NOTES ON GALVIN’S CONJECTURE

DANIEL T. SOUKUP

ABSTRACT. We present a weaker version of a recent result of D. Raghavan and S. Todor-
cevic that highlights their main combinatorial ideas in proving Galvin’s conjecture (as-
suming the existence of some large cardinals). Using their arguments, we show that if
there is a precipitous ideal on w; then for any uncountable set of reals X and finite
colouring ¢ : [X]? — ¢ there is a homeomorphic copy Y C X of Q so that ¢ [ [V]?
assumes at most two colours.

Suppose that 7 is a o-ideal. For the purposes of this note, it is safe to think of Z as the
non-stationary ideal on w; or the ideal of meager sets in a Baire space.
We define the following game:

I [ S Ss
o S

where Player I (called Empty) and II (called Non Empty) alternately play Z-positive sets
forming a decreasing sequence (i.e., Sp41 € S,,) in w steps. Empty wins if (.., S, = 0.

Those ideals Z such that Empty has no winning strategy are called precipitous. It is
equiconsistent with the existence of a measurable cardinal that the non-stationary ideal on
wy is precipitous [2]. See Section 8 of M. Foreman’s survey [1] on making certain natural
ideals (such as the non-stationary, null or meager ideal) precipitous by forcing.

Our goal is to present the following result and its surprisingly elementary proof.

Theorem 0.1. [3] Suppose that there is a precipitous ideal on wy. Then for any uncountable
set of reals X and finite ¢,
X — (top Q)?Q.

Raghavan and Todorcevic provide a detailed and enjoyable presentation of a much stronger
result in [3]. In fact, one of their illuminating comments is that the above theorem is an easy
modification of their main result. We believe that most of the combinatorial ideas from [3]
appear in the arguments we collected here. We will use Z to have a notion of largeness which
corresponds to the stationary tower in [3]. The ideal being precipitous is used analogously to
[3, Theorem 21]. However, the actual construction of the homeomorphic copy of Q appear
with much less technical detail here. So we hope our notes provide a helpful introduction to
understanding the more general setting of [3] which involves a general class of topological
spaces (i.e., non left-separated spaces with a point-countable base) and the stationary tower
machinery. To this end, we closely followed the notation and proof-structure from [3].

We fix X with a countable base B for the topology. We can shrink X to have size ¥; and
assume that the precipitious ideal Z lives on X. For each point x € X, let (U n)new denote
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a decreasing neighbourhood base selected from B. We will simply say that a subset of X is
large (think of being stationary or non-meager) if it is Z-positive. Almost every will refer to
all but ideal many.

Lemma 0.2. Suppose that S C X is large.
(1) For almost every x € S and alln € w, Uy, NS is large.
(2) For any n € w, there is a U so that {x € S : Uy, = U} is large.

From now on, we will only work with large sets S so that U, ,, NS is large for every x € S.
Condition (1) says that this is possible.
2

Fix the finite colouring ¢ : [X]
c(x,y) =i} is large.

— £ as well. We say that =z is i-large in T if {y € T :

Lemma 0.3. For any x € X and large T' C X, there is an i so that x is i-large in T.

Definition 0.4. We say that a pair of large sets S, T is (i,j)-saturated if for any large
S"c S and T' C T both sets

{z €8 :x isilarge in T'}
and
{y € T : y is j-large in S}

are large.
Note that being (¢, j)-saturated is hereditary to subsets.

Main Lemma 0.5. There is (i,j) and some large S; C X so that for any large S C Sy
there is an (i, j)-saturated pair S',T' C S.

Proof. This is a classical exhaustion argument. Suppose that the statement of the lemma
fails: then, by shrinking X #?-many times, we arrive at a set S; so that no pair S, T below S;
is (4, j)-saturated for any (7, j). By unravelling the definition of (4, j)-saturated, we construct
large sets Sy 2 5] 2 --- 2 S and Ty 2 1] D --- 2 T}, so that for any (i, j) there is some
k < £2 and sets Sy, Ty from the ideal such that either

Sy ={z €5}, : x is i-large in T}, }
or

Ty ={y €T}, : y is i-large in S} }.

We simply form S* = Sj, \ U, 2 Si; and S* =T, \ U2 Tj;. Now, pick any = € S* and

i so that z is i-large in T*. Similarly, let y € T™ arbitrary and find j so that y is j-large in
S*. However, this should not be possible as we considered (i, j) at some step k and thrown

away either all i-large points from the S-side or all j-large points from the T-side.
O

Let us fix this pair of colours (4,5) and, to simplify notation, we assume that X = S
satisfies the previous lemma. The last lemma we need is the following:

Main Lemma 0.6. For any large T' C X and for almost every x € T there is a sequence
(Th)new of large sets so that

(1) T CT N Uy,

(2) c(z,y) =1 for ally € T,,, and

(8) Ty, T, is (i,7)-saturated for alln < k < w.
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From this, one can deduce the proof of the main theorem. Moreover, the proof of this
lemma is the only place where we use the assumption that Z is precipitous.

