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Introdu
tion

Goal: �nd anti-Ramsey 
olourings of (R,+).

the origins of the problem

failure of the 
lassi
al Ramsey-theorem on R,

re
ent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.
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The original problem

Problem [J.C. Owings℄: Is there a 
olouring f : N → 2 su
h that

f is not 
onstant on X + X whenever X is in�nite?

there is a 3-
olouring with su
h properties,

there are always arbitrary large �nite sets

X su
h that f is 
onstant on X + X ,

[Hindman℄ For every 
olouring f : N → r

there is an in�nite X ⊆ N su
h that

f is 
onstant on

{
∑

F : F ⊆ X �nite}.
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A 4-
olouring for the Owings problem

Let f : N → 4 de�ned as

f (x) = ⌊log√
2

(x)⌋ (mod 4).

Proof:

let X ⊆ N be in�nite,

�nd x << y ∈ X su
h that | log√
2

(y)− log

√
2

(y + x)| < 1,

⇒ |⌊log√
2

(y)− log

√
2

(y + x)⌋| ≤ 1, so f (y + x) = f (y)± 1,

but note that f (2y) = f (y) + 2 modulo 4 so f (2y) 6= f (x + y).
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Classi
al anti-Ramsey on R

[Sierpinski, 1933℄ There is a 
olouring

f : [R]2 → 2 su
h that f is not 
onstant on [X ]2

whenever X ⊆ R is un
ountable.

Proof:

let ≺ denote a linear ordering of R without in�nite de
reasing


hains and maximal element,

de�ne f (x , y) = 0 i� x <R y and x ≺ y both holds,

let X be un
ountable and suppose that f ′′[X ]2 = 0,

let x+ denote the immediate ≺-su

essor of x ,

pi
k a qx ∈ Q ∩ (x , x+) (note that x <R x+ as f (x , x+) = 0),

qx 6= qy if x 6= y ∈ X whi
h is a 
ontradi
tion.
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Additive anti-Ramsey results on R

[Hindman, Leader, Strauss 2015℄ Analyze the Owings problem for


olourings of R with �nitely many 
olours.

Results:

[D.S., W. Weiss℄ There is a 
olouring f : R → 2 su
h that

f ↾ {x + y : x 6= y ∈ X} is not 
onstant for any un
ountable X ⊆ R.

[Hindman, Leader, Strauss℄ proved it using the Continuum

Hypothesis, we removed this assumption,

we 
an't realize 3 
olours as well (even more set theory 
omes in).

[Hindman, Leader, Strauss℄ The Continuum Hypothesis implies

that there is a 
olouring f : R → 288 su
h that f ↾ X + X is not


onstant for any in�nite X ⊆ R.
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How is the Continuum Hypothesis used?

Re
all: the Continuum Hypothesis says that |R| is the smallest un
ountable


ardinality.

Note that R =
⊕

c
Q.

What 
an we say about Q itself or �nite/
ountable dire
t sums?

From [Hindman, Leader, Strauss℄:

For any m ∈ N, there is f :
⊕

m Q → 72 su
h that f ↾ X + X is not


onstant for any in�nite X ⊆
⊕

m Q;

Step up lemma: if N ∈ N �xed and

⊕
κ
Q has a good N-
olouring for

every κ < λ then

⊕
λ
Q has a good 2N-
olouring.

Corollary: we 
an �nd good 
olourings for the �rst 
ountably many


ardinalities before the number of 
olours blows up...
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t sums?

From [Hindman, Leader, Strauss℄:

For any m ∈ N, there is f :
⊕

m Q → 72 su
h that f ↾ X + X is not


onstant for any in�nite X ⊆
⊕

m Q;

Step up lemma: if N ∈ N �xed and

⊕
κ
Q has a good N-
olouring for

every κ < λ then

⊕
λ
Q has a good 2N-
olouring.

Corollary: we 
an �nd good 
olourings for the �rst 
ountably many


ardinalities before the number of 
olours blows up...
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How to pro
eed?

Remove CH and/or �nd f :
⊕

κ
Q → N for any κ!?

Let I be an ordered set.

We say that x ∼ y ∈
⊕

I Q i� there is an order isomorphism

ϕ : supp(x) → supp(y) su
h that x(i) = y(ϕ(i));

A 
olouring f of

⊕
I Q is strong i�

f (x) = f (y) whenever x ∼ y ,

f ↾ X + X is not 
onstant for any in�nite X ⊆
⊕

I Q.

Lemma

If there is a strong 
olouring f :
⊕

QQ → N (for some �nite N)

then there is a strong 
olouring

⊕
κ
Q → N for any κ.
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Open problems

Re
all: f is strong i� f (x) = f (y) whenever x ∼ y and f ↾ X + X 6= 
onstant for

any in�nite X .

Open Problem

Is there a strong 
olouring f :
⊕

QQ → N for some �nite N?

Re
all: YES ⇒ every

⊕
κ
Q has a strong 
olouring.

Open Problem

Is there a good 
olouring of f : R → N for some �nite N without CH?

Is there a smarter step-up lemma maybe?
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Thank you for your attention.

Any questions?
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