Sums and anti-Ramsey colourings

Dániel T. Soukup

http://renyi.hu/~dsoukup/

Dániel Soukup (Rényi)

Sums and anti-Ramsey colourings

16 November 2015

- the origins of the problem
- failure of the classical Ramsey-theorem on \mathbb{R} ,
- recent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.

- the origins of the problem
- failure of the classical Ramsey-theorem on \mathbb{R} ,
- recent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.

• the origins of the problem

- failure of the classical Ramsey-theorem on \mathbb{R} ,
- recent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.

- the origins of the problem
- failure of the classical Ramsey-theorem on \mathbb{R} ,
- recent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.

- the origins of the problem
- failure of the classical Ramsey-theorem on \mathbb{R} ,
- recent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.

- the origins of the problem
- failure of the classical Ramsey-theorem on \mathbb{R} ,
- recent results and open problems.

Joint work with W. Weiss and Z. Vidnyánszky.

- there is a 3-colouring with such properties,
- there are always arbitrary large finite sets X such that f is constant on X + X,
- [Hindman] For every colouring f : N → r there is an infinite X ⊆ N such that f is constant on

$$\{\sum F: F \subseteq X \text{ finite}\}.$$

- there is a 3-colouring with such properties,
- there are always arbitrary large finite sets X such that f is constant on X + X,
- [Hindman] For every colouring f : N → r there is an infinite X ⊆ N such that f is constant on

$$\{\sum F: F \subseteq X \text{ finite}\}.$$

- there is a 3-colouring with such properties,
- there are always arbitrary large finite sets X such that f is constant on X + X,
- [Hindman] For every colouring f : N → r there is an infinite X ⊆ N such that f is constant on

$$\{\sum F: F \subseteq X \text{ finite}\}.$$

- there is a 3-colouring with such properties,
- there are always arbitrary large finite sets X such that f is constant on X + X,
- [Hindman] For every colouring f : N → r there is an infinite X ⊆ N such that f is constant on

$$\{\sum F: F \subseteq X \text{ finite}\}.$$

- there is a 3-colouring with such properties,
- there are always arbitrary large finite sets
 X such that f is constant on X + X,
- [Hindman] For every colouring f : N → r there is an infinite X ⊆ N such that f is constant on

$$\{\sum F: F \subseteq X \text{ finite}\}.$$

Let $f: \mathbb{N} \to 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

Proof:

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x \ll y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x + y)$.

A 4-colouring for the Owings problem

Let $f : \mathbb{N} \to 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x \ll y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x + y)$.

A 4-colouring for the Owings problem

Let $f:\mathbb{N} ightarrow 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x \ll y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x + y)$.

A 4-colouring for the Owings problem

Let $f:\mathbb{N} ightarrow 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

Proof:

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x \ll y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x + y)$.

Let $f:\mathbb{N}
ightarrow 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

Proof:

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x \ll y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x + y)$.

Let $f:\mathbb{N}\to 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

Proof:

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x << y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x+y)$.

Let $f:\mathbb{N}\to 4$ defined as

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$$

Proof:

- let $X \subseteq \mathbb{N}$ be infinite,
- find $x << y \in X$ such that $|\log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x)| < 1$,
- $\Rightarrow |\lfloor \log_{\sqrt{2}}(y) \log_{\sqrt{2}}(y+x) \rfloor| \le 1$, so $f(y+x) = f(y) \pm 1$,
- but note that f(2y) = f(y) + 2 modulo 4 so $f(2y) \neq f(x + y)$.