Proof. Let us say that z is an (i, j)-winner in a large set S if x € S and there is a sequence
Sn, Ty of (i, j)-saturated pairs so that
(1) Sn, T, C Uy,
(2) Snt1, Tyt1 C Sy, and
(3) ¢(x,y) =i for any y € T,,.
It suffices to show the following now.

Lemma 0.7. For any large S, almost every x € S is an (i,7)-winner in S.

Proof. Suppose this is not the case and that there is a large set S’ of € S which are not
(i, 7)-winners. Our plan is the following: we will use our assumption to define a strategy
for Empty in the game introduces at the beginning, starting with S’. This strategy cannot
be winning so there is a play which produces a sequence of large sets with non empty
intersection. We will show that any point X in the intersection is an (4,j)-winner in S,
contradicting that = € S.

To define the strategy o, we need the following simple fact.

Lemma 0.8. For any large S” and n € w there is an (i, j)-saturated pair R,T C S” so that
Ugn =Uyp foranyrz e Ry T.

In the first step of the game, Empty selects an (i, j)-saturated pair Ry, To below S’ so that
Uzo = Uy for any x € Ry,y € Tp. Let this common neighbourhood be Uy. By shrinking
Ry, we can assume that all x € Ry is ¢-large in Ty. The set Ry is the first choice of Empty
by the strategy o.

In general, given some large set o(2n — 1), Empty picks an (4, j)-saturated pair R, Ty
below o(2n —1) such that U, ,, = U, ,, for any x € R,y € T,,. The common neighbourhood
will be denote by U,. Again, shrink R, so we can assume that all z € R, is i-large in Ty.
This R, is Empty’s reply in the game.

Now, there must be a play so that Non Empty wins: there is a sequence (R,,T,) of
(i, j)-saturated pairs below S’ so that (| R, # 0. Take any z from the intersection and let
us show that z is an (7, j)-winner in S. Note that for any n < w, S,,T,, C U, = U, and
Snt1sTny1 C Sy and the set T) = {y € Ty, : c(z,y) = i} is large. So, (R,,T)) witnesses
that x is an (4, j)-winner in S. This contradiction ends the proof.

|

O

We are ready to prove the theorem now: we construct a dense-in-itself subset Y = {x,,,11 :
m < w} of X by induction. At each step m < w, we will have a subtree P,, C w<* of finite
height along with large sets T;,, » € X attached to the leafs o of P,,,. We’ll denote the set of
leafs with L(P,,). The sets T}, , are reservoirs for points x,, that we choose in later stages.

We start from Py = {0} and T 9 = X. When forming P, from P,,, we pick some leaf
om of P, and let

Pri1=PnU{on"(n) :n<w}

In the end, we would like that |J P, = w<* which is ensured by picking the leafs o,
appropriately. Le., for any o € w<%, there will be some m < w so that o = 7,,.

We will also make sure that the following properties are satisfied by our construction:
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(5) for any m' <m and o € L(Py) N L(Pp); Trm,o C Tt o,

(6) for any m < m’' and o € L(P,,),
(a) if oy C o then c(zpy11,°) [ Tmo =1,
(b) if oy <ipex 0 then c(zpmit1, ) [ Tmo = J,
(C) if o <iex o then C(im’—&-la ) me,a =1,

(7) 0 <ieg T implies that Ty, +, Tm,o is an (4, j)-saturated pair,

(8) Tm+1 S Tm,am,
(9) Tm+1,am“(n) c Tm,ffm n me+1,n'

Py = {0} .
Top
|
P =R U{(n):n<w} \%
T o) T ) T )
¥ 7 7\ 7 '
e .
Po=PU{(1)"(n):n<w}
Ty 0y Tom
15 o) 1 . Ts,2)
1 17 AW ¥ 1 |m i ] AW ¥ 17 : l
[\ 7 \W T T [\ [/
— X .
Ny
) “; ~~~~~~ T

F1GURE 1. Construction the copy of Q with the auxiliary trees Py, P, ...
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We need to verify three things: that the construction can be carried out, the set Y is
dense-in-itself and ranc | [Y]? C {i,j}.

The construction is fairly straightforward and Figure 1 demonstrates the first few steps.
In general, given P,,, we start by picking a leaf o,,.

Lemma 0.9. For almost every x € T), . the following holds: for every o € L(Py)\{om},
x is i-large in Ty, o if 0 <jez o and x is j-large in Ty, 5 if Oy <iex 0.

Let T" denote the subset of T}, ,,, where the above lemma holds. Now, apply Lemma 0.6
in 7" to define x,,,41 € T" and large sets 15,41 5, ~(n) for n < w which converge to 11
and satisfy that c(zm11,-) | Tont1,0,,~(n) = - Using that x,, 11 € 7", we can shrink T}, , to
large sets Ty,41,0 for o € L(Py,) N L(Py+1) so that condition (6) is satisfied.

Now, why is Y dense-in-itself? It suffices to note that after x,, ;1 was picked, for any
n < w there is m’ < m so that o, = 0, " (n) and so z,, € T o0 ~(n)- The sequence of
sets (T o ,~(n))n<w CONVErges to ,,, so we are done.

Finally, condition (6) and the fact that m’ < m implies Zp41 € Uyep(p,,) Tm,o ensure
that e(@mr 41, Tmt1) € {4, 5}-
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