. Let α 6= α′. If α′ ∈ Sλ
<µ∪ su

(λ)∪{0}then x is isolated, thus we are done. Suppose α′ ∈ Sλ

µ′ where µ′ ≥ µ. Then
β = sup(Cα \ α′) < α′ thus the 
lopen set ⋃{Xγ : β < γ ≤ α′}, 
ontaining
〈α′, ϕ′〉, is disjoint from U(〈α, ϕ〉, η).

X [λ, µ,M, C] is s
attered sin
e X [λ, µ,M, C] is right separated by thelexi
ographi
al ordering on λ× κ.(a) and (
) are trivial, we prove (b). Suppose x = 〈α′, ϕ′〉 ∈ X , we provethat there is a neighborhood U of x su
h that |U ∩
⋃
{Xα : α ∈ A}| ≤ 1.If α′ ∈ Sλ

<µ ∪ su

(λ) ∪ {0} then x is isolated, thus we are done. Suppose
α ∈ Sλ

µ′ where µ′ ≥ µ. Then β = sup(A \ α′) < α′ thus the open set
U = {x} ∪

⋃
{Xγ : β < γ < α} will do the job.3.5 Fo
using on property D and aDAgain �x some 
ardinals λ > µ = cf(µ), a MAD family M = {Mϕ : ϕ <

κ} ⊆ [µ]µ, and Sλ
µ-
lub sequen
e C. Our next aim is to investigate the spa
es

X = X [λ, µ,M, C] 
on
erning property D and aD.De�nition 3.5.1. Let π(F ) = {α < λ : F ∩Xα 6= ∅} for F ⊆ X. F is saidto be (un)bounded if π(F ) is (un)bounded in λ.Let F ′ denote the set of a

umulation points of a subset F of X .Claim 3.5.2. If F ⊆ X and π(F ) a

umulates to α ∈ Sλ
η su
h that µ ≤ η < λthen F ′ ∩Xα 6= ∅.Proof. If η > µ then Xα = {〈α, 0〉} and ea
h neighborhood U(α, β) of 〈α, 0〉interse
ts F . Thus F ′ ∩ Xα 6= ∅. Let us suppose that π(F ) a

umulates to

α ∈ Sλ
µ . Sin
e ⋃{Iξα : ξ < µ} = (a0α, α), the set N = {ξ < µ : Iξα ∩ π(F ) 6= ∅}has 
ardinality µ. Thus there is some ϕ < κ su
h that |N∩Mϕ| = µ, sin
eMis MAD family. It is straightforward that 〈α, ϕ〉 ∈ F ′ sin
e U(〈α, ϕ〉, η)∩F 6=

∅ for all η < µ. 25



Corollary 3.5.3. If cf(λ) ≥ µ then a 
losed unbounded subspa
e F ⊆ Xis not a linearly D-subspa
e of X. Hen
e X [λ, µ,M, C] is not a linearly
D-spa
e.Proof. Let F ⊆ X be 
losed unbounded. |π(D)| < µ for every 
losed dis
rete
D ⊆ X by Claim 3.5.2. Thus there is no big 
losed dis
rete set for the open
over {X≤α : α < λ} whi
h shows that F is not linearly D by Theorem1.2.4.Our aim now is to prove that in 
ertain 
ases the spa
e X [λ, µ,M, C] isan aD-spa
e, equivalently every 
losed subspa
e of it is irredu
ible.Claim 3.5.4. Every 
losed, bounded subspa
e F ⊆ X is a D-subspa
e of X;hen
e F is irredu
ible.Proof. Sin
e property D is inherited by 
losed subspa
es, it su�
es to provethat F = X≤α = ∪{Xβ : β ≤ α} is a D-spa
e.We do this by indu
tion on α < λ. Let U : F → τ be an ONA. If α is asu

essor (or α = 0), then F0 = F \U(〈α, 0〉) is 
losed and sup(F0) < α thuswe are easily done by indu
tion.Let α ∈ Sλ

µ′ where µ ≤ µ′ < λ. Then sup π(F0) < α where F0 =
F \ ∪U [Xα ∩ F ] by Claim 3.5.2. Thus we are easily done by indu
tion andthe fa
t that Xα is 
losed dis
rete.Now let ν = cf(α) < µ, let sup{αξ : ξ < ν} = α su
h that α0 = 0 and
{αξ : ξ < ν} is stri
tly in
reasing. Let F ξ =

