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Abstract. Hindman, Leader and Strauss [1] proved that CH im-
plies that there is a colouring F : R→ 2 such that F ′′{x+ y : x 6=
y ∈ X} = 2 for any uncountable X ⊆ R. Answering a problem
from [1], we show that the same results holds in ZFC.

1. Introduction

In [1], the authors proved the following:

Theorem 1.1. Assuming the Continuum Hypothesis there is a colour-
ing F : R → 2 such that F is not monochromatic on any set {

∑
E :

E ∈ [X]N} = 2 for any uncountable X ⊆ R and N ∈ N \ {0}.

The most natural question (also appearing in [1]) is if the assumption
of CH can be omitted; we will show that the answer is yes. The same
result was independently proved by P. Komjáth [2]. Also, we discuss if
the number of colours can be increased to three or more.

2. Sums versus unions

First, let us prove that regarding this problem it is equivalent to
work with addition in R or with unions in [2ω]<ω.

Lemma 2.1. Let ν be a cardinal. Consider the following statements:

(1) there is a map f : [2ω]<ω → ν such that for any uncountable
X ⊆ [2ω]<ω, N ∈ ω\2 and i < ν there are distinct a0, ..., aN−1 ∈
X with f(

⋃
j<N aj) = i;

(2) there is a colouring F : R→ ν such that

F ′′{
∑

E : E ∈ [X]N} = ν

for any uncountable X ⊆ R and N ∈ ω \ 2;
(3) 2ℵ0 6→ [ω1]

2
ν.

Then (1)⇔ (2)⇒ (3).

We remark that (1)⇒ (2) was essentially proved in [1].
1
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Proof. Take a basis B = {rx : x ∈ 2ω} of R over Q.
(1) ⇒ (2) : Let f : [2ω]<ω → 2 witness (1). For any r ∈ R, let

supp(r) denote the �nite set of x ∈ 2ω such that rx has a non zero
coe�cient in the expression of r as a linear combination of elements
from B. We de�ne F (r) = f(supp(r)) for any r ∈ R. It su�ces to note
that for any uncountable X ⊆ R, we can select a Y ∈ [X]ω1 such that

(i) r → supp(r) is 1-1 on Y , and
(ii) if r0, ..., rN−1 ∈ Y are distinct then supp(

∑
i<N ri) =

⋃
i<n supp(ri).

(2) ⇒ (1) : let F witness (2) and de�ne f(a) = F (
∑

x∈a rx) for
any a ∈ [R]<ω. Now, suppose that X ⊆ [2ω]<ω is uncountable and �x
N ∈ ω \ 2 and i < ν. Without loss of generality, we can suppose that
X is a ∆-system with root d. Now, let

ta =
1

N

∑
x∈d

rx +
∑
x∈a\d

rx

for a ∈ X. The set {ta : a ∈ X} is uncountable so there are a0, . . . , aN−1 ∈
X such that F (

∑
j<N taj) = i. However, note that∑

j<N

taj =
∑

x∈a0∪···∪aN−1

rx

and hence f(
⋃
j<N aj) = F (

∑
x∈a0∪···∪aN−1

rx) = i.

(1) ⇒ (3) : let f witness (1) and simply de�ne F as the restriction
of f to [R]2.

�

This lemma has two immediate corollaries:

Corollary 2.2. CH implies that there is a colouring F : R→ 2ω such
that

F ′′{
∑

E : E ∈ [X]N} = 2ω

for any uncountable X ⊆ R and N ∈ ω \ 2.

Proof. Lemma 5.2.6 [4] implies that there is a map c : [ω1]
<ω → ω1 such

that for any uncountable X ⊆ [ω1]
<ω and i < ω1 there are a 6= b ∈ X

with c(a∪b) = i. Hence (1) and (2) from Lemma 2.1 holds with ν = ω1

if the Continuum Hypothesis is true. �

This improvement of Theorem 1.1 is clearly the best possible. Also,
a simple forcing argument shows that the same result can hold with a
large continuum.
On the other hand:

Corollary 2.3. Consistently, the number of colours in Theorem 1.1
cannot be increased to three.
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Proof. Shelah [3] proved that consistently 2ℵ0 → [ω1]
2
3 (with 2ℵ0 =

ℵ2) hence consistently (1) and (2) of Lemma 2.1 might fail with three
colours. �

3. A 2-colouring in ZFC

Now, we show that (1) from Lemma 2.1 holds with ν = 2 in ZFC.

Theorem 3.1. There is a map f : [2ω]<ω → 2 such that for any
uncountable X ⊆ [2ω]<ω, N ∈ ω \ 2 and i < 2 there are distinct
a0, ..., aN−1 ∈ X with f(

⋃
j<N aj) = i.

