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Abstract

Colouring problems of Erdős and Rado on infinite graphs

Dániel T. Soukup

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2015

The aim of this thesis is to provide solutions to two old problems on infinite graphs. First, we

investigate vertex partitions of edge coloured complete graphs into monochromatic paths. Our main

result here is an answer to a question of R. Rado from 1978: we prove that every finite edge coloured

infinite complete graph can be partitioned into disjoint monochromatic paths of different colours. We

also show that analogous results hold for partitions into powers of paths and for hypergraphs in the

countably infinite case. Second, we turn to the theory of uncountably chromatic graphs and obligatory

subgraphs. We mainly focus on the question whether every graph with large chromatic number contains

highly connected subgraphs. With the aid of a special sequence of countable elementary submodels

(called Davies-trees or ω1-approximation sequences), we present a new and highly simplified proof of

Komjáth’s theorem: every graph with uncountable chromatic number contains an n-connected subgraph

with uncountable chromatic number (for each n ∈ N). We outline multiple new applications of Davies-

trees to combinatorial problems. Finally, our most important contribution to the theory is an answer

to a popular problem of A. Hajnal and P. Erdős from 1985: we construct a graph of chromatic number

ω1 without an uncountable infinitely connected subgraph. A general and rather flexible method is

introduced which uses ladder systems on non special trees in ZFC. This machinery is applied again to

present an example of a triangle-and Hω,ω+2-free graph with uncountable chromatic number.
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Chapter 1

Introduction

In Chapter 1, we present a detailed outline of the thesis followed by an introduction to our notations

and certain preliminary results.

1.1 An overview of the main results

The goal of this thesis is to investigate two topics on infinite graphs: path decompositions of edge

coloured complete graphs and the relations between having large chromatic number and connectivity.

The topic of path decompositions grew out of a paper of R. Rado [78] where he proved that for every

finite-edge colouring of the complete graph on N (denoted by KN) the vertices can be partitioned into

disjoint monochromatic paths of different colours. In Chapter 2 and 3, we generalize Rado’s result in

multiple ways both on countable and uncountable vertex sets. The work in Chapter 2 was jointly done

with M. Elekes, L. Soukup and Z. Szentmiklóssy and the results are currently submitted to Combinatorica

[14].

After an overview in Section 2.1 of the most important results preceding our work, we start by

investigating monochromatic path decompositions of edge-coloured complete uniform hypergraphs in

Section 2.2. Answering a question from [40], we prove

Theorem 2.2.2. Suppose that the edges of a countably infinite complete k-uniform hypergraph are

coloured with r colours. Then

(1) the vertex set can be partitioned into monochromatic finite or one-way infinite tight paths of

distinct colours,

(2) the vertex set can be partitioned into monochromatic tight cycles and two-way infinite tight paths

of distinct colours.

Erdős, Gyárfás and Pyber [19] conjectured that the vertices of every r-edge coloured finite complete

graph can be covered with r disjoint monochromatic cycles. This was recently disproved by Pokrovskiy

[77], however, the case k = 2 of Theorem 2.2.2(2) gives a positive answer for the infinite case.

Second, we turn to decompositions of edge-coloured copies of KN into monochromatic kth powers of

paths. Our main result in Section 2.3 is

Theorem 2.3.6. For all positive natural numbers k, r and an r-edge colouring of KN the vertices can

be covered by ≤ r(k−1)r+1 one-way infinite disjoint monochromatic kth powers of paths and a finite set.

1



Chapter 1. Introduction 2

In the case of k = r = 2, we have the following stronger result:

Theorem 2.3.7. Given an edge colouring of KN with 2 colours, the vertices can be partitioned into ≤

4 monochromatic path-squares (that is, second powers of paths). Moreover, there is an edge colouring of

KN with 2 colours such that the vertices cannot be covered by 3 monochromatic path-squares.

We introduce a two-player game Gk(H,W ) on a graph H with parametersW ⊆ V (H) and k ∈ N. A

winning strategy for Player II (Bob, in our case) will yield a cover of W by a kth-power of a path. We

first find conditions on a set W that ensure that Player II has a winning strategy in the game Gk(H,W )

(see Theorem 2.3.5) and then apply this result in the proofs of Theorem 2.3.6 and Theorem 2.3.7.

Finally, in Section 2.4, we mention some open problems and say a few words about non-complete

graphs: we prove a conjecture of A. Pokrovskiy [77] for the countably infinite balanced bipartite graph.

Chapter 3 is devoted to answering a question of R. Rado [78]. We show

Theorem 3.4.1. Suppose that c is a finite-edge colouring of an infinite graph G = (V,E) which satisfies

|{v ∈ V : {u, v} /∈ E}| < |V |

for all u ∈ V . Then the vertices of G can be partitioned into disjoint monochromatic paths of different

colours.

In particular, Rado’s theorem extends to arbitrary infinite complete graphs. This theorem is proved

through a series of lemmas and theorems on finding monochromatic paths in certain classes of graphs.

We emphasize Lemma 3.1.8 from Section 3.1, where we show that any set of vertices A in a graph G

which satisfies three rather simple properties can be covered by a path. Next, we prove Lemma 3.2.8

and 3.2.13 which imply the existence of large sets satisfying all three conditions of Lemma 3.1.8; this is

achieved in Theorem 3.2.20 in Section 3.2. After further preparations in Section 3.3, the previous results

are finally put together in Section 3.4 in the proof of Theorem 3.4.1.

In Chapter 4 we turn to chromatic number problems. In general, we are interested in the question if

a graph with large chromatic number must have certain obligatory subgraphs. After presenting a short

history of this problem in Section 4.1, we outline the most fundamental results about obligatory sub-

graphs of graphs with uncountable chromatic number in Section 4.2. Here, we present highly simplified

proofs to several classical results using elementary submodels.

In Section 4.3, we generalize a result of P. Erdős and A. Hajnal [20] on paths and chromatic number

by proving the following results:

Corollary 4.3.4. Every graph G with Col(G) > ω contains a path of order type ξ for all ξ < ω1.

Theorem 4.3.10. Suppose that MAκ holds. Then every graph G with Chr(G) > ω and size < κ

contains a path of size ω1.

However, the above cited theorem cannot be extended to graphs of size 2ω:

Corollary 4.3.8. There is a graph G of size 2ω and chromatic number ω1 such that every path in G is

countable.

In Chapter 5, we turn to the question if graphs with uncountable chromatic number must contain

large highly connected subgraphs. This problem first appeared in [20] and received significant attention



Chapter 1. Introduction 3

in the past [55, 57, 62, 22, 63, 61]. The main result of Chapter 5 is a new proof of the following theorem

of Komjáth presented in Section 5.3:

Theorem 5.3.1 ([55]). Every uncountably chromatic graph G contains n-connected uncountably chro-

matic subgraphs for every n ∈ N.

We use a special sequence of countable elementary submodels, called Davies-trees, in order to present

a highly simplified argument. We introduce the reader to Davies-trees in Section 5.2 and overview

previous applications. We finish Chapter 5 in Section 5.4 with further new applications of Davies-trees

to combinatorial problems.

In Chapter 6, the last chapter of the thesis, we answer an old problem of Erdős and Hajnal [22] by

proving:

Theorem 6.3.5. There is a graph X of size 2ω and chromatic number ω1 such that X contains no

uncountable infinitely connected subsets.

The history of this problem is summarized in Section 5.1 and the above theorem is proved in Section

6.3 after preparations in Section 6.2. We will prove Theorem 6.3.5 by considering comparability graphs

of certain non special trees T . That is, we look at the graph G(T ) = (T,E) where {u, v} ∈ E iff u ≤T v.

We show that there is a ladder system on our tree T which gives a subgraph X of G(T ) with the required

properties. While this particular technique seems to be new, similar methods appeared in many places;

we overview the literature in Section 6.1.

The techniques we apply in Chapter 6 turn out to be rather flexible. First, in Section 6.4 we

strengthen Theorem 6.3.5:

Theorem 6.4.3. There is a graph X of size 2ω and chromatic number ω1 such that every uncountable

set of vertices A in X contains two vertices which are separated by a finite set in X.

Again, X is a carefully constructed subgraph of G(T ) (where T is a non special tree) and now we

make sure that any two <T -incomparable points are separated by a finite set.

Second, we present a triangle free graph:

Theorem 6.5.5. There is a graph X of size 2ω and chromatic number ω1 such that X contains no

triangles or copies of Hω,ω+2.

As before, X is a subgraph of a comparability graph G(T ) induced by a ladder system on T . In

Theorem 6.5.5, we make sure that the graph X contains no cycles which are the union of two ≤T -

monotone paths which in turn ensures that X is triangle-and Hω,ω+2-free. We use the framework

developed by Hajnal and Komjáth [42].

Finally, in Section 6.6 and 6.7 we close with a few general remarks and problems about ladder

subgraphs of comparability graphs.

1.2 Notations

A graph is an ordered pair G = (V,E) so that E ⊆ [V ]2; we will use the notation V (G), E(G) for the

vertices and edges of a graph G. A hypergraph is an ordered pair H = (V,E) so that E ⊆ P(V ). We

say that a hypergraph H = (V,E) is k-uniform iff E ⊆ [V ]k.
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For a graph G = (V,E) we write

NG(v) = {w ∈ V : {v, w} ∈ E}

for v ∈ V and

NG[F ] =
⋂

{NG(v) : v ∈ F}

for F ⊆ V .

We say that H is a subgraph of G iff V (H) ⊆ V (G) and E(H) ⊆ E(G). Whenever we say that “a

graph G contains a graph H” we mean that H is a subgraph of G. Given W ⊆ V (G) we write G ↾ W

for the induced subgraph on W in G i.e. G ↾W = (W,P(W ) ∩E(G)).

A set of vertices W in a graph G is said to be independent iff there is no edge e ∈ E(G) with e ⊆W .

A set of edges F ⊆ E(G) in a graph G is said to be independent iff F is a pairwise disjoint family as a

subset of [V ]2.

An r-edge colouring of a graph G = (V,E) is a map c : E → r where r is some cardinal. We write

c(v, w) instead of c({v, w}) for an edge {v, w} ∈ E for obvious reasons. A finite edge colouring is an

r-edge colouring for some r ∈ N. We will use the following notation: if we have a fixed edge colouring c

of a graph G = (V,E) then

NG(v, i) = {w ∈ NG(v) : c(v, w) = i}

for v ∈ V and

NG[F, i] =
⋂

{NG(v, i) : v ∈ F}

for F ⊆ V and i ∈ ran c. As we always work with a single colouring one at a time, this notation will

lead to no misunderstanding. If we work with a single graph then occasionally we omit the subscript G

as well.

Let us fix an edge colouring c of G with r colours and i < r. If P is a graph property (e.g. being a

path, being connected...) and A ⊆ V then we say that

A has property P in colour i

with respect to c iff A has property P in the graph (V, c−1(i)). In particular, by a monochromatic path

in G we mean a subgraph P of (V, c−1(i)) which is a path (for some i < r).

Let κ, λ be ordinals. Let Kκ,λ denote the complete bipartite graph on classes of size κ and λ. We let

Hκ,λ denote the graph (κ× {0} ∪ λ× {1}, E) where

{(α, i), (β, j)} ∈ E ⇐⇒ i = 0, j = 1 and α < κ, β < λ \ α.

Hκ,λ is a bipartite graph and we call the set of vertices κ×{0} in Hκ,λ the main class of Hκ,λ. If H

denotes a copy of Hκ,κ then let H ↾ α stand for Hκ,κ ↾ α× 2 for any α < κ.

Throughout the thesis, we use standard set theoretic notations consistent with the literature, e.g.

[67].
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1.3 Infinite paths

A path in a graph G is a 1-1 sequence of vertices v0, v1, . . . such that {vi, vi+1} ∈ E(G). Let us recall

how R. Rado defined paths of arbitrary length.

Definition 1.3.1 (R. Rado, [78]). We say that a graph P is a path iff there is a well ordering <P on

V (P ) such that

{w ∈ NP (v) : w <P v} is <P -cofinal below v

for all v ∈ V (P ).

Observation 1.3.2. A graph P is a path witnessed by the well ordering <P iff for all v <P w ∈ V (P )

there is a <P -monotone finite path from v to w.

In particular, two vertices are connected by a transfinite path if and only if they are connected by a

finite path.

We call the order type of (V (P ), <P ) above the order type of P . If P is a path of order type κ then

we let P ↾ α denote the unique initial segment of P of order type α (for any α < κ). Similarly, if q ∈ P

then let P ↾ q = P ↾ {p ∈ V (P ) : p <P q}.

We will say that a path Q end extends the path P iff P ⊆ Q, <Q↾ V (P ) =<P and v <Q w for all

v ∈ V (P ), w ∈ V (Q) \ V (P ).

If R,S are two paths so that the first point of S has <R-cofinally many neighbours in R then R ∪ S

is a path which end extends R and we denote this path by R⌢S emphasizing this relation.

1.3.1 Paths and connectivity

It is not surprising that notions of connectivity are closely related to paths. Let us introduce some

terminology:

Definition 1.3.3. Let G = (V,E) be a graph, κ a cardinal and let A ⊆ V . We say that A is

κ-unseparable iff there are κ-many pairwise disjoint finite paths in G between any two points of A.

We say that A is κ-connected iff there are κ-many pairwise disjoint finite paths in G ↾ A between any

two points of A.

The following is obvious:

Observation 1.3.4. Every ω-connected countable graph is a path of order type ω. Every countable

ω-unseparable set is covered by a path of order type ≤ ω.

The next lemma describes a method to find connected subsets of edge coloured graphs and was

essentially proved in [44].

Lemma 1.3.5. Suppose that G = (V,E) is a graph, A ∈ [V ]ω and NG[F ] is infinite for all F ∈ [A]<ω.

Given any edge colouring c : E → r with r ∈ ω, there is a partition dc : V → r and a colour ic < r so

that

N [F, i] ∩ Vic is infinite for all i < r and finite set F ⊂ A ∩ Vi where Vi = d−1
c {i}.