⋃
{Xγ : αξ ≤ γ ≤ αξ+1} if ξ < νis limit or ξ = 0 and F ξ =

⋃
{Xγ : αξ < γ ≤ αξ+1} if ξ < ν is a su

essor.Let F ν = Xα. Clearly {F ξ : ξ ≤ ν} is a dis
rete family of disjoint 
lopen setssu
h that ⋃{F ξ : ξ ≤ ν} = X≤α. By indu
tion, for all ξ < ν there is some
losed dis
rete kernel Dξ ⊆ F ξ for the restri
tion of U to F ξ. Let Dν = F ν .Then D =

⋃
{Dξ : ξ ≤ ν} is 
losed dis
rete and X≤α ⊆ ∪U [D].To handle the unbounded 
losed subsets we need the following de�nition.De�nition 3.5.5. Let Fα = F ∩Xα for F ⊆ X and α < λ. A subset F ⊆ Xis high enough if

|{α < λ : |Fα| = |F |}| ≥ µ.We say that a subset F ⊆ X is high if every 
losed unbounded subset of Fis high enough. 26



The following rather te
hni
al 
laim will be useful.Claim 3.5.6. For any F ⊆ X and ONA U : F → τ su
h that U(x) is abasi
 open neighborhood of x ∈ F , let
YF = {x ∈ F : ∃α < λ : Fα ⊆ U(x), |Fα| = |F |},

ΓF = {α < λ : |Fα| = |F |, ∃x ∈ F : Fα ⊆ U(x)}.If F is 
losed and high enough then YF ,ΓF 6= ∅.Proof. Sin
e YF 6= ∅ i� ΓF 6= ∅, it is enough to show that there is some
x ∈ YF . Sin
e F is high enough, |Z| ≥ µ for Z = {α′ < λ : |F | = |Fα′ |}.Let D =

⋃
{Fα′ : α′ ∈ Z} ⊆ F . Let β ∈ Sλ

µ be an a

umulation point of
Z = π(D). Then by Claim 3.5.2 there is some x ∈ D′ ∩ Xβ thus x ∈ F .Clearly x ∈ YF .Theorem 3.5.7. If the 
losed unbounded F ⊆ X is high then F is irredu
ible.Proof. Suppose that U is an open 
over of F . We 
an suppose that we re�nedit to the form {U(x) : x ∈ F} where ea
h U(x) is basi
 open. From Claim3.5.6 we know that YF ,ΓF 6= ∅. We de�ne Y ξ ⊆ F by indu
tion.

• Let α0 ∈ ΓF and Y 0 = {x ∈ YF : Fα0 ⊆ U(x)}. Fix some h0 : Y 0 → Fα0inje
tion; this exists be
ause |Fα0 | = |F | ≥ |YF | ≥ |Y 0|.
• Suppose we de�ned αζ < λ and Y ζ for ζ < ξ. Let

F ξ = F \
(⋃{

U(x) : x ∈ ∪{Y ζ : ζ < ξ}
}
∪X≤α

)where α = sup{αζ : ζ < ξ}.
• If F ξ is bounded then stop. Noti
e that Fξ is bounded i� F \

⋃{
U(x) :

x ∈ ∪{Y ζ : ζ < ξ}
} is bounded.

• Suppose F ξ is unbounded. F ξ ⊆ F is 
losed too. Thus F ξ is highenough sin
e F is high. Hen
e YF ξ ,ΓF ξ 6= ∅.
• Let αξ ∈ ΓF ξ ; thus |F ξ

αξ
| = |F ξ| and F ξ

αξ
is 
overed by some U(x) for

x ∈ F ξ. Let Y ξ = {x ∈ YF ξ : F ξ
αξ

⊆ U(x)}. Fix some hξ : Y ξ → F ξ
αξinje
tion; this exists be
ause |F ξ

αξ
| = |F ξ| ≥ |YF ξ | ≥ |Y ξ|.27



Lemma 3.5.8. The indu
tion stops before µ many steps.Proof. Suppose we de�ned this way {αξ : ξ < µ} and let α = sup{αξ : ξ <
µ} ∈ Sλ

µ . LetD =
⋃
{Fαξ

: ξ < µ}. By Claim 3.5.2 there is some x ∈ D′∩Xα,thus x ∈ F as well. Clearly Fαξ
⊆ U(x) for µ many ξ < µ. By the de�nitionof the indu
tion

(∗) for every ζ < ξ < µ and every y ∈ Y ζ : F ξ
αξ

∩ U(y) = ∅Clearly by (∗), x /∈ Y ζ for all ζ < µ sin
e there is ζ < ξ < µ su
h that
F ξ
αξ

