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Abstract. We present a weaker version of a recent result of D. Raghavan and S. Todor-
cevic that highlights their main combinatorial ideas in proving Galvin’s conjecture (as-
suming the existence of some large cardinals). Using their arguments, we show that if
there is a precipitous ideal on ω1 then for any uncountable set of reals X and finite
colouring c : [X]2 → ℓ there is a homeomorphic copy Y ⊆ X of Q so that c ↾ [Y ]2

assumes at most two colours.

Suppose that I is a σ-ideal. For the purposes of this note, it is safe to think of I as the
non-stationary ideal on ω1 or the ideal of meager sets in a Baire space.

We define the following game:

I S0 S2 . . .
II S1 . . .

where Player I (called Empty) and II (called Non Empty) alternately play I-positive sets
forming a decreasing sequence (i.e., Sn+1 ⊆ Sn) in ω steps. Empty wins if

∩
n∈ω Sn = ∅.

Those ideals I such that Empty has no winning strategy are called precipitous. It is
equiconsistent with the existence of a measurable cardinal that the non-stationary ideal on
ω1 is precipitous [2]. See Section 8 of M. Foreman’s survey [1] on making certain natural
ideals (such as the non-stationary, null or meager ideal) precipitous by forcing.

Our goal is to present the following result and its surprisingly elementary proof.

Theorem 0.1. [3] Suppose that there is a precipitous ideal on ω1. Then for any uncountable
set of reals X and finite ℓ,

X → (top Q)2ℓ,2.

Raghavan and Todorcevic provide a detailed and enjoyable presentation of a much stronger
result in [3]. In fact, one of their illuminating comments is that the above theorem is an easy
modification of their main result. We believe that most of the combinatorial ideas from [3]
appear in the arguments we collected here. We will use I to have a notion of largeness which
corresponds to the stationary tower in [3]. The ideal being precipitous is used analogously to
[3, Theorem 21]. However, the actual construction of the homeomorphic copy of Q appear
with much less technical detail here. So we hope our notes provide a helpful introduction to
understanding the more general setting of [3] which involves a general class of topological
spaces (i.e., non left-separated spaces with a point-countable base) and the stationary tower
machinery. To this end, we closely followed the notation and proof-structure from [3].

We fix X with a countable base B for the topology. We can shrink X to have size ℵ1 and
assume that the precipitious ideal I lives on X. For each point x ∈ X, let (Ux,n)n∈ω denote
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a decreasing neighbourhood base selected from B. We will simply say that a subset of X is
large (think of being stationary or non-meager) if it is I-positive. Almost every will refer to
all but ideal many.

Lemma 0.2. Suppose that S ⊆ X is large.
(1) For almost every x ∈ S and all n ∈ ω, Ux,n ∩ S is large.
(2) For any n ∈ ω, there is a U so that {x ∈ S : Ux,n = U} is large.

From now on, we will only work with large sets S so that Ux,n∩S is large for every x ∈ S.
Condition (1) says that this is possible.

Fix the finite colouring c : [X]2 → ℓ as well. We say that x is i-large in T if {y ∈ T :
c(x, y) = i} is large.

Lemma 0.3. For any x ∈ X and large T ⊆ X, there is an i so that x is i-large in T .

Definition 0.4. We say that a pair of large sets S, T is (i, j)-saturated if for any large
S′ ⊂ S and T ′ ⊂ T both sets

{x ∈ S′ : x is i-large in T ′}
and

{y ∈ T ′ : y is j-large in S′}
are large.

Note that being (i, j)-saturated is hereditary to subsets.

Main Lemma 0.5. There is (i, j) and some large S1 ⊆ X so that for any large S ⊆ S1

there is an (i, j)-saturated pair S′, T ′ ⊆ S.