In particular, A ∩ Vi is ω-unseparable in colour i for all i < r and if V = A then Vic is ω-connected

as well in colour ic.
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Proof. Let U be a non-principal ultrafilter on V with {NG[F ] : F ∈ [A]<ω} ⊂ U . For i < r define

Vi = {v ∈ V : N(v, i) ∈ U} e.g. dc ↾ Vi ≡ i, and let ic be the unique element of {0, . . . , r − 1} with

Vic ∈ U . It is not hard to check that this works.

The following was proved in [14]:

Lemma 1.3.6. Suppose that G = (V,E) is a countably infinite graph and c is an edge colouring. Suppose

that {Cj : j < k} is a finite family of subsets of V and that each Cj is ω-unseparable in some colour ij.

Moreover, for j < k let Aj ⊆ Cj be arbitrary subsets.

Then we can find disjoint sets Pj so that

(a) Pj is a path (either finite or one-way infinite) in colour ij for all j < k,

(b) if Aj is infinite then so is Aj ∩ Pj,

(c)
⋃

{Pj : j < k} ⊃
⋃

{Cj : j < k}.

Moreover, if a Cj is infinite then we can choose the first point of Pj freely from Cj.

Proof. Let v0, v1, . . . be a (possibly finite) enumeration of
⋃

{Cj : j < k}.

For all the infinite Cj , fix distinct xj ∈ Cj as starting points for the Pjs. We define disjoint finite

paths {Pn
j : j < k} by induction on n ∈ N so that

(i) Pn
j is a path of colour ij with first point xj ,

(ii) Pn+1
j end extends Pn

j (as a path of colour ij),

(iii) the last point of the path Pn
j is in Cj ,

(iv) if Aj is infinite then the last point of P 2n
j is in Aj ,

for all j < k, and

(v) if vn /∈
⋃

j<k P
2n
j and vn ∈ Cj then vn is the last point of P 2n+1

j .

It should be easy to carry out this induction applying that each Aj is infinitely linked in colour ij .

Finally, we let Pj = ∪{Pn
j : n ∈ N} for j < k which finishes the proof.

The following, essentially proved in [78, Theorem 2], is now an immediate corollary:

Theorem 1.3.7. Suppose that G = (V,E) is a graph, A ∈ [V ]ω and NG[F ] is infinite for all F ∈ [A]<ω.

Then for any finite edge colouring of G we can cover A by finitely many disjoint monochromatic paths

of different colours.

Proof. Apply Lemma 1.3.5 to partition A into sets {Ai : i < r} where Ai is ω-unseparable in colour i.

Now Lemma 1.3.6 provides the cover by disjoint monochromatic paths of different colours.

This theorem provides an alternate proof to Rado’s result which was the starting point of our inves-

tigations.

Theorem 1.3.8 (R. Rado, [78]). Given a finite edge colouring of the graph KN, the vertices can be

partition into disjoint paths of different colours.
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The following example shows that Observation 1.3.4 cannot be extended (word by word) to the

uncountable case.

Example 1.3.9. There is a graph G which contains no uncountable paths however NG[F ] is uncountable

for all finite F ⊆ V (G).

Proof. Take a partition of ω1 into uncountable sets XF with F ∈ [ω1]
<ω. Let G = (ω1, E) with

E = {{α, β} : α ∈ F, β ∈ XF \ (maxF + 1), F ∈ [ω1]
<ω}.

It is clear that NG[F ] is uncountable for all finite F ⊆ V (G) and |NG(α) ∩ α| < ω for all α < ω1.

The following observation leads to a contradiction if G contains an uncountable path.

Observation 1.3.10. If a graph G = (ω1, E) contains a path of size ω1 then there is a club C ⊂ ω1 so

that for all α ∈ C there is β ∈ C \ α with

supNG(β) ∩ α = α.

Indeed, take any countable elementary submodel M of H(ω2) with G,P ∈ M and let α denote the

<P -minimal element of P \M . Note that M ∩ P is an initial segment of P and α must be a <P -limit

in P . Hence, the infinite set N(α) ∩ {ξ ∈ ω1 : ξ <P α} is contained in M ∩ ω1 ⊆ α which finishes the

proof.

However, every uncountable path contains large unseparable sets:

Observation 1.3.11. If P is a path of order type ω1 then {v ∈ P : |NP (v)| = ω1} is ω1-unseparable in

P .

To abbreviate the formulation of certain result we introduce the following notation.

Definition 1.3.12. Let G be a graph and F be a class of graphs. We write

G ⊏ (F)r,m

if given any r-edge colouring c : E(G) → r the vertex set of G can be partitioned into m monochromatic

elements of F.

We write

G ⊏ (F,F, . . . ,F)r

if given any r-edge colouring c : E(G) → r the vertex set of G can be partitioned into r monochromatic

elements of F in distinct colours.

In particular, G ⊏ (Path)r,m holds if given any r-edge colouring c of G the vertex set of G can be

partitioned into m monochromatic paths.

We write ⊏∗ instead of ⊏ if we can partition the vertex set apart from a finite set.

Using our new notation, Theorem 1.3.8 can be formulated as follows:

KN ⊏ (Path, . . . ,Path)r.
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1.4 The chromatic number and colouring number

We say that f : V (G) → κ is a good colouring of a graph G iff f−1(α) is independent for all α < κ.

Definition 1.4.1. The chromatic number of a graph G, denoted by Chr(G) is the smallest cardinal κ

such that there is good colouring of G with κ colours.

The following definition was introduced in [20]:

Definition 1.4.2. The colouring number of a graph G is the least cardinal µ such that there is a well

ordering ≺ of V (G) such that {v ∈ NG(w) : v ≺ w} has size < µ for all w ∈ V (G).

An easy argument shows

Fact 1.4.3. If Col(G) = µ then Chr(G) ≤ µ.

However, Col(Kµ,µ) = µ while Chr(Kµ,µ) = 2 for each infinite µ. Also, let us mention that one can

always find a well ordering of order type |V (G)| witnessing that G has colouring number Col(G) [20].

In Chapter 4, we look into the question if having large chromatic or colouring number implies that

the graph has certain obligatory subgraphs. While we will not deal with subtle differences between the

chromatic and colouring number, it is worth mentioning that these two graph parameters are surprisingly

different. An excellent example of this phenomena is a consequence of Shelah’s singular compactness

theorem:

Theorem 1.4.4 ([87, Conclusion 2.3.]). Suppose that |V (G)| = λ > cf(λ) and Col(G) > ω. Then there

is a subgraph G′ of G of size < λ such that Col(G′) > ω.

This theorem fails if one replaces colouring number by chromatic number (as shown by P. Komjáth

[57] and S. Shelah [90]).

1.5 Trees

A set theoretic tree (T,≤) is a partially ordered set such that

t↓ = {s ∈ T : s < t}

is well ordered for all t ∈ T . Note that this notion of a tree has little to do with graph theoretic trees

i.e. connected graphs without circles; in this paper, by a tree we will always mean a set theoretic tree.

Every tree admits a height function: ht(t) denotes the order type of t↓ for t ∈ T . The height of the tree

T is sup{ht(t) : t ∈ T }.

Definition 1.5.1. Let G(T ) denote the comparability graph of a tree T i.e. the set of vertices of G(T )

is T and {x, y} ∈ [T ]2 is an edge iff x ≤ y or y ≤ x.

Note that A ⊂ T is independent in G(T ) iff A is an antichain in T thus Chr(G(T )) ≤ ω iff T is a

special tree. We will be interested in constructing subgraphs of a graph G(T ) in order to solve problems

concerning connectivity and chromatic number.

Our tools in Chapter 6 are based on certain non special trees T (so Chr(G(T )) > ω) which contain

no uncountable chains. An example of such a tree is any non-special Aronszajn tree however there are

examples purely in ZFC as well.
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Let σQ = {s ⊆ Q : s is bounded and well ordered in Q} with s ≤ t iff s is an initial segment of t. σQ

was first studied by D. Kurepa in connection with Souslin’s problem [68]. It is clear that σQ contains

no chains of size ω1 and has size 2ω and height ω1. Moreover

Theorem 1.5.2 ([68]). σQ is non special.

Hence Chr(G(σQ)) = ω1.

Another classical example is defined as follows:

T (S) = {t ⊂ S : t is closed}

with s ≤ t iff s is an initial segment of t where S ⊆ ω1. Note that T (S) has height ≤ ω1, size ≤ 2ω and

contains no uncountable chains if S does not contain a club, i.e. S is costationary.

The importance of trees of the form T (S) was realized by S. Todorcevic [98]. Todorcevic used the

trees T (S) to define a family of continuums C(S) with fascinating properties. The tree T (S) as a forcing

notion was first defined by Jensen (see the end of Section 9 in [99]) and also appears in [7, 11].

Trees of the form T (S) have the following nice property: T (S) has no branching at limit levels i.e.

t↓ = s↓ implies t = s for all limit elements t, s ∈ T (S). This is proved using that every element of T (S)

is a closed subset of ω1.

Let us cite some facts from [99]. Let T ⊗ T ′ denote {(t, t′) ∈ T × T : ht(t↓) = ht(t′
↓
)} with the

pointwise ordering.

Theorem 1.5.3 ([99, Theorem 3.4]). (i) T (S) is special iff S is nonstationary in ω1;

(ii) T (S)⊗ T (S′) is special iff S ∩ S′ is nonstationary in ω1.

Hence, if S is stationary, costationary then T (S) has chromatic number ω1. A tree T is called Baire

iff the intersection of countably many dense final parts is still dense in T .

Theorem 1.5.4 ([99, Theorem 3.7]). (i) T (S) is Baire iff S is stationary in ω1;

(ii) T (S)⊗ T (S′) is Baire iff S ∩ S′ is stationary in ω1.

Finally, different S ⊆ ω1 define rather different trees T (S) and hence different comparability graphs.

The following was essentially proved in [99, Theorem 5.1]:

Theorem 1.5.5. Suppose that S0, S1 ⊆ ω1 and Gi = G(T (Si)) for i < 2. If there is a 1-1 homomorphism

f : G0 → G1 then S0 \ S1 is nonstationary.

Proof. Suppose that S0 \S1 is stationary and take a countable elementary submodel M ≺ H(ω2) so that

S0, S1, f ∈M and δ =M ∩ ω1 ∈ S0 \ S1.

Claim 1.5.6. For every s ∈ T (S0) and ε ∈ ω1 there is s′ ≥ s in T (S0) such that max f(s′),max(s′) ≥ ε.

Indeed, note that G1 ↾ {t ∈ T (S1) : max(t) ≤ ε} has countable chromatic number and hence so does

G0 ↾ f−1{t ∈ T (S1) : max(t) ≤ ε}. Hence

{s′ ∈ T (S0) : s
′ ≥ s,max(s′) ≥ ε} \ f−1{t ∈ T (S1) : max(t) ≤ ε} 6= ∅

as G0 ↾ {s′ ∈ T (S0) : s
′ ≥ s,max(s′) ≥ ε} is not countably chromatic (as S0 is stationary).
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Now, apply the above claim inductively inM to find an increasing sequence {sn : n ∈ ω} ⊆ T (S0)∩M

such that {f(sn) : n ∈ ω} ⊆ T (S1) ∩M is increasing as well and

sup{max(sn) : n ∈ ω} = sup{max f(sn) : n ∈ ω} = δ.

Let s =
⋃

{sn : n ∈ ω} ∪ {δ} and note that s ∈ T (S0). Let t = f(s) ∈ T (S1) and note that t /∈ M as

s /∈M and f−1{s} = {t}. Hence we have f(sn) ⊂ t for all n (as f preserves the edge relation) and hence

δ ∈ t as t is closed in ω1. However δ /∈ S1 which contradicts t ∈ T (S1).

We will use trees of the form T (S) throughout Chapter 6.

We mention that the class of trees with no uncountable branches were studied in [13] more recently.

1.6 Elementary submodels

The first application of elementary submodels in combinatorial setting was most likely due to S. G. Simp-

son [92] from 1970 who presented a new proof to the classical Erdős-Rado partition relation. Simpson

already mentioned that “one can give similar proofs for several other known theorems of combinatorial

set theory ...”

The literature contains several well written introductions to (chains of) elementary submodels and

their applications in topology and combinatorics; see the papers [12, 30, 94], the book [50] or the

presentation [95]. Nowadays every other proof in set theory and general topology uses elementary

submodels and we will hence assume basic familiarity with this tool. Nonetheless, we include a very

short, and over-simplified, introduction: we will work with elementary submodels M of H(Θ) (sets of

hereditary cardinality < Θ for some large enough cardinal Θ). H(Θ) captures a large fragment of the

set theoretic universe (i.e. almost all of ZFC is satisfied) and M being an elementary submodel means

that a formula φ with parameters from M is true in M iff it is true in H(Θ).

How are elementary submodels useful? If a structure X of arbitrary size is intersected with say a

countable elementary submodel M so that X ∈ M then the structure X ∩M will be very similar to X

but has countable size; we say that properties of X reflect to M ∩ X . It is easy to imagine that such a

construction is useful in many situations.

Why are there always elementary submodels which have all the parameters we need for a certain

proof? The downward Löwenheim-Skolem theorem says that whenever A ⊂ H(Θ) is countable then

we can find a countable elementary submodel M of H(Θ) so that A ⊂ M . i.e. M contains everything

relevant to our particular situation. We regularly use the following

Fact 1.6.1. Suppose that M is an elementary submodel of H(Θ) and X ∈ M . If X is countable then

X ⊆M or equivalently, if X \M is non-empty then X is uncountable.

