Davies-trees in infinite combinatorics

Dániel T. Soukup
University of Toronto
Logic Colloquium 2014
July 15, 2014, Vienna

Outline - our goals

- point out a typical situation in recursive or inductive constructions,
- introduce a technique to deal with these difficulties,
- present old applications,
- present new applications and advertise the handout.

Outline - our goals

- point out a typical situation in recursive or inductive constructions,
- introduce a technique to deal with these difficulties,
- present old applications,
- present new anplications and advertise the handout.

Outline - our goals

- point out a typical situation in recursive or inductive constructions,
- introduce a technique to deal with these difficulties,
- present old applications,
- present new applications and advertise the handout.

Outline - our goals

- point out a typical situation in recursive or inductive constructions,
- introduce a technique to deal with these difficulties,
- present old applications,
- present new applications and advertise the handout.

Outline - our goals

- point out a typical situation in recursive or inductive constructions,
- introduce a technique to deal with these difficulties,
- present old applications,
- present new applications and advertise the handout.

A simple example

Theorem (P. Komjáth, 1984)

```
List \mathcal{X}}\mathrm{ and inductively select the finite sets.
- if \(\mathcal{X}\) is countable then no worries,
- if \(\mathcal{X}\) is uncountable then pack into countable pieces \(\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}\),
- if \(\left|\left(\cup \mathcal{X}_{<\alpha}\right) \cap A\right|<\omega\) for \(A \in \mathcal{X}_{\alpha}\) and \(\alpha<\kappa\) then we can deal with them separately!
```


A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$. Then \mathcal{X} is essentially disioint, i.e. we can select finite $F_{A} \subset A$ for each $A \in \mathcal{X}$ so that $\left\{A \backslash F_{A}: A \in \mathcal{X}\right\}$ is pairwise disjoint.

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}$,
- if $\left|\left(\cup \mathcal{X}_{<\alpha}\right) \cap A\right|<\omega$ for $A \in \mathcal{X}_{\alpha}$ and $\alpha<\kappa$
then we can deal with them separately!

A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$.
Then \mathcal{X} is essentially disjoint, i.e. we can select finite $F_{A} \subseteq A$ for each $A \in \mathcal{X}$ so that

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}$,
- if $\left|\left(\cup \mathcal{X}_{<\alpha}\right) \cap A\right|<\omega$ for $A \in \mathcal{X}_{\alpha}$ and $\alpha<\kappa$
then we can deal with them separately!

A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$.
Then \mathcal{X} is essentially disjoint, i.e. we can select finite $F_{A} \subseteq A$ for each $A \in \mathcal{X}$ so that $\left\{A \backslash F_{A}: A \in \mathcal{X}\right\}$ is pairwise disjoint.

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{a}: a<k\right\}$,
- if $\left|\left(\cup \mathcal{X}_{<\alpha}\right) \cap A\right|<\omega$ for $A \in \mathcal{X}_{\alpha}$ and $\alpha<\kappa$
then we can deal with them separately!

A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$.
Then \mathcal{X} is essentially disjoint, i.e. we can select finite $F_{A} \subseteq A$ for each $A \in \mathcal{X}$ so that $\left\{A \backslash F_{A}: A \in \mathcal{X}\right\}$ is pairwise disjoint.

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}$,

then we can deal with them separately!

A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$.
Then \mathcal{X} is essentially disjoint, i.e. we can select finite $F_{A} \subseteq A$ for each $A \in \mathcal{X}$ so that $\left\{A \backslash F_{A}: A \in \mathcal{X}\right\}$ is pairwise disjoint.

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}$

then we can deal with them separately!

A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$.
Then \mathcal{X} is essentially disjoint, i.e. we can select finite $F_{A} \subseteq A$ for each $A \in \mathcal{X}$ so that $\left\{A \backslash F_{A}: A \in \mathcal{X}\right\}$ is pairwise disjoint.

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}$,

then we can deal with them separately!