Proof. This is a classical exhaustion argument. Suppose that the statement of the lemma
fails: then, by shrinking X ℓ2-many times, we arrive at a set S1 so that no pair S, T below S1

is (i, j)-saturated for any (i, j). By unravelling the definition of (i, j)-saturated, we construct
large sets S′

0 ⊇ S′
1 ⊇ · · · ⊇ S′

ℓ2 and T ′
0 ⊇ T ′

1 ⊇ · · · ⊇ T ′
ℓ2 so that for any (i, j) there is some

k < ℓ2 and sets S∗
k , T

∗
k from the ideal such that either

S∗
k = {x ∈ S′

k : x is i-large in T ′
k}

or
T ∗
k = {y ∈ T ′

k : y is i-large in S′
k}.

We simply form S∗ = S′
ℓ2 \

∪
k<ℓ2 S

∗
k and S∗ = T ′

ℓ2 \
∪

k<ℓ2 T
∗
k . Now, pick any x ∈ S∗ and

i so that x is i-large in T ∗. Similarly, let y ∈ T ∗ arbitrary and find j so that y is j-large in
S∗. However, this should not be possible as we considered (i, j) at some step k and thrown
away either all i-large points from the S-side or all j-large points from the T -side.

□

Let us fix this pair of colours (i, j) and, to simplify notation, we assume that X = S1

satisfies the previous lemma. The last lemma we need is the following:

Main Lemma 0.6. For any large T ⊂ X and for almost every x ∈ T there is a sequence
(Tn)n∈ω of large sets so that

(1) Tn ⊆ T ∩ Ux,n,
(2) c(x, y) = i for all y ∈ Tn, and
(3) Tk, Tn is (i, j)-saturated for all n < k < ω.
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From this, one can deduce the proof of the main theorem. Moreover, the proof of this
lemma is the only place where we use the assumption that I is precipitous.

Proof. Let us say that x is an (i, j)-winner in a large set S if x ∈ S and there is a sequence
Sn, Tn of (i, j)-saturated pairs so that

(1) Sn, Tn ⊂ Ux,n,
(2) Sn+1, Tn+1 ⊂ Sn, and
(3) c(x, y) = i for any y ∈ Tn.

It suffices to show the following now.

Lemma 0.7. For any large S, almost every x ∈ S is an (i, j)-winner in S.

Proof. Suppose this is not the case and that there is a large set S′ of x ∈ S which are not
(i, j)-winners. Our plan is the following: we will use our assumption to define a strategy
for Empty in the game introduces at the beginning, starting with S′. This strategy cannot
be winning so there is a play which produces a sequence of large sets with non empty
intersection. We will show that any point X in the intersection is an (i, j)-winner in S,
contradicting that x ∈ S.

To define the strategy σ, we need the following simple fact.

Lemma 0.8. For any large S′′ and n ∈ ω there is an (i, j)-saturated pair R, T ⊆ S′′ so that
Ux,n = Uy,n for any x ∈ R, y ∈ T .

In the first step of the game, Empty selects an (i, j)-saturated pair R0, T0 below S′ so that
Ux,0 = Uy,0 for any x ∈ R0, y ∈ T0. Let this common neighbourhood be U0. By shrinking
R0, we can assume that all x ∈ R0 is i-large in T0. The set R0 is the first choice of Empty
by the strategy σ.

In general, given some large set σ(2n − 1), Empty picks an (i, j)-saturated pair Rσ, Tσ

below σ(2n−1) such that Ux,n = Uy,n for any x ∈ Rσ, y ∈ Tσ. The common neighbourhood
will be denote by Un. Again, shrink Rσ so we can assume that all x ∈ Rσ is i-large in Tσ.
This Rσ is Empty’s reply in the game.