In Chapter 3, we make use of the following

Definition 1.6.2. A nice κ-chain of elementary submodels is an increasing sequence (Mα)α<cf(κ) of

elementary submodels of H(Θ) (for some large enough cardinal Θ) with |Mα| = κα so that M0 = ∅ and

1. κα+1 is a subset and element of Mα+1,

2. Mα is a subset and element of Mβ if α < β < cf(κ),
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3. Mβ =
⋃

{Mα : α < β} for any limit β < cf(κ),

4. if κ is a limit cardinal then (κα)α<cf(κ) strictly increases to κ and cf(κα+1) = κα+1 for every

α < cf(κ),

5. if κ is regular then Mα ∩ κ ∈ κ, if κ = λ+ then κα = λ for all α < κ.

Observation 1.6.3. Let G = (V,E) be a graph and A ⊆ V κ-unseparable. Suppose that (Mα)α<cf(κ)

is a nice κ-chain of elementary submodels covering A so that A,G ∈ M1. Then A ∩ (Mα+1 \Mα) is

|Mα+1|-unseparable in V ∩ (Mα+1 \Mα) for all α < cf(κ).

Proof. Fix α < cf(κ) and two vertices u, v ∈ A ∩ (Mα+1 \Mα). As Mα+1 |= A is κ+α+1-unseparable, we

can find a κ+α+1-sequence P ∈Mα+1 of disjoint finite path from u to v. AsMα ∈Mα+1 and |Mα| < κ+α+1,

we can suppose that each path in P is disjoint from Mα. Now, using κα+1 ⊆Mα+1, we have that

ran(P ↾ κα+1) ⊆Mα+1.

As each path in P is finite, we actually have Q ⊆ V ∩ (Mα+1 \Mα) for Q ∈ P ↾ κα+1 which finishes the

proof.

In Chapter 5, we use special sequences of countable elementary submodels called Davies-trees or

ω1-approximation sequences; we postpone the definition to Section 5.2.



Chapter 2

Path decompositions of countable

graphs and hypergraphs

2.1 A short history of path decomposition problems

P. Erdős proved the following result in the 70’s 1:

Theorem 2.1.1 (Erdős [78, Theorem 1]). Every 2-edge coloured copy of the complete graph on N can

be partitioned into two monochromatic paths of different colours.

In 1978, R. Rado generalized Erdős’s argument in the following way:

Theorem 2.1.2 ([78, Theorem 2]). Suppose that G = (V,E) is an infinite directed graph, A ∈ [V ]≤ω

and |{y ∈ V : (x, y) /∈ E}| < |V | for every x ∈ A. Then given any edge colouring c of G there is

J ⊆ ran(c) and disjoint 1-1 sequences of points {xj(ν) : ν < mj} for j ∈ J such that

1. mj is either finite and odd or mj = ω,

2. A is covered by
⋃

j∈J{xj(ν) : ν < mj}, and

3. if j ∈ J and ν < mj is odd then

(xj(ν − 1), xj(ν)), (xj(ν + 1), xj(ν)) ∈ c−1(j).

The following theorem is an easy corollary now:

Theorem 2.1.3 ([78]). If the edges of the complete graph on N are coloured with finitely many colours

then the vertices can be partitioned into disjoint monochromatic paths of different colours.

This result was the starting point of several papers in the past which dealt with the same problem

either on finite or countably infinite graphs. It is an easy exercise to prove Theorem 2.1.1 for finite

complete graphs. Also, there are examples due to K. Heinrich2 of r-edge coloured finite complete graphs

1Appeared in [78] through private communication with R. Rado.
2Private communication with A. Gyárfás [36]

12
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which cannot be partitioned into r monochromatic paths of different colours. Hence Theorem 2.1.3 does

not extend to the finite case word by word.

In [34], Gyárfas looked at the path decomposition question from an algorithmic viewpoint. Given a

2-edge coloured copy of Kn, one can find (1) a Hamiltonian cycle which is the union of a red and blue

path, or (2) a cover of Kn by a red cycle and a blue cycle with at most one common vertex, both in

O(n) steps.

The question if Theorem 2.1.3 extends to finite complete graphs was first asked by Gyárfas [35] in

1989; in the same paper, he presents the bound

f(r) = 2r2(

(

r + 1

2

)

+ 1) + 1

for the number of monochromatic paths needed to cover an r-edge coloured finite complete graph.

In the meanwhile, there was significant work done in order to prove a closely related conjecture due

to Lehel (first reference in [3]): every two edge coloured finite complete graph can be partitioned into

two disjoint cycles of different colours. Lehel’s conjecture was justified for graphs of large order by T.

Luczak et al. [69] in 1998 and a complete solution was provided by S. Bessy and S. Thomassé [8] in

2010.

The monochromatic cycle partition problem on finite complete graphs was studied for more colours

as well in several papers [19, 46, 38]. In [19], P. Erdős, A. Gyárfás and L. Pyber made the following

conjecture: every r-edge coloured finite complete graph can be partitioned into r disjoint monochromatic

cycles. The currently known strongest positive result is the following

Theorem 2.1.4 ([38]). For every integer r ≥ 2 there is n0(r) ∈ N such that if n ≥ n0(r) then every

r-edge coloured copy of Kn can be partitioned into at most 100r log(r) monochromatic cycles.

However, recently A. Pokrovskiy [77] proved

Theorem 2.1.5 ([77, Theorem 1.4]). Suppose that r ≥ 3. There are infinitely many r-edge coloured

finite complete graphs which cannot be partitioned into r disjoint monochromatic cycles.

However, an infinite version of the Erdős-Gyárfás-Pyber conjecture is true (see Theorem 2.2.2(2)).

Also, the following version of the Erdős-Gyárfás-Pyber conjecture could still be true:

Conjecture 2.1.6. Every r-edge coloured finite complete graph is covered by r monochromatic cycles.

Let us return to the question of finding path decompositions of finite complete graphs. In general,

Theorem 2.1.4 gives the best known bound for the number of paths needed in a monochromatic path

partition. For a small number of colours r other than 2, the only result we have is the recent

Theorem 2.1.7 ([77, Theorem 1.5]). Every 3-edge coloured finite complete graph can be partitioned into

3 disjoint monochromatic paths.

In particular, the following question is still open:

Problem 2.1.8. Does every 4-edge coloured finite complete graph admit a partition into 4 monochro-

matic paths?

It is quite natural at this point to look at path/cycle decompositions of edge coloured non-complete

graphs and edge coloured complete hypergraphs as well. Monochromatic cycle partitions of complete
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bipartite graphs are investigated in [46]. In [77], Pokrovskiy shows that every two edge coloured Kn,n,

can be partitioned into 3 monochromatic paths and the following conjecture is stated:

Conjecture 2.1.9 ([77, Conjecture 4.5]). Suppose that the edges of Kn,n, are coloured with r colours.

Then there is a partition of Kn,n, into 2r − 1 disjoint monochromatic paths.

It will be rather easy to show that this conjecture holds for the graph Kω,ω (see Theorem 2.4.1).

In [37], the authors look at path decompositions of a 2-edge coloured graph G on n vertices with

n/2 edges missing. In [83], G. Sárközy looks at cycle partitions of edge coloured graphs G with given

independence number α(G) (recall that α(G) is the size of the largest independent set in G). This line of

research was carried on in [4]: it is proved that every 2-edge coloured finite graph G can be partitioned

into 2α(G) monochromatic cycles. In the same paper, further cycle decomposition results are proved for

graphs with given minimal degree.

Path and cycle partition problems on hypergraphs were investigated by Gyárfás and Sárközy [40, 39].

Let us mention two results here:

Theorem 2.1.10 ([39, Theorem 1.]). For all integers r > 1, k > 2, α > k − 1 there exists a constant

c = c(r, k, α) such that for every r-edge colouring of a k-uniform hypergraph H with independence number

α(H) = α there is a partition of the vertices into at most c(r, k, α) disjoint monochromatic loose cycles.

Theorem 2.1.11 ([40, Theorem 3.]). Suppose that the edges of a countably infinite complete k-uniform

hypergraph are coloured with r colours. Then the vertex set can be partitioned into monochromatic finite

or one-way infinite loose paths of distinct colours.

Our goal in Section 2.2 is to prove a stronger version of the latter theorem.

The interested reader may look into the survey [51] by M. Kano and X. Li on problems and results

on finding monochromatic and heterochromatic subgraphs of edge-coloured graphs.

2.2 Partitions of hypergraphs

In this section, we aim to improve Theorem 2.1.11. Let k ∈ N \ {0}.

Definition 2.2.1. A loose path in a k-uniform hypergraph is a finite or one-way infinite sequence of

edges, e1, e2, . . . such that |ei ∩ ei+1| = 1 for all i, and ei ∩ ej = ∅ for all i, j with i+ 1 < j.

A tight path in a k-uniform hypergraph is a finite or one-way infinite sequence of distinct vertices

such that every set of k consecutive vertices forms an edge.

Remark. Occasionally, we will refer to loose and tight cycles and two-way infinite paths as well, with

the obvious analogous definitions.

In the introduction of [40], the authors asked if in Theorem 2.1.11 one can find a partition into tight

paths instead of loose ones. We prove the following:

Theorem 2.2.2. Suppose that the edges of a countably infinite complete k-uniform hypergraph are

coloured with r colours. Then

(1) the vertex set can be partitioned into monochromatic finite or one-way infinite tight paths of

distinct colours,

(2) the vertex set can be partitioned into monochromatic tight cycles and two-way infinite tight paths

of distinct colours.
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Proof. (1) Note that the case of k = 2 is Rado’s Theorem 1.3.8 above; we will imitate his original proof

here.

Let c :
[

N
]k

→ {0, . . . , r− 1}. A set T ⊂ {0, . . . , r− 1} of colours is called perfect iff there are disjoint

finite subsets {Pt : t ∈ T } of N and an infinite set A ⊂ N \
⋃

t∈T Pt such that for all t ∈ T

(a) Pt is a tight path in colour t,

(b) if 1 ≤ i < k and x is the set of the last i vertices from the tight path Pt and y ∈
[

A
]k−i

, then

c(x ∪ y) = t.

Since ∅ is perfect, we can consider a perfect set T of colours with maximal number of elements.

Claim 2.2.3. If the vertex disjoint finite tight paths {Pt : t ∈ T } and the infinite set A satisfy (a) and

(b) then for all v ∈ N \
⋃

t∈T Pt there is a colour t′ ∈ T , a finite sequence v1, v2, . . . , vk−1 from A, and

an infinite set A′ ⊂ A such that the tight paths

{

Pt : t ∈ T \ {t′}
}

∪ {Pt′
⌢(v1, v2, . . . , vk−1, v)}

and A′ satisfy (a) and (b) as well.

Proof of the Claim. Define a new colouring d :
[

A
]k−1

→ {0, . . . , r−1} by the formula d(x) = c(x∪{v}).

By Ramsey’s Theorem, there is an infinite d-homogeneous set B ⊂ A in some colour t′. Then t′ ∈ T ,

since otherwise T ∪ {t′} would be a bigger perfect set witnessed by Pt′ = {v},{Pt : t ∈ T } and B.

Now pick distinct v1, v2, . . . , vk−1 from B and let A′ = B \ {v1, . . . , vk−1, v}.

Finally, by applying the claim repeatedly, we can cover the vertices with |T | tight paths of distinct

colours.

(2) Let c :
[

N
]k

→ {0, . . . , r − 1}. Write V−1 = N. Using Ramsey’s Theorem, by induction on n ∈ N

choose d(n) < r and Vn ∈
[

Vn−1

]N
such that

c({n} ∪O) = d(n) for all O ∈
[

Vn
]k−1

. (2.1)

For i < r let

Ai = {n ∈ N : d(n) = i}. (2.2)

Let K = {i < r : Ai is finite}. By induction on i ∈ K we will define tight cycles {Pi : i ∈ K} such

that
⋃

i′<i,i′∈K

Ai′ ⊆
⋃

i′<i,i′∈K

Pi′

while some of the Pi’s might be empty.

Assume that {Pi′ : i
′ < i, i′ ∈ K} is defined and suppose i ∈ K. Enumerate Ai \

⋃

i′<i,i′∈K Pi′ as

{xji : j < t}.

Choose disjoint k − 1 element sets

Y j
i ⊆

⋂

j<t

V
x
j
i
\

⋃

i′<i,i′∈K

Pi′ for j < t. (2.3)
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Consider an ordering ≺i on Pi = {xji : j < t} ∪
⋃

j<t

Y j
i such that

x0i ≺i Y
0
i ≺i x

1
i ≺i Y

1
i ≺i · · · ≺i x

t−1
i ≺i Y

t−1
i .

Then ≺i witnesses that Pi is a tight cycle in colour i.

Now, let

P =
⋃

i∈K

Pi

and for each i ∈ {0, . . . , r − 1} \K we define a 2-way infinite tight path Pi as follows.

By induction, for every integer z ∈ Z and i ∈ {0, . . . , r − 1} \K choose disjoint sets {xzi } ∈ [Ai \ P ]1

and Y z
i ∈

[

N \ P
]k−1

such that

Y z
i ⊂ Vxz

i
∩ V

x
z+1

i

and
⋃

i∈{0,...,r−1}\K

Ai ⊂ P ∪
⋃

{{xzi }, Y
z
i : i ∈ {0, . . . , r − 1} \K, z ∈ Z}.

Consider an ordering ≺i on Pi = {xzi : z ∈ Z} ∪
⋃

z∈Z
Y z
i such that

. . . ≺i Y
−2
i ≺i x

−1
i ≺i Y

−1
i ≺i x

0
i ≺i Y

0
i ≺i x

1
i ≺i Y

1
i ≺i . . .

Then ≺i witnesses that Pi is a 2-way infinite tight path in colour i.

2.3 Covers by kth powers of paths

We will be interested in partitioning an edge coloured copy of KN into finitely many monochromatic kth

powers of paths :

Definition 2.3.1. Suppose that G = (V,E) is a graph and k ∈ N\ {0}. The kth power of G is the graph

Gk = (V,Ek) where {v, w} ∈ Ek iff there is a finite path of length ≤ k from v to w.

Figure 2.1 below shows the first three powers of a path.

b b b b b b bb

b b bb

P P 2

P 3

Figure 2.1: Powers of paths.