A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets \mathcal{X} is n-almost disjoint for some $n \in \mathbb{N}$, i.e. $|A \cap B|<n$ for every $A \neq B \in \mathcal{X}$.
Then \mathcal{X} is essentially disjoint, i.e. we can select finite $F_{A} \subseteq A$ for each $A \in \mathcal{X}$ so that $\left\{A \backslash F_{A}: A \in \mathcal{X}\right\}$ is pairwise disjoint.

List \mathcal{X} and inductively select the finite sets.

- if \mathcal{X} is countable then no worries,
- if \mathcal{X} is uncountable then pack into countable pieces $\left\{\mathcal{X}_{\alpha}: \alpha<\kappa\right\}$,
- if $\left|\left(\bigcup \mathcal{X}_{<\alpha}\right) \cap A\right|<\omega$ for $A \in \mathcal{X}_{\alpha}$ and $\alpha<\kappa$ then we can deal with them separately!

Elementary submodels and chains

- if V is a model of ZFC (or a large fragment of it) then $M \prec V$ iff $M=\varphi \Longleftrightarrow V=\varphi$ for every formula φ with parameters from M,
e we use chains of countable elementary submodels to produce the pieces \mathcal{X}_{α},
- limitation: any increasing chain of countable sets has size $\leq \omega_{1}$!

Elementary submodels and chains

- if V is a model of ZFC (or a large fragment of it) then $M \prec V$ iff

$$
M \models \varphi \Longleftrightarrow V \models \varphi
$$

for every formula φ with parameters from M,

- we use chains of countable elementary submodels to produce the pieces \mathcal{X}_{α},
- limitation: any increasing chain of countable sets has size $\leq \omega_{1}$!

Elementary submodels and chains

- if V is a model of ZFC (or a large fragment of it) then $M \prec V$ iff

$$
M \models \varphi \Longleftrightarrow V \models \varphi
$$

for every formula φ with parameters from M,

- we use chains of countable elementary submodels to produce the pieces \mathcal{X}_{α},
- limitation: any increasing chain of countable sets has size $\leq \omega_{1}$!

Elementary submodels and chains

- if V is a model of ZFC (or a large fragment of it) then $M \prec V$ iff

$$
M \models \varphi \Longleftrightarrow V \models \varphi
$$

for every formula φ with parameters from M,

- we use chains of countable elementary submodels to produce the pieces \mathcal{X}_{α},
- limitation: any increasing chain of countable sets has size $\leq \omega_{1}$!

Special sequences of elementary submodels

- if $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ is a chain then $\bigcup_{\alpha<\beta} M_{\alpha}$ is a el. submodel as well,
- but we want to deal with structures of arhitrary size,
- the idea is to switch from chains to special sequences of countable submodels, called Davies-trees,
- Davies-tree \approx a sequence (M_{α}) ${ }_{\alpha<k}$ such that $\bigcup_{\alpha<\beta} M_{\alpha}$ is the union of finitely many submodels,
- we can still use many tricks/techniques!

Special sequences of elementary submodels

- if $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ is a chain then $\bigcup_{\alpha<\beta} M_{\alpha}$ is a el. submodel as well,
- but we want to deal with structures of arbitrary size,
- the idea is to switch from chains to special sequences of countable submodels, called Davies-trees,
- Davies-tree \approx a sequence $\left(M_{\alpha}\right)_{\alpha<\kappa}$ such that $\bigcup_{\alpha<\beta} M_{\alpha}$ is the union of finitely many submodels,
- we can still use many tricks/techniques!

Special sequences of elementary submodels

- if $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ is a chain then $\bigcup_{\alpha<\beta} M_{\alpha}$ is a el. submodel as well,
- but we want to deal with structures of arbitrary size,
- the idea is to switch from chains to special sequences of countable submodels, called Davies-trees,
- Davies-tree \sim a sequence (M_{α}) a<k such that $\bigcup_{\alpha<\beta} M_{\alpha}$ is the union of finitely many submodels,
- we can still use many tricks/techniques!