Now, there must be a play so that Non Empty wins: there is a sequence (Rn, Tn) of
(i, j)-saturated pairs below S′ so that

∩
Rn ̸= ∅. Take any x from the intersection and let

us show that x is an (i, j)-winner in S. Note that for any n < ω, Sn, Tn ⊂ Ux,n = Un and
Sn+1, Tn+1 ⊂ Sn and the set T ′

n = {y ∈ Tn : c(x, y) = i} is large. So, (Rn, T
′
n) witnesses

that x is an (i, j)-winner in S. This contradiction ends the proof.
□

□

We are ready to prove the theorem now: we construct a dense-in-itself subset Y = {xm+1 :
m < ω} of X by induction. At each step m < ω, we will have a subtree Pm ⊆ ω<ω of finite
height along with large sets Tm,σ ⊆ X attached to the leafs σ of Pm. We’ll denote the set of
leafs with L(Pm). The sets Tm′,σ are reservoirs for points xm that we choose in later stages.

We start from P0 = {∅} and T0,∅ = X. When forming Pm+1 from Pm, we pick some leaf
σm of Pm and let

Pm+1 = Pm ∪ {σm
⌢(n) : n < ω}.

In the end, we would like that
∪
Pm = ω<ω which is ensured by picking the leafs σm

appropriately. I.e., for any σ ∈ ω<ω, there will be some m < ω so that σ = σm.
We will also make sure that the following properties are satisfied by our construction:
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(5) for any m′ ≤ m and σ ∈ L(Pm′) ∩ L(Pm), Tm,σ ⊂ Tm′,σ,
(6) for any m < m′ and σ ∈ L(Pm),

(a) if σm′ ⊂ σ then c(xm′+1, ·) ↾ Tm,σ = i,
(b) if σm′ <lex σ then c(xm′+1, ·) ↾ Tm,σ = j,
(c) if σ <lex σm′ then c(xm′+1, ·) ↾ Tm,σ = i,

(7) σ <lex τ implies that Tm,τ , Tm,σ is an (i, j)-saturated pair,
(8) xm+1 ∈ Tm,σm

,
(9) Tm+1,σm

⌢(n) ⊆ Tm,σm
∩ Uxm+1,n.

P0 = {∅} b

P1 = P0 ∪ {(n) : n < ω} b

b b b b b b

b

b b b

T1,(0) T1,(1) T1,(2)

T0,∅

x1

P2 = P1 ∪ {(1)⌢(n) : n < ω}
b

b b b b b b

b

b b b

T2,(0)

T2,(10)
T2,(2)

x1

b b b b b b

x2
b

b b b

T2,(11)

i

i

i
i j

Figure 1. Construction the copy of Q with the auxiliary trees P0, P1, . . .
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We need to verify three things: that the construction can be carried out, the set Y is
dense-in-itself and ran c ↾ [Y ]2 ⊆ {i, j}.

The construction is fairly straightforward and Figure 1 demonstrates the first few steps.
In general, given Pm, we start by picking a leaf σm.

Lemma 0.9. For almost every x ∈ Tm,σm
the following holds: for every σ ∈ L(Pm)\{σm},

x is i-large in Tm,σ if σ <lex σm and x is j-large in Tm,σ if σm <lex σ.

Let T ′ denote the subset of Tm,σm
where the above lemma holds. Now, apply Lemma 0.6

in T ′ to define xm+1 ∈ T ′ and large sets Tm+1,σm
⌢(n) for n < ω which converge to xm+1

and satisfy that c(xm+1, ·) ↾ Tm+1,σm
⌢(n) = i. Using that xm+1 ∈ T ′, we can shrink Tm,σ to

large sets Tm+1,σ for σ ∈ L(Pm) ∩ L(Pm+1) so that condition (6) is satisfied.
Now, why is Y dense-in-itself? It suffices to note that after xm′+1 was picked, for any

n < ω there is m′ < m so that σm = σm′⌢(n) and so xm ∈ Tm′,σ′
m

⌢(n). The sequence of
sets (Tm′,σm′⌢(n))n<ω converges to xm, so we are done.

Finally, condition (6) and the fact that m′ < m implies xm+1 ∈
∪

σ∈L(Pm) Tm,σ ensure
that c(xm′+1, xm+1) ∈ {i, j}.
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