We will investigate this new decomposition problem by introducing the following game.

Definition 2.3.2. Assume that H is a graph, W ⊂ V (H) and k ∈ N. The game Gk(H,W ) is played by

two players, Adam and Bob, as follows. The players choose disjoint finite subsets of V (H) alternately:

A0, B0, A1, B1, . . .
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Bob wins the game Gk(H,W ) iff

(A) W ⊂
⋃

i∈N
Ai ∪Bi, and

(B) H [
⋃

i∈N
Bi] contains the kth power of a (finite or one way infinite) Hamiltonian path (that is, a

path covering all the vertices).

For k = 1, we have the following

Observation 2.3.3. If H = (V,E) is a countable graph and W ⊂ V then the following are equivalent:

1. W is ω-unseparable,

2. Bob wins G1(H,W ).

Proof. (1) ⇒ (2): By our assumption, Bob can always connect an uncovered point ofW to the end-point

of the previously constructed path while avoiding vertices played so far. This shows the existence of a

winning strategy for Bob.

(2) ⇒ (1): Fix any two distinct points v, w ∈ W and a finite set F ⊂ V \ {v, w}. Let Adam start

with A0 = F and continue with Ai = ∅; the Hamiltonian path P constructed by Bob’s strategy will go

through a and b while P ∩ F = ∅.

Now, we show how to produce a partition of the vertices into kth powers of paths using winning

strategies of Bob:

Lemma 2.3.4. Suppose that H = (V,E), V =
⋃

{Wi : i < M} with M ∈ N and let Hi = (V,Ei) for

some Ei ⊂ E. If Bob wins Gk(Hi,Wi) for all i < M then V can be partitioned into {Pi : i < M} so

that Pi is a kth power of a path in Hi.

Proof. We will conduct M games simultaneously as follows: the plays of Adam and Bob in the ith

game will be denoted by Ai
0, B

i
0, A

i
1, B

i
1, . . . for i < M . Let σi denote the winning strategy for Bob in

Gk(Hi,Wi), that is, if we set Bi
n = σi(Ai

0, B
i
0, . . . , A

i
n) then Bob wins the game.

Now, we define Ai
n, B

i
n by induction using the lexicographical ordering<lex on {(n, i) : n ∈ N, i < M}.

First, let A0
0 = ∅ and B0

0 = σ0(A0
0). In general, assume that Aj

m and Bj
m are defined for (m, j) <lex (n, i),

and we let

Ai
n =

⋃

{Bj
m : (m, j) <lex (n, i)} \

(

⋃

{Ai
m, B

i
m : m < n}

)

(2.4)

and

Bi
n = σi(Ai

0, B
i
0, . . . , A

i
n).

One easily checks that the above defined plays are valid; indeed, for a fix i < M the finite sets

{Ai
n, B

i
n : n ∈ N} defined above are disjoint.

Next, let Pi =
⋃

{Bi
n : n ∈ N} for i < M . As Bob wins the ith game we have that Pi is a k

th power

of path in Hi. Note that Pi ∩ Pj = ∅ if i 6= j < M . Indeed, if (m, j) <lex (n, i), then

Bi
n ∩Bj

m ⊂ Bi
n ∩ (Ai

n ∪
(

⋃

{Ai
m, B

i
m : m < n}

)

= ∅

by (2.4).
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To finish the proof, we prove

V = {Pi : i < M}. (2.5)

Indeed, first note that Wi ⊂
⋃

n∈N
Ai

n ∪Bi
n as Bob wins the ith game and hence

V =
⋃

n∈N,i<M

Ai
n ∪Bi

n.

Second, by (2.4), we have

Ai
n ⊂

⋃

{Bj
m : (m, j) <lex (n, i)}

and so
⋃

n∈N,i<M

Ai
n ⊂

⋃

n∈N,i<M

Bi
n

and hence V = {Pi : i < M}.

The next theorem provides conditions under which Bob has a winning strategy:

Theorem 2.3.5. Assume that H is a countably infinite graph, W ⊂ V (H) is non-empty and k ∈ N. If

there are subsets W0, . . . ,Wk of V (H) such that W0 =W and

Wj+1 ∩NH [F ] is infinite for each j < k and finite F ⊂
⋃

i≤j
Wi (2.6)

then Bob wins Gk(H,W ).

Proof. We can assume that V(H) = N.

Consider first the easy case when W0 is finite. Adam plays a finite set A0 in the first round. Write

N = |W0 \ A0|. Let Bob play B0 = W0 \ A0 = {bn,0 : n < N}. In the jth round for 1 ≤ j ≤ k, let Bob

play an N -element set

Bj = {bn,j : n < N} ⊂Wj ∩NH

[

⋃

i<j
Bi

]

(2.7)

which avoids all previous choices, i.e. Bj ∩
⋃

{Ai′ , Bi : i
′ ≤ j, i < j} = ∅. For j > k let Bob play Bj = ∅.

We claim that

(A) W0 ⊆
⋃

{An, Bn : n ∈ N}, and

(B) P = {bn,j : n < N, j ≤ k} is the kth-power of a path.

(A) is clear because W0 ⊆ A0 ∪B0.

To check (B) consider the lexicographical order of the indexes. Let (m, i) 6= (n, j) ∈ {0, . . . , N − 1}×

{0, . . . , k}. Then bm,i and bn,j are the ((k + 1)m + i)th and ((k + 1)n + j)th elements, respectively, in

the lexicographical order.



Chapter 2. Path decompositions of countable graphs and hypergraphs 19

Bj ⊆Wj

Bi ⊆ Wi

B0 ⊆W0

Bk ⊆Wk
b b b b

b b b b

b b b b

b b b b

i

j

k

N

bn,j

bm,i

Figure 2.2: bn,j and its k successors.

Assume that |((k + 1)m + i) − ((k + 1)n + j)| ≤ k; then i 6= j and, without loss of generality, we

can suppose that i < j. Then we have bm,i ∈
⋃

i′<j Bi′ , so bn,j ∈ NH(bm,i) by (2.7). In other words,

{bm,i, bn,j} is an edge in H which yields (B).

Consider next the case when W0 is infinite; let us outline the idea first in the case when k = 2. Bob

will play one element sets at each step and aims to build a one-way infinite square of a path following

the lexicographical ordering on N×{0, 1, 2}. However, he picks the vertices in a different order, denoted

by E later, which is demonstrated in Figure 2.3.

k = 2

N

1. 2. 4. 7. 10.

6. 9. 12.

3. 5. 8.

⊆W0

⊆W1

⊆W2

11.

Figure 2.3: The two orderings.

This way Bob makes sure that when he chooses the 12th element he already picked its two successors

(in the 7th and 11th plays) and two predecessors (in the 8th and 4th plays) in the lexicographical ordering,

hence we can ensure the edge relations here.

Now, we define the strategy more precisely. In each round Bob will pick a single element bn,j for

some (n, j) ∈ N × {0, 1, . . . , k} such that
{

bn,j : (n, j) ∈ N × {0, 1, . . . , k}
}

will be the kth power of a

path in the lexicographical order of N× {0, 1, . . . , k}.

As we said earlier, Bob will not choose the points bn,j in the lexicographical order of N×{0, 1, . . . , k},

i.e. typically the ((k + 1)n+ j)th move of Bob, denoted by B(k+1)n+j , is not {bn,j}.
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To describe Bob’s strategy we should define another order on N× {0, 1, . . . , k} as follows:

(m, i) E (n, j) iff (m+ i < n+ j) or (m+ i = n+ j and i ≤ j).

Write (m, i) ⊳ (n, j) iff (m, i) E (n, j) and (m, i) 6= (n, j). Clearly every (n, j) has just finitely many

⊳-predecessors. Let f(ℓ) denote the ℓth element of N× {0, 1, . . . , k} in the order ⊳.

Bob will choose Bℓ = {bf(ℓ)} in the ℓth round as follows: if f(ℓ) = (n, j), then

(a) if j = 0 then

bn,j = min
(

W0 \
(

⋃

s≤ℓ

As ∪
⋃

t<ℓ

Bt

)

)

; (2.8)

(b) if j > 0 then

bn,j ∈Wj ∩NH

[

{bm,i : (m, i) ⊳ (n, j), i < j}
]

. (2.9)

Bob can choose a suitable bn,j by (2.6) as {bm,i : (m, i) ⊳ (n, j), i < j} is a finite subset of
⋃

i<j Wi.

We claim that

(A) W0 ⊆
⋃

{An, Bn : n ∈ N}, and

(B) P = {bn,j : n ∈ N, j ≤ k} is the kth-power of a path.

(A) is clear because in (2.8) we chose the minimal possible element.

Let (m, i) 6= (n, j) ∈ N×{0, . . . , k}. Then bm,i and bn,j are the ((k+1)m+ i)th and ((k+1)n+ j)th

elements, respectively, in the lexicographical order. Assume that |((k + 1)m+ i)− ((k + 1)n+ j)| ≤ k.

Then i 6= j and |m− n| ≤ 1.

Without loss of generality, we can assume that i < j. Then |m − n| ≤ 1 implies m+ i ≤ n+ j and

hence (m, i) ⊳ (n, j). Since i < j as well, bn,j ∈ NH(bm,i) must hold by (2.9). In other words, {bm,i, bn,j}

is an edge in H which yields (B).

We arrive at one of our main results:

Theorem 2.3.6. For all positive natural numbers k, r and an r-edge colouring of KN the vertices can

be covered by ≤ r(k−1)r+1 one-way infinite disjoint monochromatic kth powers of paths and a finite set.

Proof. The set of sequences of length m (at most m, respectively) whose members are from a set X is

denoted by Xm (X≤m, respectively).

Recall that for each r-edge colouring c of KN Lemma 1.3.5 gives a partition of the vertices, which

we will denote by dc : N → {0, . . . , r − 1}, and a special colour ic < r. We define a set As ⊂ N for each

finite sequence s ∈ {0, . . . , r − 1}≤(k−1)r+1 by induction on |s| as follows:

• let A∅ = N,

• if As is defined and finite then let

As⌢0 = As and As⌢i = ∅ for 1 ≤ i < r, (2.10)
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• if As is defined and infinite then let

As⌢i = {u ∈ As : dc↾As
(u) = i} for i < r. (2.11)

Fix an arbitrary s ∈ {0, . . . , r− 1}(k−1)r+1 such that As is infinite. Then there is a colour is < r and

a k-element subset Hs = {h1 > h2 > · · · > hk} of {0, . . . , (k − 1)r} such that

s(hj) = is

for all j = 1, . . . , k. Let W0 = As and Wj = As↾hj
for j = 1, . . . , k. Note that the choice of is ensures

that

Wj+1 ∩NGs
[F ] is infinite

for each j < k and finite set F ⊂
⋃

i≤j Wi, where Gs = (N, c−1{is}). Thus, by Theorem 2.3.5, Bob has

a winning strategy in the game Gk(Gs, As).

Playing the games

{Gk(Gs, As) : s ∈ {0, . . . , r − 1}(k−1)r+1 and As is infinite} (2.12)

simultaneously, that is, applying Lemma 2.3.4 we can find at most r(k−1)r+1 many kth powers of disjoint

monochromatic paths which cover N apart from the finite set
⋃

{As : As is finite}.

In the case of k = r = 2, we have the following stronger result:

Theorem 2.3.7. (1) Given an edge colouring of KN with 2 colours, the vertices can be partitioned into

≤ 4 monochromatic path-squares (that is, second powers of paths):

KN ⊏ (PathSquare)2,4.

(2) The result above is sharp: there is an edge colouring of KN with 2 colours such that the vertices

cannot be covered by 3 monochromatic path-squares:

KN 6⊏ (PathSquare)2,3.

To prove Theorem 2.3.7 we need some further preparation. First, in [76, Corollary 1.10] Pokrovskiy

proved the following: Let k, n ≥ 1 be natural numbers. Suppose that the edges of Kn are coloured with

two colours. Then the vertices of Kn can be covered with k disjoint paths of colour 1 and a disjoint kth

power of a path of colour 0.

Second, we will apply the following

Lemma 2.3.8. Assume that P = v0, v1, . . . is a finite or one-way infinite path in a graph G and there

is W ⊂ V (G) \ P so that

(W ∩ NG[{vi, vi+1, vi+2, vi+3}]) is infinite for all vi ∈ P. (2.13)

Let F be a countable family of infinite subsets of W . Then G contains a square of a path R which covers

P while R \ P ⊂ W , and F \ R is infinite for all F ∈ F . Moreover, if P is finite then R can also be
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chosen to be finite.

Proof. Let F0, F1, . . . be an enumeration of F in which each element shows up infinitely often.

Pick distinct vertices w0, f0, w1, f1, . . . from W such that

wi ∈ NG[{v2i, v2i+1, v2i+2, v2i+3}] and fi ∈ Fi.

Then

R = v0, v1, w0, v2, v3, w1, v4, . . . , v2i, v2i+1, wi, v2i+2, v2i+3, wi+1, . . . (2.14)

is a square of a path which covers P , R \ P ⊂W , and {fn : n ∈ N, Fn = F} ⊆ F \R for all F ∈ F .

The last statement concerning the finiteness of R is obvious.

Proof of Theorem 2.3.7(1). Fix a colouring c :
[

N
]2

→ {0, 1} and let Gi = (N, c−1{i}) for i < 2.

We will use the notation of Lemma 1.3.5. Let c0 = c and let

A0 = {v ∈ N : dc0(v) = ic0} and B0 = N \A0. (2.15)

Let c1 = c0 ↾ B0 and provided B0 is infinite we let

A1 = {v ∈ B0 : dc1(v) = ic1} and B1 = B0 \A1. (2.16)

We can assume that ic0 = 0 without loss of generality.

Case 1: B0 is finite.