Special sequences of elementary submodels

- if $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ is a chain then $\bigcup_{\alpha<\beta} M_{\alpha}$ is a el. submodel as well,
- but we want to deal with structures of arbitrary size,
- the idea is to switch from chains to special sequences of countable submodels, called Davies-trees,
- Davies-tree \approx a sequence $\left(M_{\alpha}\right)_{\alpha<\kappa}$ such that $\bigcup_{\alpha<\beta} M_{\alpha}$ is the union of finitely many submodels,
- we can still use many tricks/techniques!

Special sequences of elementary submodels

- if $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ is a chain then $\bigcup_{\alpha<\beta} M_{\alpha}$ is a el. submodel as well,
- but we want to deal with structures of arbitrary size,
- the idea is to switch from chains to special sequences of countable submodels, called Davies-trees,
- Davies-tree \approx a sequence $\left(M_{\alpha}\right)_{\alpha<\kappa}$ such that
$\bigcup_{\alpha<\beta} M_{\alpha}$ is the union of finitely many submodels,
- we can still use many tricks/techniques!

Special sequences of elementary submodels

- if $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ is a chain then $\bigcup_{\alpha<\beta} M_{\alpha}$ is a el. submodel as well,
- but we want to deal with structures of arbitrary size,
- the idea is to switch from chains to special sequences of countable submodels, called Davies-trees,
- Davies-tree \approx a sequence $\left(M_{\alpha}\right)_{\alpha<\kappa}$ such that
$\bigcup_{\alpha<\beta} M_{\alpha}$ is the union of finitely many submodels,
- we can still use many tricks/techniques!

The first applications

- (\mathbb{R}. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset of \mathbb{R}^{2} which intersect each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- (D. Milovich, 2008) Base properties of compact spaces, develop nicer Davies-trees.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset of \mathbb{R}^{2} which intersect each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- (D. Milovich, 2008) Base properties of compact spaces, develop nicer Davies-trees.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset of \mathbb{R}^{2} which intersect each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- (D. Milovich, 2008) Base properties of compact spaces, develop nicer Davies-trees.

The first applications

- (R. O. Davies, 1962) \mathbb{R}^{2} is covered by countably many rotated graphs of functions.
- (S. Jackson, R. D. Mauldin, 2002) There is a subset of \mathbb{R}^{2} which intersect each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point.
- (D. Milovich, 2008) Base properties of compact spaces, develop nicer Davies-trees.

New applications - clouds

Definition

We call $A \subset \mathbb{R}^{2}$ a cloud around a point aiff every line L through a intersect A in a finite set.

Theorem (P. Komjáth, 2001)

The Continuum Hypothesis is equivalent to the statement that is the union of 3 clouds.

Theorem (P. Komjáth and J. H. Schmerl)

is the union of $n+2$ clouds iff $2^{\omega} \leq \aleph_{n}$ for any $n \in \mathbb{N}$.

New applications - clouds

Definition

We call $A \subset \mathbb{R}^{2}$ a cloud around a point a iff every line L through a intersect A in a finite set.

Theorem (P. Komjáth, 2001)
 The Continuum Hypothesis is equivalent to the statement that

Theorem (P. Komjáth and J. H. Schmerl)

for any $n \in \mathbb{N}$

New applications - clouds

Definition

We call $A \subset \mathbb{R}^{2}$ a cloud around a point a iff every line L through a intersect A in a finite set.

Theorem (P. Komjáth, 2001)
The Continuum Hypothesis is equivalent to the statement that \mathbb{R}^{2} is the union of 3 clouds.

Theorem (P. Komjáth and J. H. Schmerl)

is the union of $n+2$ clouds iff $2^{\omega} \leq \aleph_{n}$ for any $n \in \mathbb{N}$.

New applications - clouds

Definition

We call $A \subset \mathbb{R}^{2}$ a cloud around a point a iff every line L through a intersect A in a finite set.

Theorem (P. Komjáth, 2001)
The Continuum Hypothesis is equivalent to the statement that \mathbb{R}^{2} is the union of 3 clouds.

Theorem (P. Komjáth and J. H. Schmerl)

\mathbb{R}^{2} is the union of $n+2$ clouds iff $2^{\omega} \leq \aleph_{n}$ for any $n \in \mathbb{N}$.