⊆ U(x). Moreover x /∈ U(y) for every y ∈ Y ζ and ζ < µ; if x ∈ U(y) thensin
e x 6= y there is some β < α su
h that ⋃{Xγ : β < γ ≤ α} ⊆ U(y). This
ontradi
ts (∗) sin
e there is ζ < ξ < µ su
h that β < αξ, thus F ξ
αξ

⊆ U(y).Thus x ∈ F ξ for all ξ < µ. Then x ∈ Y ξ for all ξ < µ su
h that Fαξ
⊆ U(x).This is a 
ontradi
tion.Thus let us suppose that the indu
tion stopped at step ξ < µ, meaning that

F̃ = F \
⋃
{U(x) : x ∈ Y } is bounded where Y = ∪{Y ζ : ζ < ξ}. Let

h =
⋃
{hζ : ζ < ξ}, h : Y → F is a 1-1 fun
tion sin
e the sets dom(hζ) = Y ζand ran(hζ) ⊆ F ζ

αζ
are pairwise disjoint for ζ < ξ. Note that ran(h) ⊆⋃

{Fαζ
: ζ < ξ} is 
losed dis
rete by Claim 3.4.2. For x ∈ Y let

U0(x) = (U(x) \ ran(h)) ∪ {h(x)},note that U0(x) is open. Then
⋃

{U0(x) : x ∈ Y } =
⋃

{U(x) : x ∈ Y }is a minimal open re�nement, sin
e h(x) is only 
overed by U0(x) for all
x ∈ Y . Let U0 = {U0(x) : x ∈ Y }Let V (x) = U(x) \

⋃
{Fαζ

: ζ < ξ}. Then V = {V (x) : x ∈ F̃} is an open
over of F̃ , re�ning U ; Fαζ
∩ F̃ = ∅ by 
onstru
tion for all ζ < ξ. F̃ is 
losedand bounded thus irredu
ible by Claim 3.5.4, hen
e there is an irredu
ibleopen re�nement V0 of V. It is straightforward that V0∪U0 is a minimal openre�nement of U 
overing F .Corollary 3.5.9. Suppose that λ > µ = cf(µ) are in�nite 
ardinals su
hthat cf(λ) ≥ µ. Let M = {Mϕ : ϕ < κ} ⊆ [µ]µ be a MAD family and

C an Sλ
µ-
lub sequen
e. If X [λ, µ,M, C] is high then X [λ, µ,M, C] is a0-dimensional, Hausdor�, s
attered spa
e whi
h is aD however not linearly

D. 28



Proof. X [λ, µ,M, C] is 0-dimensional, Hausdor�, and s
attered by Claim3.4.2 and not linearly D by Corollary 3.5.3. It su�
es to show that every
losed F ⊆ X is irredu
ible. If F is bounded then F is a D-spa
e by Claim3.5.4 hen
e irredu
ible. If F is unbounded then F is high sin
e X is high.Hen
e F is irredu
ible by Theorem 3.5.7.3.6 Examples of aD, non linearly D-spa
esIn this se
tion we give examples of aD, non linearly D-spa
es of the form
X = X [λ, µ,M, C]. First let us make an observation.Claim 3.6.1. If Cα ⊆ π(F )′ for a 
losed F ⊆ X and α ∈ Sλ

µ then Fα = Xα.Proof. Clearly ⋃
{Xγ : γ ∈ Iξα} ∩ F 6= ∅ for all ξ < µ. Thus every point in

Xα is an a

umulation point of F , thus Fα = Xα sin
e F is 
losed.Corollaries 3.6.3 and 3.6.5 below give 
ertain examples of highX [λ, µ,M, C]spa
es.Proposition 3.6.2. Suppose that µ is a regular 
ardinal, cf(λ) ≥ µ++. Let
C be an Sλ

µ-
lub guessing sequen
e from Theorem 3.3.1. If M ⊆ [µ]µ is aMAD family of size at least λ then X [λ, µ,M, C] is high.Proof. Let F ⊆ X be 
losed and unbounded. Then π(F )′ is a 
lub in λ,hen
e there exists a stationary S ⊆ Sλ
µ su
h that Cα ⊆ π(F )′ for all α ∈ S.Thus Fα = Xα by Claim 3.6.1 hen
e |Fα| = |M| = |X| for all α ∈ S.Corollary 3.6.3. 1. Suppose that 2ω ≥ ω2. Let M be a MAD family on