First, G[B0] can be written as the disjoint union of two paths P0 and P1 of colour 1 and a square of

a path Q of colour 0 by the above mentioned result of Pokrovskiy [76, Corollary 1.10]. Applying Lemma

2.3.8 for G = G1, P = P0, W = A0 and F = ∅ it follows that there is a finite square of a path R0 in

colour 1 which covers P0 and R0 \ P0 ⊂ A0. Applying Lemma 2.3.8 once more for G = G1, P = P1,

W = A0 \R0 and F = ∅ it follows that there is a finite square of a path R1 in colour 1 which covers P1,

and R1 \ P1 ⊂ A0 \R0. Let A
′
0 = A0 \ (R0 ∪R1).

Now, by Theorem 2.3.5, Bob wins the game G2(G0, A
′
0) witnessed by the sequence (A′

0, A
′
0, A

′
0); thus

G[A′
0] can be covered by a single square of a path S of colour 0 by Lemma 2.3.4. That is, G can be

covered by 4 disjoint monochromatic squares of paths: R0, R1, Q and S.

Case 2: B0 is infinite and ic1 = 0.

Note that, by Theorem 2.3.5, Bob wins the games

(i) G2(G0, A0) witnessed by (A0, A0, A0),

(ii) G2(G0, A1) witnessed by (A1, A1, A1),

(iii) G2(G1, B1) witnessed by (B1, A1, A0).

Hence, the vertices can be partitioned into two squares of paths of colour 0 and a single square of a path

of colour 1 by Lemma 2.3.4.

Case 3: B0 is infinite and ic1 = 1.

Since we applied Lemma 1.3.5 twice to obtain A0 and B0, and A1 and B1, and B1 ⊆ B0 we know

that
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(a) Bob wins the game G2(G0, A0) witnessed by (A0, A0, A0);

(b) Bob wins the game G2(G1, A1) witnessed by (A1, A1, A1);

(c) N [F, 1] ∩ A0 is infinite for every finite set F ⊂ B1;

(d) N [F, 0] ∩ A1 is infinite for every finite set F ⊂ B1;

(e) N [F, 0] ∩ A0 is infinite for every finite set F ⊂ A0;

(f) N [F, 1] ∩ A1 is infinite for every finite set F ⊂ A1.

First, partition B1 into two paths P0 and P1 of colour 0 and 1, respectively. Indeed, if B1 is infinite

this can be done by Theorem 1.3.8 and if B1 is finite one considers two disjoint paths P0 and P1 in B1 of

colour 0 and 1 with |P0|+ |P1| maximal (as outlined in a footnote in [29]); it is easily seen that P0 ∪ P1

must be B1.

Now, our plan is to cover P0 and P1 with disjoint squares of paths R0 and R1 of colour 0 and 1,

respectively, such that R0 \ P0 ⊂ A1, R1 \ P1 ⊂ A0 while

(a’) Bob wins the game G2(G0, A0 \R1) witnessed by (A0 \R1, A0 \R1, A0 \R1),

(b’) Bob wins the game G2(G1, A1 \R0) witnessed by (A1 \R0, A1 \R0, A1 \R0).

Let

F0 = {N [F, 0] ∩A0 : F ⊂ A0 finite},

and

F1 = {N [F, 1] ∩A1 : F ⊂ A1 finite},

and note that these families consist of infinite sets by (e) and (f) above. Apply Lemma 2.3.8 for G = G0,

W = A1, P = P0 and F = F1 to find a square of a path R0 in G0 which covers P0, R0 \ P0 ⊂ A1 and

F \R0 is infinite for all F ∈ F1, that is,

N [F, 1] ∩ (A1 \R0) is infinite for every finite set F ⊂ A1. (2.17)

Apply Lemma 2.3.8 once more for G = G1, W = A0, P = P1 and F = F0 to find a square of a path

R1 in G1 with R1 \ P1 ⊂ A0 which covers P1 and F \R1 is infinite for all F ∈ F0, that is,

N [F, 0] ∩ (A0 \R1) is infinite for every finite set F ⊂ A0. (2.18)

Then, by Theorem 2.3.5, (2.18) yields (a’), and (2.17) yields (b’).

Hence (A0 \R1)∪ (A1 \R0) can be partitioned into two monochromatic squares of paths by Lemma

2.3.4 which in turn gives a partition of all the vertices into 4 monochromatic squares of paths.

Proof of Theorem 2.3.7(2). Fix a partition (A,B,C,D) of N such that A is infinite, |B| = |C| = 4, and

|D| = 1. Define the colouring c : [N]2 → {0, 1} as follows see Figure 2.4:

c−1{1} = {{a, v} : a ∈ A, v ∈ B ∪ C ∪D} ∪
[

B
]2

∪
[

C
]2
. (2.19)
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D

A

B C

Figure 2.4: The example for Theorem 2.3.7(2)

If P is a monochromatic square of a path which intersects both A and B ∪C ∪D, then P should be

in colour 1, so P ∩A should be finite. Thus every partition of KN into monochromatic squares of paths

should contain an infinite 0-monochromatic square of a path S ⊂ A.

It suffices to show now that B ∪ C ∪D cannot be covered by two monochromatic squares of paths.

Let D = {d}.

First, if P is a 1-monochromatic square of a path then P ′ = P ∩ (B ∪C ∪D) is a 1-monochromatic

path. As two 1-monochromatic paths cannot cover B ∪ C ∪D, two 1-monochromatic squares of paths

will not cover B ∪ C ∪D neither.

Second, if Q is a 0-monochromatic square of a path which intersects B ∪C ∪D then Q ⊂ B ∪C ∪D.

Assume that d /∈ Q and let Q = x1, x2, . . . . If x1 ∈ B then x2 ∈ C so x3 does not exists because Q is

0-monochromatic square of a path. Hence d /∈ Q implies |Q ∩ B| ≤ 1 and |Q ∩ C| ≤ 1. If d ∈ Q, then

cutting Q into two by d and using the observation above we yield that |Q ∩B| ≤ 2 and |Q ∩C| ≤ 2. In

turn, two 0-monochromatic squares of paths cannot cover B ∪ C ∪D.

Finally using just one 0-monochromatic square of a path Q we cannot cover (B ∪ C) \ Q by a

single 1-monochromatic square of a path because there is no 1-coloured edge between B \ Q 6= ∅ and

C \Q 6= ∅.

2.4 Further results and open problems

In general, there are two directions in which one can aim to extend current results: investigate edge

coloured non-complete graphs; determine the exact number of monochromatic structures (paths, powers

of paths) needed to cover a certain edge coloured graph.

The next results shows Conjecture 2.1.9 for the graph Kω,ω:

Theorem 2.4.1. Let c : E(Kω,ω) → r for some r ∈ N. Then Kω,ω can be partitioned into at most 2r−1

monochromatic paths. Furthermore, for every r ∈ N there is cr : E(Kω,ω) → r so that Kω,ω cannot be

covered by less than 2r − 1 monochromatic paths.

Proof. Let us denote the two classes of Kω,ω by A and B. Fix a colouring c and ultrafilters UA, UB on

A,B respectively; now, let Ai = {u ∈ A : {v ∈ B : c(u, v) ∈ i} ∈ UB} and similarly Bi = {v ∈ B : {u ∈

A : c(u, v) ∈ i} ∈ UA}. Without loss of generality, we can suppose that A0 ∈ UA. Let Hi denote the

graph on A ∪B with edges c−1(i).
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Claim 2.4.2. Bob wins the games G1(H0, A0 ∪B0),G1(Hi, Ai) and G1(Hi, Bi) for 1 ≤ i < r.

Proof. It is easy to see that Claim 2.3.3 can be applied in each case.

This finishes the proof of the first part of the theorem by Lemma 2.3.4.

Next, we will construct our colourings c showing that the above result is sharp. Let r ≥ 2, let

A = ∪{Ai : i < r} with A0 infinite and Ai = {ai} for 1 ≤ i < r and let B = ∪{Bi : i < r} with each Bi

infinite. Define the r-colouring cr as follows: let

cr ↾ Ai ×Bj = i+ j mod r for i, j ∈ r.

Note that if P is a monochromatic path which covers some Ai then |{j < r : P ∩ Bj 6= ∅}| ≤ 1;

furthermore P is finite and thus Bj \ P 6= ∅ if 1 ≤ i < r and j < r. Similarly, if P is a monochromatic

path which covers some Bi then |{j < r : P ∩ Aj 6= ∅}| ≤ 1 as well. Now it is easy to see that there is

no cr-monochromatic cover by less than 2r − 1 paths.

We mention that Rado’s original result (Theorem 2.1.2) implies

Claim 2.4.3. For every r-edge colouring of the random graph on N we can partition the vertices into r

disjoint paths of distinct colours.

Regarding Theorem 2.3.6 we ask the following most general question:

Problem 2.4.4. What is the exact number of monochromatic kth powers of paths needed to partition

the vertices of an r-edge coloured complete graph on N?

Naturally, any result aside from the resolved case of k = r = 2 (see Theorem 2.3.7) would be very

welcome. In particular:

Problem 2.4.5. Can we bound the number of monochromatic kth powers of paths needed to partition

the vertices of an r-edge coloured complete graph on N by a function of r and k?



Chapter 3

Path decompositions of uncountable

graphs

The goal of this chapter to prove that every finite edge coloured infinite complete graph can be partitioned

into disjoint monochromatic paths of different colours. The smallest uncountable case of this theorem

with two colours was proved jointly by M. Elekes, L. Soukup and Z. Szentmiklóssy [14] while the general

result is due to the present author [93].

We are not aware of any results on uncountable paths in graphs prior to our work. We mention a

paper by A. Hajnal, P. Komjáth, L. Soukup and I. Szalkai [44] where the authors considered the question

if the vertices of a µ-edge coloured complete graph can be partitioned into τ pieces, each connected in

some colour. Our monochromatic path decomposition gives a very special partition with the above

property when µ = τ is finite and we return to the results of [44] in Section 3.5.

3.1 Constructing uncountable paths

Now, we present our most important tools in constructing uncountable paths with Lemma 3.1.8 being

the main result of this section.

Definition 3.1.1. For a path P and x <P y ∈ P let P ↾ [x, y) denote the segment of P from x to y

(excluding y itself). For a set A and path P we say that P is concentrated on A iff

N(y) ∩A ∩ P ↾ [x, y) 6= ∅

for every <P -limit y ∈ P and x <P y in P .

We will use the following easy observation regularly

Observation 3.1.2. Suppose that P is a path concentrated on a set A, p ∈ V (P ) and there is a limit

element of P above p. Then there is a q ∈ A ∩ V (P ) such that p <P q and P ↾ [p, q) is finite.

We will apply the next lemma multiple times:

Lemma 3.1.3. Let G = (V,E) be a graph and A ∈ [V ]κ κ-unseparable. Then the following are equiva-

lent:

26



Chapter 3. Path decompositions of uncountable graphs 27

1. there is a path P of order type κ concentrated on A,

2. A is covered by a path Q of order type κ concentrated on A.

Moreover, if a ∈ A and C ∈ [A]cf(κ) then we can construct Q with first point a and cofinal set C.

Proof. We prove by induction on κ; the result holds for κ = ω by Observation 1.3.4 so suppose that

κ > ω and that we proved for cardinals < κ. Also, fix a ∈ A, C ∈ [A]cf(κ) and path P concentrated

on A; note that we do not need to worry about C if κ is regular as every subset of A of size κ will be

cofinal in Q. We distinguish two cases:

Case 1: κ > cf(κ).

Let us fix an increasing cofinal sequence of regular cardinals (κα)α<cf(κ) in κ so that κ0 = cf(κ) and

κβ > sup{κα : α < β} for all β < cf(κ).

Claim 3.1.4. There are pairwise disjoint paths {Rα : α < cf(κ)} in V \ ({a} ∪ C) concentrated on A

such that

1. R0 has order type κ0, Rα has order type κα + nα for some nα ∈ ω \ {0},

2. R0 starts in A, Rα starts and finishes in A for 0 < α < cf(κ),

3. for every x, y ∈ A there are κ many pairwise disjoint finite paths from x to y in {x, y} ∪ V \
⋃

α<cf(κ)Rα.

Proof. Let A =
⋃

{Aα : α < cf(κ)} be an increasing union with |Aα| ≤ κα. We proceed by induction

on α < cf(κ) and construct {Rα : α < β} satisfying 1. and 2. above and sets {Wα : α < β} so that

(a) Wα ∈ [V ]κα and any two points x 6= y ∈ Aα can be connected by κα pairwise disjoint finite paths in

{x, y} ∪Wα, and

(b) Wα ∩Rα′ = ∅ for α, α′ < β.

First choose R0 to be a segment of P which satisfies the above conditions (on the starting point and

order type) and choose W0 ⊆ V \R0 using that A0 is κ0-unseparable.

In general, let Xβ =
⋃

{Rα : α < β} ∪
⋃

{Wα : α < β} and note that Xβ has size less than κ. As

the path P has κ many κβ-limit points, we can select a subpath Rβ of P (an interval of P starting and

finishing in A) of order type κβ +nβ such that Rβ ∩Xβ = ∅. We can construct now Wβ ⊂ V \ (Xβ ∪Rβ)

as desired using that Aβ is κ-unseparable.

Let Cα denote a subset of A ∩ Rα which is cofinal in Rα ↾ κα and let tα denote the κα-limit point

of Rα for 0 < α < cf(κ). Write A \
⋃

α<cf(κ)Rα as {Aα : α < cf(κ)} so that |Aα| ≤ κα. List C as

{cα : α < cf(κ)}.

Construct a sequence of paths {Qα : α < cf(κ)} concentrated on A so that

1. Qβ end extends Qα for α < β < cf(κ),

2. Qα starts with a and finishes with a point rα ∈ A ∩R0,

3. Qα ∩R0 ⊂ R0 ↾ rα ∪ {rα} and Qα covers all points x ∈ A ∩R0 such that x <R0
rα,

4. (Qα+1 \Qα) ∩ C = {cα},
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5. Qα covers Aα ∪ (Rα ∩A) for 0 < α < cf(κ),

6. Qα ∩Rβ = ∅ if α < β < cf(κ).

Suppose we have Qα for α < β. If β = α + 1 then let r−β = rα, if β is limit then let r−β be the first

limit point of R0 above {rα : α < β}. Note that r−β = sup<R0
{rα : α < β} if β is a limit and hence

Q<β =
⋃

{Qα : α < β} ∪ {r−β } is a path concentrated on A by property (3). Let r+β <R0
rβ ∈ R0 be the

first two points of A above r−β and note that that R0 ↾ [r−β , rβ ] is finite.