Proof:

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x,y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

Classical anti-Ramsey on ${\mathbb R}$

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to 2$ such that f is not constant on $[X]^2$ whenever $X \subseteq \mathbb{R}$ is uncountable.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x,y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

Classical anti-Ramsey on ${\mathbb R}$

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to 2$ such that f is not constant on $[X]^2$ whenever $X \subseteq \mathbb{R}$ is uncountable.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x,y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x,y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x, y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x, y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x, y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x, x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x, x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x, y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x,x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x,x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

- let ≺ denote a linear ordering of ℝ without infinite decreasing chains and maximal element,
- define f(x, y) = 0 iff $x <_{\mathbb{R}} y$ and $x \prec y$ both holds,
- let X be uncountable and suppose that $f''[X]^2 = 0$,
- let x^+ denote the immediate \prec -successor of x,
- pick a $q_x \in \mathbb{Q} \cap (x,x^+)$ (note that $x <_{\mathbb{R}} x^+$ as $f(x,x^+) = 0$),
- $q_x \neq q_y$ if $x \neq y \in X$ which is a contradiction.

Results:

- [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.
 - [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,
 - we can't realize 3 colours as well (even more set theory comes in).
- [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$.

Results:

• [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

• [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,

we can't realize 3 colours as well (even more set theory comes in).

 [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring f : R → 288 such that f ↾ X + X is not constant for any infinite X ⊆ R.

Results:

• [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

• [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,

we can't realize 3 colours as well (even more set theory comes in).

 [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring f : R → 288 such that f ↾ X + X is not constant for any infinite X ⊆ R.

Results:

• [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

- [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,
- we can't realize 3 colours as well (even more set theory comes in).
- [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$.

Results:

- [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.
 - [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,

• we can't realize 3 colours as well (even more set theory comes in).

• [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$.

Results:

- [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.
 - [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,
 - we can't realize 3 colours as well (even more set theory comes in).
- [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$.

Results:

- [D.S., W. Weiss] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.
 - [Hindman, Leader, Strauss] proved it using the Continuum Hypothesis, we removed this assumption,
 - we can't realize 3 colours as well (even more set theory comes in).
- [Hindman, Leader, Strauss] The Continuum Hypothesis implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$.

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{c} \mathbb{Q}$.

What can we say about ${\mathbb Q}$ itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{\mathfrak{c}} \mathbb{Q}$.

What can we say about ${\mathbb Q}$ itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{\mathfrak{c}} \mathbb{Q}$.

What can we say about \mathbb{Q} itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{c} \mathbb{Q}$.

What can we say about \mathbb{Q} itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{c} \mathbb{Q}$.

What can we say about \mathbb{Q} itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

7 / 10

- ロト - 4 同ト - 4 回ト - 4 回

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{c} \mathbb{Q}$.

What can we say about \mathbb{Q} itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

7 / 10

- ロト - 4 冊 ト - 4 画 ト - 4 画

Recall: the Continuum Hypothesis says that $|\mathbb{R}|$ is the smallest uncountable cardinality.

Note that $\mathbb{R} = \bigoplus_{c} \mathbb{Q}$.

What can we say about \mathbb{Q} itself or finite/countable direct sums?

From [Hindman, Leader, Strauss]:

- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let *I* be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of $\bigoplus_{I} \mathbb{Q}$ is strong iff
 - f(x) = f(y) whenever $x \sim y$,
 - $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_I \mathbb{Q}$.

Lemma

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let I be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of $\bigoplus_{I} \mathbb{Q}$ is strong iff
 - f(x) = f(y) whenever $x \sim y$,
 - $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_{i \in I} \mathbb{Q}$.

Lemma

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let I be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of ⊕, Q is strong iff
 - f(x) = f(y) whenever $x \sim y$,
 - $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_{i \in I} \mathbb{Q}$.

Lemma

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let I be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of $\bigoplus_{I} \mathbb{Q}$ is strong iff
 - f(x) = f(y) whenever $x \sim y$,

• $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_{I} \mathbb{Q}$.

Lemma

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let I be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of $\bigoplus_I \mathbb{Q}$ is strong iff
 - f(x) = f(y) whenever $x \sim y$,

• $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_{I} \mathbb{Q}$.