ω of size 2ω and let C be an Sω2
ω -
lub guessing sequen
e from Theorem3.3.1. Then X [ω2, ω,M, C] is high.2. Suppose that 2ω = ω1 and 2ω1 ≥ ω3. Let M be a MAD family on ω1of size 2ω1 (exists by Claim 3.2.2) and let C be an Sω3

ω1
-
lub guessingsequen
e from Theorem 3.3.1. Then X [ω3, ω1,M, C] is high.Proposition 3.6.4. Suppose that λ = µ+ > µ = cf(µ) > ω and let Cbe an Sµ+

µ -
lub guessing sequen
e from Theorem 3.3.2. If there is a non-stationary MAD family MNS ⊆ [µ]µ su
h that |MNS| = µ+ then X =
X [µ+, µ,MNS, C] is high. 29



Proof. Let MNS = {Mϕ : ϕ < µ+} and C = 〈Cα : α ∈ Sµ+

µ 〉 su
h that
Cα = {aξα : ξ < µ} ⊆ α. Suppose that the 
losed F ⊆ X is unbounded.Then π(F )′ is a 
lub in µ+, hen
e there exists a stationary S ⊆ Sµ+

µ su
hthat
Nα = {ξ < µ : aξ+1

α ∈ π(F )′} is stationary in µfor all α ∈ S. Fix any α ∈ S, we prove that |Fα| = |F |. Nα is stationaryso by applying Claim 3.2.1 we get that |Φα| = µ+ for Φα = {ϕ < µ+ :
|Nα ∩ Mϕ| = µ}. Note that F ∩

⋃
{Xγ : γ ∈ Iξα} 6= ∅ for ξ ∈ Nα. Thus

〈α, ϕ〉 is an a

umulation point of F for ϕ ∈ Φα, hen
e {α}×Φα ⊆ Fα. Thus
|Fα| = µ+ = |X|.Corollary 3.6.5. Suppose that 2ω1 = ω2. Let C be an Sω2

ω1
-
lub guessingsequen
e from Theorem 3.3.2 and let MNS be a nonstationary MAD familyon ω1. Then X [ω2, ω1,MNS, C] is high.Thus, by all means we 
an dedu
e the proof of Theorem 3.1.1.Proof of Theorem 3.1.1. Note that in any model of ZFC, either (2ω ≥ ω2)or (2ω = ω1 ∧ 2ω1 ≥ ω3) or (2ω1 = ω2). Using Corollaries 3.6.3 and 3.6.5above, depending on the sizes of 2ω and 2ω1 , we see that there exists a high

X [λ, µ,M, C] spa
e. We are done by Corollary 3.5.9.3.7 Consistently on property D and aDOur main goal in this se
tion is to 
onstru
t a "lo
ally ni
e" spa
e whi
his not linearly D, however every 
losed subset of it is irredu
ible; hen
e aDby Theorem 1.3.4. Then we dedu
e that su
h a spa
e, with size less than
ontinuum, 
annot exist in ZFC.3.7.1 PreliminariesWe will use the following set-theoreti
al assumption:
(♦∗) there is a ♦∗-sequen
e, meaning that there exists an {Aα : α ∈ lim(ω1)}su
h that Aα ⊆ [α]ω is 
ountable and for every X ⊆ ω1 there is a 
lub

C ⊆ ω1 su
h that X ∩ α ∈ Aα for all α ∈ C.Also, we need the following easy 
laim about MAD families.30



Claim 3.7.1. If {Ni : i ∈ ω} ⊆ [ω]ω then there is a MAD family M ⊆ [ω]ωof size 2ω su
h that for all M ∈ M and i ∈ ω: |M ∩Ni| = ω.Proof. We will 
onstru
t the MAD family M on Q. We 
an suppose thatea
h Ni is dense in Q. Let R = {xα : α < 2ω} and for all α < 2ω let
Sα ⊆ Q su
h that Sα is a 
onvergent sequen
e with limit point xα and
|Sα ∩ Ni| = ω for all i ∈ ω. Then S = {Sα : α < 2ω} is almost disjoint, let
T = {Tα : α < λ} ⊆ [Q]ω su
h that S ∪ T is MAD. Then M = {Sα ∪ Tα :
α < λ} ∪ {Sα : λ ≤ α < 2ω} is a MAD family with the desired property.The following result of Zoltán Balogh will play a key role in proving ourindependen
e result.De�nition 3.7.2. A spa
e X is said to be lo
ally ni
e i� X is lo
ally 
ount-able and lo
ally 
ompa
t.Let us note that every lo
ally ni
e spa
e is 0-dimensional, Ty
hono� and�rst-
ountable.Theorem 3.7.3 ([5, Theorem 2.2℄). Suppose MA. Then for any lo
ally ni
espa
e X of 
ardinality < 2ω exa
tly one of the following is true:

• X is the 
ountable union of 
losed dis
rete subspa
es,
• X 
ontains a perfe
t preimage of ω1 with the order topology.Let us state a �nal 
laim, whi
h will be used later.Claim 3.7.4. (i) If the spa
e F is a perfe
t preimage of ω1 then F is 
ount-ably 
ompa
t, non 
ompa
t.(ii) If X is �rst-
ountable and F ⊆ X is a perfe
t preimage of ω1 then Fis 
losed in X.Proof. (i) It is known that under perfe
t mappings, the preimage of a 
om-pa
t spa
e is 
ompa
t (see [14, Theorem 3.7.2℄). Take any 
ountably in�nite

A ⊆ F and perfe
t surje
tion f : F → ω1. There is some α < ω1 su
h that
f [A] ⊆ α + 1. Thus A is the subset of the 
ompa
t set f−1[α + 1]. (ii) is a
onsequen
e of (i).The following 
an be easily seen now.Corollary 3.7.5. Suppose that X is a �rst-
ountable spa
e whi
h is aD orlinearly D. Then X does not 
ontain a perfe
t preimage of ω1.31



3.7.2 The main resultTheorem 3.7.6. Suppose (♦∗). There is a lo
ally ni
e, 0-dimensional T2spa
e X of size ω1 su
h that X is not linearly D, however every 
losed subset
F ⊆ X is irredu
ible; equivalently X is an aD-spa
e.Proof. We will de�ne a topology on X = ω1 × ω1. Let Xα = {α} × ω1 and
X<α = α× ω1 for α < ω1.De�nition 3.7.7. The set A ∈ [X ]ω runs up to α < ω1 i� A = {(αn, βn) :
n ∈ ω)} ⊆ X<α su
h that α0 ≤ ... ≤ αn ≤ ... and sup{αn : n ∈ ω} = α.Note that if A ⊆ X runs up to some α < ω1 then A ∩Xβ is �nite for all
β < ω1.We need the following 
onsequen
e of (♦∗). Let π(A) = {α ∈ ω1 :
A ∩Xα 6= ∅} for A ⊆ X .Claim 3.7.8. (♦∗) There exists a sequen
e {Aα : α ∈ lim(ω1)} ⊆ [X ]ω with
Aα =

⋃
{An

α : n ∈ ω} for all α ∈ lim(ω1) su
h that1. |An
α| = ω for all n ∈ ω,2. Aα runs up to α,3. for all Y ⊆ X if |π(Y )| = ω1 then

∃ 
lub C ⊆ ω1 su
h that ∀α ∈ C∃n ∈ ω(An
α ⊆ Y ).Proof. Let {Aα : α ∈ lim(ω1)} denote a ♦∗-sequen
e. Let i : ω1 × ω1 → ω1denote a bije
tion whi
h maps ((α+1)×(α+1)

)
\(α×α) to ω ·(α+1)\ω ·α.Let

Ãα = {i−1(A) : A ∈ Aω·α, sup
(
π(i−1(A))

)
= α}and let Aα =

⋃
{An

α : n ∈ ω} su
h that1. |An
α| = ω for all n ∈ ω,2. Aα runs up to α,

(3)′ for all B ∈ Ãα there is n ∈ ω su
h that An
α ⊆ B,
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for all α ∈ lim(ω1). We 
laim that the sequen
e {Aα : α ∈ lim(ω1)} hasthe desired properties. Let Y ⊆ X su
h that |π(Y )| = ω1. There is some
lub C0 ⊆ ω1 su
h that Y ∩ X<α ⊆ α × α for α ∈ C0. There is some 
lub
C1 ⊆ ω1 su
h that α∩ i[Y ] ∈ Aα for α ∈ C1. Let C2 = {α < ω1 : ω ·α ∈ C1};
learly, C2 is a 
lub. Let C = C0 ∩ C2 ∩ π(Y )′. Fix some α ∈ C. Then
ω ·α∩ i[Y ] = A for some A ∈ Aω·α, thus i[Y ∩X<α] = A sin
e ω ·α = i[α×α]and Y ∩X<α ⊆ α × α. Hen
e i−1(A) = Y ∩X<α and i−1(A) ∈ Ãα be
ause
α ∈ π(Y )′. Thus there is n ∈ ω su
h that An