R0

ba

Q<β r−β r+β , rβ ∈ A

b b Rβ
b

b b

b b

b
cβ

tβ

Figure 3.1: Extending Q<β to Qβ.

Claim 3.1.5. There is a path S concentrated on A in V \ (
⋃

{Rα : α ∈ κ \ {β}} ∪Q<β) such that

(i) S end extends R0 ↾ [r−β , r
+
β ] and ends in rβ,

(ii) S covers Aβ \Q<β ∪ (Rβ ∩ A),

(iii) S ∩C = {cβ}.

Proof. S is constructed using Rβ and the inductive hypothesis for κβ. First, let us find a finite path S′

starting with tβ and the finite end segment of Rβ so that S′ ∩C = {cβ} and S′ ends in rβ . This can be

done as A is κ-unseparable.

Now, note that Rβ ↾ κβ is a path of order type κβ concentrated on Aβ \ Q<β ∪ (Rβ ∩ A) in Vβ =

V \(
⋃

{Rα : α ∈ κ\{β}}∪Q<β∪C∪S′) and that Aβ \Q<β∪(Rβ∩A) is κβ-unseparable in Vβ . Hence, we

can apply the inductive hypothesis in Vβ and find a path S′′ concentrated on A of order type κβ which

starts with r+β , covers Aβ \Q<β ∪ (Rβ ∩A) and has cofinal set Cβ . We set S = R0 ↾ [r−β , r
+
β ]

aS′′aS′

LetQβ = Q<β
aS which finishes the inductive step and hence the proof for the case when κ is singular.

Case 2: κ = cf(κ).

We fix a nice sequence of elementary submodels (Mα)α<κ covering A with A,G ∈ M1 and let

Aα =Mα ∩A. Let pα = min<P
P \Mα for α < κ and note that pα ∈Mα+1 and pα is a <P -limit. Also,

observe that

{p ∈ A ∩N(pβ) : p <P pβ} \Mα is infinite

for all α < β < κ; indeed, this follows from the fact that Mα ∩ P is a proper initial segment of P ↾ pβ .

Now, it suffices to construct a sequence of paths {Qα : α < κ} concentrated on A so that Q1 starts

with a and

1. Aα ⊂ Qα ⊂Mα,
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2. Qα
a(pα) is a path which is an initial segment of Qβ

for all α < β < κ. Indeed,
⋃

{Qα : α < κ} is the path we are looking for.

Suppose we constructed Qα for α < β. Let

Q<β =







⋃

{Qα : α < β}a(pβ) if β is a limit,

Qα
a(pα) if β = α+ 1.

Note that Q<β is a path; for successor β this is ensured by (2) while for a limit β ensured by (1) and

the observation about pβ above.

If β is a limit, we simply let Qβ =
⋃

{Qα : α < β}; it is easy to see that (1) is satisfied as the chain

(Mα)α<cf(κ) is continuous.

Now suppose β = α+1. Our goal is to apply the inductive hypothesis and find a path S concentrated

on A in V ∩ (Mα+1 \Mα) so that

(i) S starts at pα,

(ii) S covers A ∩Mα+1 \Mα, and

(iii) there is an infinite subset of N(pα+1) ∩A ∩Mα+1 \Mα cofinal in S.

Indeed, Qβ = Qα
aS will satisfy (1) and (2).

Qα

Mα Mα+1

b
b
pα

pα+1

r−β r+β ∈ A

Rβ ⊆ A ∩N(r−β )

Figure 3.2: Extending Q<β to Qβ.

Let us pick the cofinal set mentioned in (iii) first: let R− ⊆ N(pα+1) ∩ A ∩Mα+1 \ (Mα ∪ {pα}) be

infinite and find a path R of order type ω in Mα+1 \Mα covering R− and starting in R−. The path

S will end with R and hence property (iii) will be satisfied. Also, pα might not be in A but a finite

segment of P connects pα to some q ∈ A ∩Mα+1 \Mα.

Now, let λ = |A ∩Mα+1 \Mα| and find a point r−β ∈ P ∩Mα+1 \Mα which is a cf(λ)-limit point of

P ; let r+β be the first point of A ∩ P above r−β . Let W = V (R ∪ P ↾ [pα, q] ∪ P ↾ [r−β , r
+
β ]).

Find a finite path T in Mα+1 \ (Mα ∪W ) connecting r+β to the first point of R and let R′ = P ↾

[r−β , r
+
β ]

aTaR. The path S will start with P ↾ [pα, q] and end with R′. Let W ′ =W ∪ V (T ).

Finally, pick any Rβ ∈ [N(r−β ) ∩ A ∩Mα+1 \ (Mα ∪W ′)]cf(λ). Now apply the inductive hypothesis

in the graph G ↾ V ∩Mα+1 \ (Mα ∪W ′) for the λ-unseparable set A∩Mα+1 \ (Mα ∪W ′); we can find a

path S′ concentrated on A which starts with P ↾ [pα, q], covers A ∩Mα+1 \Mα and Rβ is cofinal in S′.

Note that V ∩Mα+1 \Mα contains a path which is concentrated on A ∩Mα+1 \Mα and has ordertype

λ; indeed, consider an appropriate segment of the original path P in Mα+1 \Mα.
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We are done by letting S = S′aR′.

As we will see, there are three main ingredients to constructing a path covering a set A of size κ one

of which is being κ-unseparable.

Definition 3.1.6. Suppose that G = (V,E) is graph and A ⊆ V . We say that A satisfies ♠κ iff for all

X ∈ [V ]<κ and λ < κ there is a path P of order type λ disjoint from X which is concentrated on A.

If we have a fixed edge colouring we use ♠κ,i for “♠κ in colour i” for short. Also, let us mention an

easy result for later reference:

Observation 3.1.7. Suppose that G = (V,E) is a graph, A ∈ [V ]κ. Consider the following statements:

1. there is a path P in G of size κ concentrated on A,

2. A satisfies ♠κ,

3. for each λ < κ there are κ-many pairwise disjoint paths concentrated on A of order type λ.

Then (1) ⇒ (2) ⇔ (3).

Proof. (1) ⇒ (2): suppose that X ∈ [V ]<κ and λ < κ. If κ is regular then X ∩P must be bounded in P

and hence an end segment of P is a path disjoint from X which has order type κ. If κ is singular, then

µ = |X |+ is less than κ and we repeat the previous argument for the P ↾ µ.

(2)⇒(3): suppose that there is λ < κ and a maximal family P of pairwise disjoint paths concentrated

on A of order type λ so that |P| < κ. Apply ♠κ to X = ∪P ∈ [V ]<κ to extend P . This contradicts the

maximality of P .

(3)⇒(2): suppose that X ∈ [V ]<κ and λ < κ. Take a family P of pairwise disjoint paths concentrated

on A of order type λ so that |P| = κ. There is P ∈ P so that P ∩X = ∅.

Clearly, (2) does not imply (1) as ♠κ is easily satisfied in a graph which has no connected component

of size κ.

The next lemma will be our main tool in constructing paths.

Lemma 3.1.8. Suppose that G = (V,E) is a graph, κ ≥ ω, A ∈ [V ]κ and

1. A is κ-unseparable, and

if κ > ω then

2. A satisfies ♠κ, and

3. there is a nice sequence of elementary submodels (Mα)α<cf(κ) covering A with A,G ∈M1 so that

there is xβ ∈ A \Mβ, yβ ∈ V \Mβ with {xβ, yβ} ∈ E and

|NG(yβ) ∩A ∩Mβ \Mα| ≥ ω

for all α < β < cf(κ).

Then A is covered by a path P concentrated on A.
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Note that condition (3) only makes sense for κ > ω; indeed, if A is countable and A ∈ M1 then

A ⊆ M1 as well. However, every countably infinite ω-unseparable set A is covered by a path of order

type ω.

Proof. If κ = ω then Observation 1.3.4 finishes the proof. Suppose κ > ω.

Let us fix (Mα)α<cf(κ) and {xα, yα : α < cf(κ)} as above; we can suppose that xα, yα ∈Mα+1. Let

Aα =Mα ∩A for α < cf(κ). It suffices to construct a sequence of paths {Pα : α < cf(κ)} concentrated

on A so that

(i) Pβ end extends Pα,

(ii) Aα ⊆ Pα ⊆Mα,

(iii) NG(yα+1) ∩A ∩Mα+1 \Mα is cofinal in Pα+1

for all α < β < cf(κ). We set P =
⋃

{Pα : α < cf(κ)} which finishes the proof.

Suppose we constructed Pα for α < β as above; if β is a limit ordinal then we set Pβ =
⋃

{Pα : α < β}.

Suppose that β = α+1; note that Pα
a(yα, xα) is still a path regardless whether α is a limit or successor

by (ii) and (iii). It suffices to find a path S ⊂ Mα+1 \Mα concentrated on A starting at xα so that

N(yα+1)∩A∩Mα+1 \Mα is cofinal in S and Aα+1 \Aα ⊂ S; indeed, we set Pα+1 = Pα
a(yα)

aS which

finishes the proof.

We will essentially repeat the proof of Lemma 3.1.3 in the regular case. Recall that N(yα+1) ∩ A ∩

Mα+1 \Mα is infinite. First, find a path R of order type ω in Mα+1 \ (Mα ∪ {xα, yα}) so that

|R ∩NG(yα+1) ∩ A ∩Mα+1 \Mα| ≥ ω

and R starts at a point r so that |NG(r) ∩ Aα+1 \ Aα| ≥ cf(ν) where ν = |Aα+1 \ Aα|. The only

difficulty here is to find such an r; if κ is limit we can use ♠κ to find a path Q ∈ Mα+1 concentrated

on A of size |Mα+1|+ and r can be chosen to be the first |cf(ν)|-limit of Q (note that ν < |Mα+1|+).

A finite segment of Q connects r to some r′ ∈ Q ∩ A and we continue to construct R from this finite

path. If κ is a successor then we must have κ = ν+ (by the definition of a nice sequence of models)

and note that |NG(yα+ν) ∩ A \Aα| ≥ cf(ν) for any α < κ. Reflecting this property into Mα+1 we find

y, x ∈Mα+1 \ (Mα ∪ {xα, yα}) so that {y, x} ∈ E, x ∈ A and |N(y)∩Aα+1 \Aα| ≥ cf(ν). We can start

R by y and x and connect the rest of the points using that A is κ-unseparable in Mα+1 \Mα.

Now, we construct S with the above required properties so that it has order type ν +ω and R is the

last ω many points of S. Indeed, ♠κ implies that G ↾ (V ∩Mα+1 \ (Mα ∪R ∪ {yα})) contains a path of

order type ν concentrated on Aα+1 \ Aα so by applying Lemma 3.1.3 we can find a path S′ starting at

xα, concentrated on A and of order type ν which covers Aα+1 \ (Aα ∪R) while NG(r) ∩ A is cofinal in

S′; we set S = S′aR which finishes the proof.

3.2 The existence of monochromatic paths

Our goal in this section is to find large monochromatic paths in certain edge coloured graphs G by

finding a set A ⊆ V (G) which satisfies all three conditions of Lemma 3.1.8.
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3.2.1 Preparations

As we stated in the introduction, we aim to deal with certain non-complete graphs:

Definition 3.2.1. We call a graph G = (V,E) κ-complete iff |V | ≥ κ and

|V \NG(x)| < κ

for all x ∈ V .

Let us start with some basic observations.

Observation 3.2.2. 1. Any κ-complete graph G = (V,E) is |V |-complete.

2. If G = (V,E) is κ-complete then any subset X ∈ [V ]κ spans a κ-complete subgraph.

Proof. (1) If G is κ-complete then |V | ≥ κ and hence |V \NG(x)| < κ ≤ |V | for all x ∈ V . Thus G is

|V |-complete.

(2) If X ⊆ V has size κ then |X \NG(x)| ≤ |V \NG(x)| < κ.

In order to carry out our proofs we need to introduce a class of graphs closely related to Hκ,κ.

Definition 3.2.3. We say that a graph G = (V,E) is of type Hκ,κ iff V = A ∪B where A = {aξ : ξ <

κ}, B = {bξ : ξ < κ} are 1-1 enumerations and

{a, b} ∈ E(G) if a = aξ, b = bζ for some ξ ≤ ζ < κ.

We will call A the main class of G and (A,B) with the inherited ordering is the Hκ,κ-decomposition

of G. As before, we use the notation G ↾ λ to denote G ↾ {aξ, bξ : ξ < λ}.

We will mainly apply this definition in two cases: when the classes A and B of the graph G of type

Hκ,κ are disjoint (i.e. G is isomorphic to the graph Hκ,κ) and when the main class equals V (G).

Observation 3.2.4. Suppose that G = (V,E) is a graph, A ∈ [V ]κ for some cardinal κ and A is the

increasing union of sets {Aα : α < cf(κ)} where |Aα| < κ and

|N [Aα]| = κ

for all α < cf(κ). Then there is a subgraph H of G of type Hκ,κ with main class A.

Proof. Find an enumeration A = {aξ : ξ < κ} so that for every ζ < κ there is αζ < cf(κ) with

{aξ : ξ ≤ ζ} ⊆ Aαζ
. Hence

|N [{aξ : ξ ≤ ζ}]| ≥ |N [Aαζ
]| = κ.

Now, we can inductively find vertices bζ ∈ N [{aξ : ξ ≤ ζ}] \ {bξ : ξ < ζ} for all ζ < κ and hence

A ∪ {bξ : ξ < κ} is the type Hκ,κ subgraph.