New applications - chromatic number

Definition

The chromatic number of a graph G is the least number k such that G can be covered by ki many independent sets.

- how does the chromatic number affect the subgraph structure?
- (Mycielski, 1955) there are \triangle-free graphs of arbitrary large chromatic number,
- P. Erdős, A. Hajnal pioneered the theory of infinite chromatic graphs.

Theorem (P. Komjáth, 1986)

If the chromatic number of G is uncountable then G contains n-connected uncountably chromatic subgraphs for every $n \in \mathbb{N}$.

New applications - chromatic number

Definition

The chromatic number of a graph G is the least number κ such that G can be covered by κ many independent sets.

- how does the chromatic number affect the subgraplh structure?
- (Mycielski, 1955) there are \triangle-free graphs of arbitrary large chromatic number,
- P. Erdős, A. Hajnal pioneered the theory of infinite chromatic graphs.

Theorem (P. Komjáth, 1986)

If the chromatic number of G is uncountable then G contains n-connected uncountably chromatic subgraphs for every $n \in \mathbb{N}$

New applications - chromatic number

Definition

The chromatic number of a graph G is the least number κ such that G can be covered by κ many independent sets.

- how does the chromatic number affect the subgraph structure?
- (Mycielski, 1955) there are \triangle-free graphs of arbitrary large chromatic number,
- P. Erdős, A. Hajnal pioneered the theory of infinite chromatic graphs.

Theorem (P. Komjáth, 1986)

If the chromatic number of G is uncountable then G contains n-connected uncountably chromatic subgraphs for every $n \in \mathbb{N}$

New applications - chromatic number

Definition

The chromatic number of a graph G is the least number κ such that G can be covered by κ many independent sets.

- how does the chromatic number affect the subgraph structure?
- (Mycielski, 1955) there are \triangle-free graphs of arbitrary large chromatic number,
- P. Erdős, A. Hajnal pioneered the theory of infinite chromatic graphs.

Theorem (P. Komjáth, 1986)

If the chromatic number of G is uncountable then G contains n-connected uncountably chromatic subgraphs for every $n \in \mathbb{N}$

New applications - chromatic number

Definition

The chromatic number of a graph G is the least number κ such that G can be covered by κ many independent sets.

- how does the chromatic number affect the subgraph structure?
- (Mycielski, 1955) there are \triangle-free graphs of arbitrary large chromatic number,
- P. Erdős, A. Hajnal pioneered the theory of infinite chromatic graphs.

Theorem (P. Komjáth, 1986)
If the chromatic number of G is uncountable then G contains n-connected uncountably chromatic subgraphs for every $n \in \mathbb{N}$

New applications - chromatic number

Definition

The chromatic number of a graph G is the least number κ such that G can be covered by κ many independent sets.

- how does the chromatic number affect the subgraph structure?
- (Mycielski, 1955) there are \triangle-free graphs of arbitrary large chromatic number,
- P. Erdős, A. Hajnal pioneered the theory of infinite chromatic graphs.

Theorem (P. Komjáth, 1986)

If the chromatic number of G is uncountable then G contains n-connected uncountably chromatic subgraphs for every $n \in \mathbb{N}$.

What to do now?

- the handout (arxiv) contains the proofs, several references,
- there are tons of onnortunities to apply Davies-trees in infinite combinatorics,
- new proofs, stronger results, getting rid of CH and new results!

What to do now?

- the handout (arxiv) contains the proofs, several references,
- there are tons of opportunities to apply Davies-trees in infinite combinatorics,
- new proofs, stronger results, getting rid of CH and new results!

What to do now?

- the handout (arxiv) contains the proofs, several references,
- there are tons of opportunities to apply Davies-trees in infinite combinatorics,
- new proofs, stronger results, getting rid of CH and new results!

What to do now?

- the handout (arxiv) contains the proofs, several references,
- there are tons of opportunities to apply Davies-trees in infinite combinatorics,
- new proofs, stronger results, getting rid of CH and new results!

Thank you

... for your attention! Any questions?