α ⊆ Y by (3)′.Let {Aα : α ∈ lim(ω1)} ⊆ [X ]ω denote a sequen
e with Aα =
⋃
{An

α : n ∈
ω} for α ∈ lim(ω1) from Claim 3.7.8. We want to de�ne the topology on Xsu
h that

• Xα is 
losed dis
rete for all α < ω1,
• X<α is open for all α ∈ ω1,
• if A ∈ [X ]ω runs up to α then A has an a

umulation point in Xα,
• Xα ⊆ An

α for all α ∈ lim(ω1) and n ∈ ω.Let Mα ⊆ [Aα]
ω denote a MAD family on Aα for α ∈ lim(ω1) su
h that

|M ∩An
α| = ω for all M ∈ Mα and n ∈ ω; su
h an Mα exists by Claim 3.7.1.Enumerate Mα = {Mβ

α : β < ω1}.We de�ne topologies τ<α on X<α by indu
tion on α < ω1 su
h that
τ<α ∩ P(X<β) = τ<β for all β < α < ω1. This way we will get a topology τon X if we take ∪{τ<α : α < ω1} as a base.Suppose α < ω1 and we have de�ned the topology (X<α, τ<α) su
h that(i) (X<α, τ<α) is a lo
ally 
ountable, lo
ally 
ompa
t, 0-dimensional T2spa
e,(ii) for all α′ < α and x ∈ Xα′ there is some neighborhood G of x su
h that

G ∩Xα′ = {x},(iii) (α0, α1]× ω1 ⊆ X<α is 
lopen for all α0 < α1 < α.If α ∈ ω1 \ lim(ω1) then let Xα be dis
rete. Suppose α ∈ lim(ω1) and let usenumerate {F ⊆ X<α \ Aα : F runs up to α} as {F β
α : β < ω1}.De�nition 3.7.9. A subspa
e A ⊆ T of a topologi
al spa
e T is 
ompletelydis
rete i� there is a dis
rete family of open sets {Ga : a ∈ A} su
h that

a ∈ Ga for all a ∈ A. 33



The following 
laim will be useful later.Claim 3.7.10. Suppose that A = {(αn, βn) : n ∈ ω} ⊆ X runs up to α.Then A is 
ompletely dis
rete in X<α; hen
e 
losed dis
rete.Proof. Let G0 = (0, α0] × ω1 and Gn+1 = (αn, αn+1] × ω1 for n ∈ ω. Gn isopen for all n ∈ ω by indu
tional hypothesis (iii). Note that {Gn : n ∈ ω}is a dis
rete family of open sets su
h that A ∩Gn is �nite for all n ∈ ω. Let
Gn denote a �nite, disjoint family of 
lopen subsets of Gn su
h that for all
a ∈ A ∩Gn there is exa
tly one G ∈ Gn su
h that a ∈ G. Then the dis
retefamily ∪{Gn : n ∈ ω} shows that A is 
ompletely dis
rete.In step α ∈ lim(ω1) we de�ne the neighborhoods of points in Xα =
{(α, β) : β < ω1} by indu
tion on β < ω1 su
h that:
(a) X<α ∪ {(α, β ′) : β ′ ≤ β} is lo
ally 
ountable, lo
ally 
ompa
t and 0-dimensional T2,
(b) there is some neighborhood U of (α, β) su
h that U ∩ Aα ⊆ Mβ

α ,
(c) Mβ

α 
onverges to (α, β),
(d) F β

α a

umulates to (α, β ′) for some β ′ ≤ β.We need the following lemma to 
arry out the indu
tion on β < ω1.Lemma 3.7.11. Suppose that (T∪S, τ) is a lo
ally 
ountable, lo
ally 
ompa
tand 0-dimensional T2 spa
e su
h that T is open and S is 
ountable. Let
D = {dn : n ∈ ω} ⊆ T 
losed dis
rete in T ∪S and 
ompletely dis
rete in T .Let r /∈ T ∪ S. Then there is a topology ρ on R = T ∪ S ∪ {r} su
h that

• (R, ρ) is lo
ally 
ountable, lo
ally 
ompa
t and 0-dimensional T2,
• ρ|(T∪S) = τ ,
• D 
onverges to r and r /∈ S in (R, ρ).Proof. Suppose that dn ∈ Gn su
h that {Gn : n ∈ ω} is a family of open setswhi
h is dis
rete in T . For ea
h n ∈ ω let {Bn

i : i ∈ ω} denote a neighborhoodbase of dn su
h that
• Gn ⊇ Bn

0 ⊇ Bn
1 ⊇ ... and

• Bn
i is 
ountable, 
ompa
t and 
lopen for all n, i ∈ ω.34



Sin
e S ∩ D = ∅ there is some 
lopen neighborhood Us of ea
h s ∈ S su
hthat Us ∩D = ∅. There is gs : ω → ω su
h that
Us ∩Bn

gs(n) = ∅ for all n ∈ ω.Sin
e S is 
ountable, there is g : ω → ω su
h that for all s ∈ S there is some
N ∈ ω su
h that gs(n) ≤ g(n) for all n ≥ N . De�ne the topology ρ on R asfollows. Let