Lemma

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let I be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of $\bigoplus_{I} \mathbb{Q}$ is strong iff
 - f(x) = f(y) whenever $x \sim y$,
 - $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_{I} \mathbb{Q}$.

Lemma

If there is a strong colouring $f : \bigoplus_{\mathbb{Q}} \mathbb{Q} \to N$ (for some finite N) then there is a strong colouring $\bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ .

Remove CH and/or find $f : \bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ ?

Let I be an ordered set.

- We say that $x \sim y \in \bigoplus_{i} \mathbb{Q}$ iff there is an order isomorphism $\varphi : \operatorname{supp}(x) \to \operatorname{supp}(y)$ such that $x(i) = y(\varphi(i))$;
- A colouring f of $\bigoplus_{I} \mathbb{Q}$ is strong iff
 - f(x) = f(y) whenever $x \sim y$,
 - $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_{I} \mathbb{Q}$.

Lemma

If there is a strong colouring $f : \bigoplus_{\mathbb{Q}} \mathbb{Q} \to N$ (for some finite N) then there is a strong colouring $\bigoplus_{\kappa} \mathbb{Q} \to N$ for any κ .

Recall: f is strong iff f(x) = f(y) whenever $x \sim y$ and $f \upharpoonright X + X \neq \text{constant}$ for any infinite X.

Open Problem

Is there a strong colouring $f: igoplus_{\mathbb O} \mathbb Q o N$ for some finite N?

Recall: YES \Rightarrow every $igoplus_\kappa \mathbb{Q}$ has a strong colouring.

Open Problem

Is there a good colouring of $f:\mathbb{R} o N$ for some finite N without CH?

Is there a smarter step-up lemma maybe?

Recall: f is strong iff f(x) = f(y) whenever $x \sim y$ and $f \upharpoonright X + X \neq \text{constant}$ for any infinite X.

Open Problem

Is there a strong colouring $f : \bigoplus_{\mathbb{Q}} \mathbb{Q} \to N$ for some finite N?

Recall: YES \Rightarrow every $\bigoplus_{\kappa} \mathbb{Q}$ has a strong colouring.

Open Problem

Is there a good colouring of $f:\mathbb{R} o N$ for some finite N without CH?

Is there a smarter step-up lemma maybe?

Recall: f is strong iff f(x) = f(y) whenever $x \sim y$ and $f \upharpoonright X + X \neq \text{constant}$ for any infinite X.

Open Problem

Is there a strong colouring $f : \bigoplus_{\mathbb{Q}} \mathbb{Q} \to N$ for some finite N?

Recall: YES \Rightarrow every $\bigoplus_{\kappa} \mathbb{Q}$ has a strong colouring.

Open Problem

Is there a good colouring of $f:\mathbb{R} o N$ for some finite N without CH?

Is there a smarter step-up lemma maybe?

Recall: f is strong iff f(x) = f(y) whenever $x \sim y$ and $f \upharpoonright X + X \neq \text{constant}$ for any infinite X.

Open Problem

Is there a strong colouring $f : \bigoplus_{\mathbb{Q}} \mathbb{Q} \to N$ for some finite N?

Recall: YES \Rightarrow every $\bigoplus_{\kappa} \mathbb{Q}$ has a strong colouring.

Open Problem

Is there a good colouring of $f : \mathbb{R} \to N$ for some finite N without CH?

Is there a smarter step-up lemma maybe?

9 / 10

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: f is strong iff f(x) = f(y) whenever $x \sim y$ and $f \upharpoonright X + X \neq \text{constant}$ for any infinite X.

Open Problem

Is there a strong colouring $f : \bigoplus_{\mathbb{Q}} \mathbb{Q} \to N$ for some finite N?

Recall: YES \Rightarrow every $\bigoplus_{\kappa} \mathbb{Q}$ has a strong colouring.

Open Problem

Is there a good colouring of $f : \mathbb{R} \to N$ for some finite N without CH?

Is there a smarter step-up lemma maybe?

Any questions?

э