We use an idea from the proof of Lemma 5.2.6 [4].

Proof. Let ∆(x, y) = min{n : x(n) 6= y(n)} for incomparable x, y ∈ 2≤ω

and ∆(a) = max{∆(x, y) : x 6= y ∈ a} for any �nite a ⊆ 2≤ω with
at least two (incomparable) elements. Let π(a) be the <R-minimal
{x, y} ∈ [a]2 such that ∆(a) = ∆(x, y). Let g : [2ω]2 → 2 denote
the Sierpinski colouring i.e. g compares the Euclidean ordering <R
and a well ordering <c on 2ω. De�ne f : [2ω]<ω → 2 as follows: let
f(a) = g(π(a)) for a ∈ [2ω]<ω, |a| ≥ 2 and f(a) = 0 otherwise.
Fix an uncountable X ⊆ [2ω]<ω. Without loss of generality, we

can write X as {aξ : ξ < ω1} such that there is n ∈ ω and pairwise
incomparable εk ∈ 2<ω for k < n such that

(1) aξ = {akξ : k < n} corresponds to the <R increasing enumera-
tion,

(2) aξ ∩ [εk] = {akξ} for each k < n, ξ < ω1, and

(3) Xk = {akξ : ξ < ω1} is either a singleton or a strictly <c increas-
ing sequence.

Note that ∆(aξ) = ∆({εk : k < n}) for any ξ < ω1. Let M ⊆ n denote
the (non empty) set of k < n such that Xk is not a singleton. Let
M = {kj : j < l}.
Let us prove the N = 2 case �rst. By induction on j < l, we de�ne

decreasing sequences (Γ0
j)j<l and (Γ1

j)j<l of uncountable subsets of ω1

such that there are incomparable extensions ε0kj , ε
1
kj

of εkj with the

property that ξ ∈ Γij implies a
kj
ξ ∈ [εikj ]. Let Γi = Γikl−1

for i < 2 and

we can suppose that Γ0 ∩ Γ1 = ∅. Let ε0k = ε1k = εk for k ∈ n \M .
Now, let

m = ∆({ε0k, ε1k : k < n})
and note that

m = ∆(aξ ∪ aζ) > ∆(aξ) = ∆(aζ)
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for all ξ ∈ Γ0 and ζ ∈ Γ1. There is a minimal k∗ ∈ M such that
m = ∆(ε0k∗ , ε

1
k∗); indeed, if k 6= l < n then ∆(εk, εl) < m as noted

above. In turn, if ξ ∈ Γ0 and ζ ∈ Γ1 then

π(aξ ∪ aζ) = {ak∗ξ , ak
∗

ζ }.

As Γ0 and Γ1 are both uncountable, we can �nd ξ ∈ Γ0 and ζ ∈ Γ1

such that ak
∗

ξ <c a
k∗

ζ (i.e. choose ξ < ζ) and µ ∈ Γ0 and ν ∈ Γ1 such

that ak
∗
ν <c a

k∗
µ (choose µ > ν).

Note that
g({ak∗ν , ak

∗

µ }) = 1− g({ak∗ξ , ak
∗

ζ })
and hence

f(aµ ∪ aν) = 1− f(aξ ∪ aζ).
This �nishes the proof for N = 2.
In general for N ≥ 2, instead of selecting Γ0 and Γ1 we �nd pairwise

disjoint uncountable Γ0, . . . ,ΓN−1 ⊆ ω1 and incomparable extensions

ε0kj , . . . , ε
N−1
kj

of εkj with the property that ξ ∈ Γi implies a
kj
ξ ∈ [εikj ] for

all j ∈M and i < N . We de�ne

m = ∆({εik : k < n, i < N})
and note that

∆(
⋃
i<N

aξi) = m

for all (ξi)i<N ∈ Πi<NΓi.
Now, �nd minimal k∗ ∈M and i0, i1 < N such that m = ∆(εi0k∗ , ε

i1
k∗).

Observe that if (ξi)i<N ∈ Πi<NΓi then

π(
⋃
i<N

aξi) = {ak∗ξi0 , a
k∗

ξi1
}.

To �nish the proof, it su�ces to repeat the last paragraph of the N = 2
case with Γi0 and Γi1 . �

Corollary 3.2. There is a colouring F : R→ 2 such that

F ′′{
∑

E : E ∈ [X]N} = 2

for any uncountable X ⊆ R and N ∈ ω \ 2.

4. Open problems

Let us mention another result of similar �avour from [1]:

Theorem 4.1. If 2ω < ℵω then there is a �nite colouring f of R such
that f is not constant on any set of the form X + X where X ⊆ R is
in�nite.
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It is not known if the cardinal arithmetic assumption can be removed
from this result.
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