BN = {r} ∪
⋃

{Bn
g(n)

: n ≥ N} and B = {BN : N ∈ ω}.Let ρ be the topology on R generated by τ ∪ B.Clearly ρ|(T∪S) = τ . We 
laim that (R, ρ) is lo
ally 
ountable, lo
ally
ompa
t and 0-dimensional. Sin
e B is a neighborhood base for r, it su�
esto prove that ea
h B ∈ B is 
ountable, 
ompa
t (trivial) and 
lopen. Let
N ∈ ω then BN is 
lopen in T sin
e ⋃

{Bn
g(n) : n ∈ ω} is a family of 
lopensets whi
h is dis
rete in T guaranteed by the dis
rete family {Gn : n ∈ ω}.Let s ∈ S. There is N ∈ ω su
h that Us ∩ Bn

g(n) = ∅ for n ≥ N . There issome neighborhood V ∈ τ of s su
h that V ∩
⋃
{Bn

g(n) : n < N} = ∅ sin
e sis not in the 
losed set ⋃{Bn
g(n) : n < N}. Thus (Us ∩ V ) ∩ BN = ∅. Thisproves that BN is 
lopen.We 
laim that (R, ρ) is T2. Let s ∈ S, then there is N ∈ ω su
h that

Us ∩ Bn
g(n) = ∅ for n ≥ N , thus BN ∩ Us = ∅. As noted before BN ∩ T is
losed and 
learly ⋂

{BN ∩T : N ∈ ω} = ∅. This yields that any point t ∈ Tand r 
an be separated, thus (R, ρ) is T2.Clearly D 
onverges to r and S ∩B = ∅ for any B ∈ B thus r /∈ S.Suppose we are in step β < ω1 and we de�ned the neighborhoods of pointsinX<α∪{(α, β
′) : β ′ < β}. We use Lemma 3.7.11 to de�ne the neighborhoodsof r = (α, β). Let T = X<α and S = {(α, β ′) : β ′ < β} ∪ (Aα \Mβ

α ). Notethat F β
α ∪Mβ

α runs up to α thus 
losed and 
ompletely dis
rete in T by Claim3.7.10. Also, Mβ
α is 
losed dis
rete in T ∪S by indu
tional hypothesis (b) for

(α, β ′) where β ′ < β.
• If F β

α a

umulates to xβ′ for some β ′ < β then let D = Mβ
α .

• If F β
α is 
losed dis
rete in T ∪ S then let D = Mβ

α ∪ F β
α .Note that D is 
losed dis
rete in T ∪ S. By Claim 3.7.11 we 
an de�ne theneighborhoods of r = (α, β) su
h that the resulting spa
e satis�es 
onditions35



(a), (b),(
) and (d). After 
arrying out the indu
tion on β, the resultingtopology on Xα 
learly satis�es 
onditions (i),(ii) and (iii). This 
ompletesthe indu
tion.As a base, the family ⋃
{τ<α : α ∈ lim(ω1)} generates a topology τ on Xwhi
h is lo
ally 
ountable, lo
ally 
ompa
t and 0-dimensional T2. Observethat Xα is 
losed dis
rete and X<α is open for all α < ω1 (by indu
tionalhypothesises (ii) and (iii)) .Claim 3.7.12. Suppose that F ⊆ X runs up to some α ∈ lim(ω1). Thenthere is some β < ω1 su
h that F a

umulates to (α, β). Equivalently, if G ⊆

X is open and Xα ⊆ G then there is some α′ < α su
h that (α′, α]×ω1 ⊆ G.Proof. There is some β < ω1 su
h that F = F β
α . Thus by indu
tional hy-pothesis (d) there is some β ′ ≤ β su
h that F a