Observation 3.2.5. Suppose that G = (V,E) is of type Hκ,κ with main class V . Then there is a

κ-complete graph embedded in G.

Conversely, if G = (V,E) is a κ-complete graph of size κ then G is of type Hκ,κ with main class V .
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Proof. If (A,B) is the Hκ,κ decomposition of G then we have B ⊆ A = V and G ↾ B is the κ-complete

subgraph.

Second, suppose that G is κ-complete and list V in type κ as A = {aξ : ξ < κ}. If κ is regular then

N [{aξ : ξ < ζ}] has size κ for all ζ < κ hence Observation 3.2.4 finishes the proof.

If κ is singular then let us take an increasing, continuous and cofinal sequence {κα : α < cf(κ)} in

κ and let Aα = {aξ : ξ < κα, |V \N(aξ)| < κα} ∈ [V ]<κ. Note that V =
⋃

α<cf(κ)Aα is an increasing

union of sets of size < κ and N [Aα] has size κ. Again, Observation 3.2.4 can be applied to this new

enumeration which finishes the proof.

Observation 3.2.6. Suppose that H is of type Hκ,κ for some cardinal κ. Then there is a path of order

type κ which covers and is concentrated on the main class of H.

This result is trivial for the graph Hκ,κ, however we have to be somewhat cautious when the two

classes of H intersect.

Proof. Let A = {aξ : ξ < κ}, B = {bξ : ξ < κ} witness that H is of type Hκ,κ. We define an increasing

sequence of paths {Pα : α ∈ D} where D = {α < κ : α is a limit of limits} by induction on α such that

1. Pα is a path concentrated on A,

2. Pα ∩A is a cofinal subset of Pα,

3. Pα ⊆ H ↾ α+ ω + ω, and

4. Pα covers aα

for all α ∈ D.

Let us define P0 inductively as (p0n : n ∈ ω) where

p0n =







aln where ln = min{l ∈ ω : al /∈ {p0m : m < n}} if n is even,

bω+kn
where kn = min{k ∈ ω : bω+k /∈ {p0m : m < n}} if n is odd.

Suppose that Pα is defined for α < β where β ∈ D and let P<β =
⋃

{Pα : α ∈ β ∩D}. Let

δ = min{ζ ∈ κ : (P<β ∪ {aβ}) ⊆ H ↾ ζ}.

It is easy to see that δ ≤ β. Observe that P<β
a(bδ+ω) is a path concentrated on A. Let

P−
β =







P<β
a(bδ+ω) if aβ ∈ P<β

a(bδ+ω)

P<β
a(bδ+ω , aβ, bδ+ω+1) if aβ /∈ P<β

a(bδ+ω).

By induction on n < ω, define

pβn =







aδ+ln where ln = min{l ∈ ω : aδ+l /∈ P−
β ∪ {pβm : m < n}} if n is even,

bδ+ω+kn
where kn = min{k ∈ ω : bδ+ω+k /∈ P−

β ∪ {pβm : m < n}} if n is odd.

We let

Pβ = P−
β

a(pβn)n∈ω.
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Finally, set P =
⋃

{Pα : α ∈ D} and note that P is a path concentrated on A which also covers A.

Let (IH)κ,r denote the statement that

for any r-edge colouring of a graph G of type Hκ,κ with main class A, there is an X ⊆ A of size κ

and i < r so that X satisfies all three conditions of Lemma 3.1.8 in colour i.

Let (IH)κ denote

(IH)κ,r holds for all r ∈ ω.

Note that in Lemma 1.3.5 we showed that (IH)ω holds. Furthermore:

Observation 3.2.7. For any G of type Hκ,κ, the main class of G satisfies all three conditions of Lemma

3.1.8. In particular, (IH)κ,1 holds for all κ.

Proof. Fix G of type Hκ,κ with main class A = {aξ : ξ < κ} and second class B = {bξ : ξ < κ}; we

suppose κ > ω. A is clearly κ-unseparable and ♠κ is satisfied by Observation 3.2.6 and Observation

3.1.7. Now, for the third property take any nice sequence of elementary submodels (Mα)α<cf(κ) covering

A with A,G ∈M1 and suppose that the enumeration {aξ : ξ < κ} is also in M1. Let xβ = aξβ , yβ = bξβ
where ξβ = min(κ \Mβ).

Now {xβ, yβ} ∈ E, xβ , yβ ∈Mβ+1 \Mβ and we need to show that

|N(yβ) ∩A ∩Mβ \Mα| ≥ ω

for all α < β. Fix α < β and look at ξα = min(κ \Mα). As ξα < ξα + ω < ξβ , we get that

{aξα+i : i < ω} ⊆ N(yβ) ∩ A ∩Mβ \Mα.

From now on in this section, we work towards showing that (IH)κ holds for all κ.

3.2.2 The first main step

We wish to determine if a subset A of an edge coloured graph satisfies condition (3) of Lemma 3.1.8 in

a given colour.

Lemma 3.2.8. Let κ be an uncountable cardinal. Suppose that c is an r-edge colouring of a graph

G = (V,E) of type Hκ,κ with Hκ,κ-decomposition (A,B). If i < r then either

(a) A satisfies condition (3) of Lemma 3.1.8 in colour i, or

(b) there is Ã ∈ [A]<κ so that A \ Ã is covered by a graph H of type Hκ,κ with main class A \ Ã so that

i /∈ ran(c ↾ E(H)).
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We need the following claims:

Claim 3.2.9. Suppose that κ ≥ cf(κ) = µ > ω, c is an r-edge colouring of a graph G = (V,E) of

type Hκ,κ with Hκ,κ-decomposition (A,B). Suppose that {Mα : α < µ} is a nice κ-chain of elementary

submodels covering V with G,A,B, c ∈M1. If i < r then either

(a) there is a club C ⊆ µ so that for every β ∈ C there is xβ ∈ A\Mβ, yβ ∈ B\Mβ such that c(xβ , yβ) = i

and

|N(yβ , i) ∩ A ∩Mβ \Mα| ≥ ω

for all α < β, or

(b) there is Ã ∈ [A]<κ so that A \ Ã is covered by a graph H of type Hκ,κ with main class A \ Ã so that

i /∈ ran(c ↾ E(H)).

Proof. Suppose that (a) fails i.e. there is a stationary set S ⊂ µ so that for all β ∈ S and x ∈ A\Mβ, y ∈

B \Mβ with c(x, y) = i we have

|N(y, i) ∩ A ∩Mβ \Mα| < ω

for some α < β.

Let G6=i = (V, c−1(r \ {i})). Note that

Observation 3.2.10. If there is an α ∈ S and λ < κ so that

|B ∩N(x, i)| ≤ λ

for every x ∈ A \Mα then (b) holds with Ã = A ∩Mα.

Indeed, we can apply Observation 3.2.4 to A \ Ã in the graph G6=i.

Otherwise, we distinguish two cases:

Case 1: κ is regular. Recall that we have Mα ∩ κ ∈ κ and hence x ∈ A ∩Mα, y ∈ B \Mα implies

{x, y} ∈ E.

Select xβ ∈ A \Mβ and yβ ∈ B \Mβ with c(xβ , yβ) = i; this can be done by Observation 3.2.10.

Hence

|N(yβ , i) ∩ A ∩Mβ \Mα| < ω

for some α < β. That is, there is α(β) < β so that

N(yβ, i) ∩A ∩Mβ ⊂Mα(β)

for all β ∈ S ∩ lim(ω1) (where lim(ω1) denotes the set of limit ordinals in lim(ω1)).

Apply Fodor’s pressing down lemma to the regressive function β 7→ α(β) on the stationary set

S ∩ lim(ω1) and find stationary T ⊆ S ∩ lim(ω1) and α̃ ∈ κ so that α(β) = α̃ for all β ∈ T . It is easy

to see that (b) is satisfied with Ã = A ∩Mα̃. Indeed, if x ∈ Aα = A ∩Mα \ Ã and β ∈ T \ α then

{x, yβ} ∈ E and c(x, yβ) 6= i (for any α ∈ κ \ α̃). In turn

|NG 6=i
[Aα]| ≥ |{yβ : β ∈ T \ α}| ≥ κ.

Hence we can apply Observation 3.2.4 to A \ Ã in G6=i.
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Case 2: κ is singular. Recall that κα = |Mα| is a strictly increasing cofinal sequence of cardinals

in κ \ cf(κ). Select xβ ∈ A \Mβ and find Yβ ∈ [B \Mβ]
κ+

β so that Yβ ⊆ N(xβ , i) for each β ∈ S; this

can be done by Observation 3.2.10. We can suppose, by shrinking Yβ , that there is a finite set Fβ and

α(β) < β with

Fβ = N(y, i) ∩ A ∩Mβ \Mα(β)

for all y ∈ Yβ . The importance here is that α(β) and N(y, i) ∩ A ∩Mβ \Mα(β) does not depend on

y ∈ Yβ which can be done as there are only |β| choices for α(β) and κβ choices for Fβ while κ+β choices

for y ∈ Yβ .

Apply Fodor’s pressing down lemma to the regressive function β 7→ α(β) and find a stationary T ⊆ S

and α̃ ∈ cf(κ) so that α(β) = α̃ for all β ∈ T . Let Ã = (A∩Mα̃)∪
⋃

{Fβ : β ∈ T } and note that |Ã| < κ.

As before, if x ∈ Aα = A∩Mα \ Ã and β ∈ T \α then {x, y} ∈ E and c(x, y) 6= i for any y ∈ Yβ and

α ∈ κ \ α̃. In turn

|NG 6=i
[Aα]| ≥ |

⋃

{Yβ : β ∈ T \ α}| ≥ κ.

Hence we can apply Observation 3.2.4 to A \ Ã in G6=i.

Claim 3.2.11. Suppose that κ > ω = cf(κ) and c is an r-edge colouring of a graph G = (V,E) of

type Hκ,κ with Hκ,κ-decomposition (A,B). Suppose that {Mn : n ∈ ω} is a nice κ-chain of elementary

submodels covering V with G,A,B, c ∈M1. If i < r then either

(a) there is an increasing sequence {nk : k ∈ ω} ⊆ ω with n0 = 0 such that for all k < ω there is

xk ∈ A \Mnk+1
, yk ∈ B \Mnk+1

with c(xk, yk) = i and

|N(yk, i) ∩A ∩Mnk+1
\Mnk

| ≥ ω,

or

(b) there is Ã ∈ [A]<κ so that A \ Ã is covered by a graph H of type Hκ,κ with main class A \ Ã so that

i /∈ ran(c ↾ E(H)).

Proof. Suppose that (a) fails; hence there is an ℓ ∈ ω such that for every x ∈ A \Mn, y ∈ B \Mn with

c(x, y) = i we have

|N(y, i) ∩ A ∩Mn \Ml| < ω

for all n ∈ ω \ ℓ.

Observation 3.2.12. If there is n ∈ ω and λ < κ so that N(x, i) ≤ λ for all x ∈ A \Mn then (b) holds

with Ã = A ∩Mn.

Indeed, we can apply Observation 3.2.4 to A \ Ã in the graph G6=i = (V, c−1(r \ {i})).

Otherwise, we can select x ∈ A \Mn and Yn ∈ [Mn \Mℓ]
|Mn|

+

with Yn ⊂ N(xn, i) for all n ∈ ω \ ℓ.

We can suppose, by shrinking Yn, that there is a finite an ⊂ A ∩Mn so that

N(y, i) ∩A ∩Mn \Mℓ = an

for all y ∈ Yn. Let Ã = (A ∩Mℓ) ∪
⋃

{an : n ∈ ω \ ℓ}. As before, in Case 2 of the proof of Claim 3.2.9,

applying Observation 3.2.4 to A \ Ã in G6=i finishes the proof.
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Hence, we arrived at the

Proof of Lemma 3.2.8. Assume that (b) fails in Lemma 3.2.8. Hence condition (b) of Claim 3.2.11 (if

cf(κ) = ω) or 3.2.9 (if cf(κ) > ω) fails for colour i. In turn, we have a nice sequence of elementary

submodels satisfying condition (3) of Lemma 3.1.8 in colour i by condition (a) of Claim 3.2.11 or 3.2.9.

3.2.3 The second main step

Now, we would like to determine if, in an edge coloured graph of type Hκ,κ, a κ-unseparable subset

satisfies ♠κ in some colour.

Lemma 3.2.13. Let κ be an infinite cardinal. Suppose that c is an r-edge colouring of a graph G =

(V,E) of type Hκ,κ with Hκ,κ-decomposition (A,B). Let I ∈ [r]<r, X ∈ [A]κ and suppose that X is

κ-unseparable in all colours i ∈ I. If (IH)λ holds for λ < κ then either

(a) there is an i ∈ I such that X satisfies ♠κ,i, or

(b) there is X̃ ∈ [X ]<κ and a partition {Xj : j ∈ r \ I} of X \ X̃ such that

|N(x, j) ∩N(x′, j) ∩B| = κ

for all x, x′ ∈ Xj and j ∈ r \ I.

In particular, the sets Xj given by condition (b) are κ-unseparable in colour j in Xj ∪B.

Moreover, if B ⊂ X then there is j ∈ I \ r so that Xj is κ-connected in colour j.

The proof of Lemma 3.2.13 (at the end of Section 3.2.3) will be achieved through a series of claims

below. The main application of Lemma 3.2.13 is in the proof of Theorem 3.2.20.

Definition 3.2.14. Suppose that λ is a cardinal, G = (V,E) is graph with an r-edge colouring c. A

λ-configuration in colours I ⊆ r is a pairwise disjoint family X = {aξ : ξ < λ} ⊂ [V ]<ω and points

Y = {yξ : ξ < λ} such that

yζ ∈
⋃

{N(x, i) : x ∈ aξ, i ∈ I}

for all ξ ≤ ζ < λ.

Claim 3.2.15. Suppose that λ is a cardinal, G = (V,E) is graph with an r-edge colouring c. Let X ,Y

be a λ-configuration in colours I ⊆ r. Suppose that for each i ∈ I there is Yi ⊆ V so that
⋃

X is

λ-unseparable in colour i inside Vi =
⋃

X ∪ Yi.

