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Outline - our goals

point out a typical situation in recursive or inductive constructions,

introduce a technique to deal with these di�culties,

present old applications,

present new applications and advertise the handout.
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A simple example

Theorem (P. Komjáth, 1984)

Suppose that a family of countable sets X is n-almost disjoint for some

n ∈ N, i.e. |A ∩ B| < n for every A 6= B ∈ X .

Then X is essentially disjoint, i.e. we can select �nite FA ⊆ A for each

A ∈ X so that {A \ FA : A ∈ X} is pairwise disjoint.

List X and inductively select the �nite sets.

if X is countable then no worries,

if X is uncountable then pack into countable pieces {Xα : α < κ},

if |(
⋃

X<α) ∩ A| < ω for A ∈ Xα and α < κ
then we can deal with them separately!
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Elementary submodels and chains

if V is a model of ZFC (or a large fragment of it) then M ≺ V i�

M |= ϕ ⇐⇒ V |= ϕ

for every formula ϕ with parameters from M,

we use chains of countable elementary submodels to produce the
pieces Xα,

limitation: any increasing chain of countable sets has size ≤ ω1!
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Special sequences of elementary submodels

if (Mα)α<ω1 is a chain then
⋃

α<β Mα is a el. submodel as well,

but we want to deal with structures of arbitrary size,

the idea is to switch from chains to special sequences of countable
submodels, called Davies-trees,

Davies-tree ≈ a sequence (Mα)α<κ such that⋃
α<β Mα is the union of �nitely many submodels,

we can still use many tricks/techniques!
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The �rst applications

(R. O. Davies, 1962) R2 is covered by countably many rotated
graphs of functions.

(S. Jackson, R. D. Mauldin, 2002) There is a subset of R2 which
intersect each isometric copy of Z× Z in exactly one point.

(D. Milovich, 2008) Base properties of compact spaces, develop
nicer Davies-trees.
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New applications - clouds

De�nition

We call A ⊂ R2 a cloud around a point a i� every line L through a
intersect A in a �nite set.

Theorem (P. Komjáth, 2001)

The Continuum Hypothesis is equivalent to the statement that

R2 is the union of 3 clouds.

Theorem (P. Komjáth and J. H. Schmerl)

R2 is the union of n + 2 clouds i� 2ω ≤ ℵn for any n ∈ N.
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New applications - chromatic number

De�nition

The chromatic number of a graph G is the least number κ such that G
can be covered by κ many independent sets.

how does the chromatic number a�ect the subgraph structure?

(Mycielski, 1955) there are 4-free graphs of arbitrary large
chromatic number,

P. Erd®s, A. Hajnal pioneered the theory of in�nite chromatic

graphs.

Theorem (P. Komjáth, 1986)

If the chromatic number of G is uncountable then G contains

n-connected uncountably chromatic subgraphs for every n ∈ N.
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What to do now?

the handout (arxiv) contains the proofs, several references,

there are tons of opportunities to apply Davies-trees in in�nite
combinatorics,

new proofs, stronger results, getting rid of CH and new results!

D. T. Soukup (U of T) Davies-trees in in�nite combinatorics LC 2014 9 / 10



What to do now?

the handout (arxiv) contains the proofs, several references,

there are tons of opportunities to apply Davies-trees in in�nite
combinatorics,

new proofs, stronger results, getting rid of CH and new results!

D. T. Soukup (U of T) Davies-trees in in�nite combinatorics LC 2014 9 / 10



What to do now?

the handout (arxiv) contains the proofs, several references,

there are tons of opportunities to apply Davies-trees in in�nite
combinatorics,

new proofs, stronger results, getting rid of CH and new results!

D. T. Soukup (U of T) Davies-trees in in�nite combinatorics LC 2014 9 / 10



What to do now?

the handout (arxiv) contains the proofs, several references,

there are tons of opportunities to apply Davies-trees in in�nite
combinatorics,

new proofs, stronger results, getting rid of CH and new results!

D. T. Soukup (U of T) Davies-trees in in�nite combinatorics LC 2014 9 / 10



Thank you . . .

. . . for your attention!

Any questions?
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