umulates to (α, β ′).Claim 3.7.13. X is not linearly D.Proof. If D ⊆ X is 
losed dis
rete then π(D) is �nite by Claim 3.7.12. Thusthere is no big 
losed dis
rete set for the 
over {X<α : α < ω1}.Our next aim is to prove that all 
losed subspa
es of X are irredu
ible.Claim 3.7.14. If |π(F )| = ω for a 
losed F ⊆ X then F is a D-spa
e, hen
eirredu
ible.Proof. Sin
e F = ∪{F ∩ Xα : α ∈ π(F )} is a 
ountable union of 
loseddis
rete sets, F is a D-spa
e by Proposition 1.1.2. We mention that if theONA U on F has 
losed dis
rete kernel D then we get an irredu
ible 
overby taking the following open re�nement: {(U(d) \D) ∪ {d} : d ∈ D}.Claim 3.7.15. If |π(A)| = ω1 for A ⊆ X then there is a 
lub C ⊆ ω1 su
hthat C×ω1 ⊆ A′. As a 
onsequen
e, if π(U) is stationary for the open U ⊆ Xthen there is some α < ω1 su
h that X \ U ⊆ α× ω1.Proof. There is a 
lub C ⊆ ω1 by Claim 3.7.8 su
h that for all α ∈ C thereis n ∈ ω su
h that An

α ⊆ A. We will prove that Xα ⊆ A′ for α ∈ C. Takeany point (α, β) ∈ Xα. |Mβ
α ∩ An

α| = ω for all β < ω1 by the 
onstru
tion ofthe MAD family Mα and Mβ
α 
onverges to (α, β) by indu
tional hypothesis(
). Thus An

α a

umulates to (α, β), hen
e Xα ⊆ A′.Claim 3.7.16. If |π(F )| = ω1 for a 
losed F ⊆ X then F is irredu
ible.36



Proof. Take an open 
over of F , say U . We 
an suppose that we re�ned it tothe form U = {U(x) : x ∈ F}, where U(x) is a neighborhood of x ∈ F . FromClaim 3.7.15 we know that there is some 
lub C ⊆ ω1 su
h that C×ω1 ⊆ F .For α ∈ C de�ne the open set Gα = ∪{U(x) : x ∈ Xα}. For every α ∈ Cthere is some δ(α) < α su
h that (δ(α), α]× ω1 ⊆ Gα; by Claim 3.7.12. Sothere is some δ < ω1 and a stationary S ⊆ C su
h that (δ, α] × ω1 ⊆ Gαfor all α ∈ S. Fix some δ0 > δ su
h that Xδ0 ⊆ F . Let S0 = S \ (δ0 + 1).For all α ∈ S0 there is dα ∈ Xα ⊆ F su
h that (δ0, α) ∈ U(dα). Let usre�ne these sets: U0(dα) =
(
U(dα) \ ({δ0} × S0)

)
∪ {(δ0, α)} for all α ∈ S0;let U0 = {U0(dα) : α ∈ S0}. Clearly U0 is an open re�nement of U whi
h isminimal and {dα : α ∈ ω1} ⊆ ∪U0. Sin
e S0 is stationary and S0 ⊆ π[∪U0]we get that there is some γ < ω1 su
h that F1 = F \ ∪U0 ⊆ γ × ω1 by Claim3.7.15. So by Claim 3.7.14 the 
losed set F1 is a D-spa
e, hen
e irredu
ible.Take a minimal open re�nement of the 
over {U(x) \ ({δ0} × S0) : x ∈ F1},let this be U1. The union U0 ∪ U1 is an open re�nement of U whi
h 
overs Fand minimal.This proves that all 
losed subspa
es of X are irredu
ible. Hen
e X is an

aD-spa
e by Theorem 1.3.4.Finally, we 
an observe the following.Proposition 3.7.17. Suppose MA. Let X be a lo
ally ni
e spa
e of 
ardi-nality < 2ω. Then the following are equivalent:(1) X is a D-spa
e,(2) X is a linearly D-spa
e,(3) X is an aD-spa
e.Proof. In ea
h 
ase, X does not 
ontain a perfe
t preimage of ω1 by Corollary3.7.5. Hen
e, X is σ-
losed dis
rete by Balogh's Theorem 3.7.3 whi
h �nishesthe proof.Thus we 
an dedu
e the proof of Theorem 3.1.2.Proof of Theorem 3.1.2. If MAℵ1 holds, then every lo
ally ni
e aD-spa
e of
ardinality ω1 is a D-spa
e by Proposition 3.7.17. If (♦∗) holds, then there isa lo
ally ni
e, 0-dimensional T2 spa
e X of size ω1 su
h that X is not linearly
D, but aD by Theorem 3.7.6. This 
ompletes the proof.37



However, the following remain open.Problem 3.7.18. Is there a ZFC example of a lo
ally ni
e, T2 spa
e X su
hthat X is not (linearly) D however aD?
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