Then (IH)λ,|I| implies that there is an i ∈ I and a path P in colour i concentrated on
⋃

X which is

inside Vi and has order type λ.

Proof. Let X = {aξ : ξ < λ} and Y = {yξ : ξ < λ} denote the λ-configuration. By setting a′ξ =
⋃

{aξ+i :

i < |I| + 1} and y′ξ = yξ+|I|+1 for ξ < λ limit we get that for all limit ordinals ξ ≤ ζ < λ there is an

i ∈ I so that

|{x ∈ a′ξ : c(x, y
′
ζ) = i}| ≥ 2.
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As {a′ξ : ξ < λ limit}, {y′ξ : ξ < λ limit} is also a λ-configuration in colours I, we will suppose that the

original λ-configuration had this property already.

Also, by thinning out, we can suppose that
⋃

X ∩Y = ∅ and for all i ∈ I, ξ < λ and x, x′ ∈ aξ there

are λ many disjoint finite i-monochromatic paths in Vi from x to x′ which avoid Y and all other points

of
⋃

X .

Define a colouring of the graph Hλ,λ by

d((ξ, 0), (ζ, 1)) = i iff |{x ∈ aξ : c(x, yζ) = i}| ≥ 2

and i is minimal such. Note that d is well defined by our previous preparation. Now (IH)λ,|I| implies

that there is a path Q of colour i and size λ concentrated on the main class of Hλ,λ for some i ∈ I.

Subclaim 3.2.16. There is a path P of colour i and order type λ in G ↾ Vi concentrated on
⋃

X .

Proof. Let Q = {qν : ν < λ} witness the path ordering; recall that each point qν in Q corresponds to

a finite set aξ(ν) or a single vertex {yξ(ν)} from the λ-configuration and we identify qν with this set.

Moreover, qν must be of the form yξ(ν) for every limit ν < λ as Q is concentrated on the main class of

Hλ,λ.

Our goal is to define disjoint finite paths Rν of colour i in G ↾ Vi so that qν ⊂ Rν while the

concatenation (Rν : ν < λ) gives a path of colour i in G ↾ Vi.

Construct (Rν : ν < λ) by induction on ν < λ so that

(i) Rν is a finite path of colour i in G ↾ Vi and Rν ∩ (
⋃

X ∪ Y) = qν ,

(ii) Rν ∩Rµ = ∅ if ν < µ < λ,

(iii) Rν = qν if qν = {yξ(ν)},

moreover, if qν = aξ(ν) then ν = µ+ 1 and we make sure that

(iv) the first point of Rν is a vertex v ∈ aξ(ν) so that c(v, yξ(µ)) = i, and

(v) the last point of Rν is a vertex w ∈ aξ(ν) so that c(w, yξ(ν+1)) = i.

b byξ(µ) yξ(ν+1)

v wb b

aξ(ν)Rν

Figure 3.3: Constructing Rν .

If we can achieve this, (Rν : ν < λ) gives a path of colour i concentrated on A.

Note that the only difficulty in this construction is to satisfy the last two requirements; indeed, we

always have λ many disjoint finite paths of colour i connecting two arbitrary points of any aξ (avoiding

all other points in question).
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How to find the first and last point of Rν if qν = aξ(ν)? As ν = µ + 1 for some µ < λ and by the

definition of a path and the colouring d on Hλ,λ we have

c(v, yξ(µ)) = i for some v ∈ aξ(ν)

and we pick a single such v ∈ aξ(ν) which in turn satisfies (iv) above.

Second, d(qν , qν+1) = i hence {x ∈ aξ(ν) : c(x, yξ(ν+1)) = i} has at least two elements so we can pick

w ∈ {x ∈ aξ(ν) : c(x, yξ(ν+1)) = i} \ {v}

which will satisfy (v) above.

Claim 3.2.17. Let κ be an infinite cardinal and λ ≤ cf(κ). Suppose that c is an r-edge colouring of a

graph G = (V,E) of type Hκ,κ with Hκ,κ-decomposition (A,B) and let I ⊂ r. If for every Ã ∈ [A]<λ

there is a ∈ [A \ Ã]<ω so that

|B \
⋃

{N(x, i) : x ∈ a, i ∈ I}| < κ

then there is a λ-configuration X ,Y in colours I so that
⋃

X ⊆ A.

Proof. We build the sequences X = {aξ : ξ < λ} and Y = {yξ : ξ < λ} inductively so that

|B \
⋃

{N(x, i) : x ∈ aξ, i ∈ I}| < κ

for all ξ < λ. Given {aξ : ξ < ζ} and {yξ : ξ < ζ} we set Ã =
⋃

{aξ : ξ < ζ}. Our assumption gives a

finite set aζ ∈ [A \ Ã]<ω so that

|B \
⋃

{N(x, i) : x ∈ aζ , i ∈ I}| < κ.

As Xζ =
⋃

{aξ : ξ ≤ ζ} has size < λ ≤ cf(κ), Xζ is contained in an initial segment of the Hκ,κ

ordering. In turn,

|N [Xζ ]| = κ.

Finally, as |Xζ | < κ, the set

Yζ = {y ∈ N [Xζ ] : ∀ξ ≤ ζ : y ∈
⋃

{N(x, i) : x ∈ aξ, i ∈ I}}

has size κ. Picking yζ ∈ Yζ \ {yξ : ξ < ζ} finishes the proof.

Claim 3.2.18. Suppose that c is an r-edge colouring of a graph G = (V,E) of type Hκ,κ with Hκ,κ-

decomposition (A,B). Let I ⊆ r and X ⊆ A. If

|B \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κ

for all a ∈ [X ]<ω then there is a partition {Xj : j ∈ r \ I} of X so that

|N(x, j) ∩N(x′, j) ∩B| = κ
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for all x, x′ ∈ Xj and j ∈ r \ I.

In particular, the sets Xj are κ-unseparable in colour j in Xj∪B and if B ⊆ X then there is j ∈ I \r

so that Xj is κ-connected in colour j.

Proof. Take a uniform ultrafilter U on B so that

B \
⋃

{N(x, i) : x ∈ a, i ∈ I} ∈ U

for all a ∈ [X ]<ω. Define Xj = {x ∈ X : N(x, j) ∈ U} for j < r and note that Xj = ∅ if j ∈ I while

{Xj : j ∈ r \ I} partitions X .

It is clear that

|N(x, j) ∩N(x′, j) ∩B| = κ

for all x, x′ ∈ Xj and j ∈ r \ I and hence Xj is κ-unseparable in colour j. Furthermore, if B ⊆ X then

there is a j ∈ r \ I so that Xj ∩B ∈ U and hence Xj is κ-connected in j as

|N(x, j) ∩N(x′, j) ∩Xj | = κ

for all x, x′ ∈ Xj .

Claim 3.2.19. Suppose that H is of type Hκ,κ with classes A,B and λ < κ. If there is no λ-configuration

X ,Y with
⋃

X ⊆ A then there is Ã ∈ [A]<κ so that

|B \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κ

for all a ∈ [A \ Ã]<ω.

Proof. First, suppose that κ = cf(κ). Apply Claim 3.2.17 to the graph H and λ = κ and find Ã ∈ [A]<κ

so that

|B \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κ

for all a ∈ [A \ Ã]<ω.

Second, suppose that κ > cf(κ) and fix an increasing cofinal sequence of regular cardinal (κα)α<cf(κ)

in κ so that κ0 > λ. Let Hα denote H ↾ κα; Hα is a graph of type Hκα,κα
and let Aα, Bα denote the

two classes. Note that Hα still has no λ-configuration in colours I and hence we can apply Claim 3.2.17

to the graph Hα with λ < κα: there is Ãα ∈ [Aα]
<λ so that

|Bα \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κα

for all a ∈ [Aα \ Ãα]
<ω.

Let Ã =
⋃

{Ãα : α < cf(κ)} and note that |Ã| ≤ cf(κ)·λ < κ. Now, if a ∈ [A\Ã]<ω then a ⊆ Aα\Ãα

for any large enough α < cf(κ) and hence

|Bα \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κα

for any large enough α < cf(κ). In turn

|B \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κ.
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Proof of Lemma 3.2.13. Suppose that condition (a) fails. In particular, for all i ∈ I there is λi < κ and

X∗
i ⊂ A of size less than κ so that there is no path of colour i concentrated on X and order type λi

disjoint from X∗
i . Let λ = max{λi : i ∈ I} and X∗ =

⋃

{X∗
i : i ∈ I}. Now, there is no path of colour

i ∈ I and of order type λ in X \X∗ concentrated on X .

Now find a graph H of type Hκ,κ in G with main class X \X∗ and second class B′; this can be done

by Observation 3.2.4. As (IH)λ,|I| holds, Claim 3.2.15 implies that there is no λ-configuration X ,Y with
⋃

X ⊆ X \X∗.

Apply Claim 3.2.19 in H and find Ã ∈ [X \X∗]<κ so that

|B′ \
⋃

{N(x, i) : x ∈ a, i ∈ I}| = κ

for all a ∈ [X \ (X∗ ∪ Ã)]<ω. Hence Claim 3.2.18 applied to X \ (X∗ ∪ Ã) provides the desired partition

and hence clause (b) of Lemma 3.2.13.

3.2.4 The existence of monochromatic paths

We arrived at our first main result which shows, together with Lemma 3.1.8, the existence of large

monochromatic paths in edge coloured graphs of type Hκ,κ:

Theorem 3.2.20. (IH)κ holds for all infinite κ. In particular, if G is a graph of type Hκ,κ with a

finite-edge colouring then we can find a monochromatic path of size κ concentrated on the main class of

G.

Proof. We prove (IH)κ,r by induction on κ and r ∈ ω. (IH)ω holds by Theorem 1.3.7 so we suppose

that κ > ω. Also, (IH)κ,1 holds by Observation 3.2.7.

Now fix an r-edge colouring of a graph G of type Hκ,κ with Hκ,κ-decomposition (A,B).

First, we can suppose that any X ∈ [A]κ satisfies condition (3) of Lemma 3.1.8 in all colours. Indeed,

given X we can find a graph H0 of type Hκ,κ in G with main class X (by applying Observation 3.2.4).

Given any colour i < r, Lemma 3.2.8 applied to H0 and colour i tells us that if X fails condition (3) of

Lemma 3.1.8 in colour i then we can find a graph H1 of type Hκ,κ (with main class X minus a set of

size < κ) which is only coloured by r \ {i}. Hence we can apply the inductive hypothesis (IH)κ,r−1 to

H1 which finishes the proof.

Now, find a maximal I ⊆ r so that there is X ∈ [A]κ such that X is κ-unseparable in all colours

i ∈ I. Fix such an I and X . The following claim finishes the proof.

Claim 3.2.21. There is i ∈ I such that ♠κ,i holds for X.

Proof. Suppose that X fails ♠κ,i for all i ∈ I. If |I| < r then apply Lemma 3.2.13 in G to the set X and

set of colours I. As X fails ♠κ,i for all i ∈ I, condition (b) of Lemma 3.2.13 must hold; in turn, there is

a colour j ∈ r \ I and a set Xj ∈ [X ]κ so that Xj is κ-unseparable in colour j as well. The fact that Xj

is κ-unseparable in each colour i ∈ I ∪ {j} contradicts the maximality of I.

Hence I = r must hold. Now, for each i < r there is λi < κ and A∗
i ⊂ A of size less than κ so that

there is no path of colour i concentrated on X which has order type λi and is disjoint from A∗
i . Let

λ∗ = max{λi : i < r} and A∗ =
⋃

{A∗
i : i < r}. Now, there is no path of colour i < r and of order type
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λ∗ which is concentrated on X and is disjoint from A∗. There is a graph H of type Hκ,κ in G with main

class X \A∗ (by Observation 3.2.4) and the initial segment H ↾ λ∗ is of type Hλ∗,λ∗ . As (IH)λ∗,r holds,

we can find a path of type λ∗ in H ↾ λ∗ which is concentrated on the main class and hence on X . This

path is also disjoint from A∗ which contradicts our previous assumption.

3.3 The first decomposition theorem

Our goal now is to prove a path decomposition result for a large class of bipartite graphs which contains

Hκ,κ.

Definition 3.3.1. Suppose that G = (V,E) is a graph, A ⊆ V and κ is a cardinal. We say that A is

(A, κ)-centered (in G) iff A = {(Ai
α)α<λi

: i ∈ I} is a finite set of increasing covers of A and

|NG

[

⋂

i∈I

Ai
αi

]

| ≥ κ

for all (αi)i∈I ∈ Πi∈Iλi.

In this section, A will always denote a finite set of increasing families (indexed by I) and
−→
λ = (λi)i∈I

denotes the length of these families.

Given A and −→α = (αi)i∈I ∈ Π
−→
λ we will write [−→α ]A for

⋂

i∈I A
i
αi
. We call sets of the form [−→α ]A an

A-box. Furthermore, −→α ≤
−→
β will stand for αi ≤ βi for all i ∈ I.

Note that if A is (∅, κ)-centered then |NG[A]| = κ. Also, the main class of a graph G of type Hκ,κ is

clearly (A, κ)-centered where A is a single increasing cover formed by the initial segments of the Hκ,κ

ordering.

Our final goal in this section is to prove the following:

Theorem 3.3.2. Suppose that G = (V,E) is a bipartite graph on classes A,B where |A| = κ. Suppose

that A is (A, κ)-centered for some A. Then for any finite edge colouring of G, A is covered by disjoint

monochromatic paths of different colours.

We start with basic observations:

Observation 3.3.3. Suppose that A is (A, κ)-centered in a graph G and −→α ,
−→
β ∈ Π

−→
λ .

1. If −→α ≤
−→
β then [−→α ]A ⊆ [

−→
β ]A and hence NG[[

−→
β ]A] ⊆ NG[[

−→α ]A];

2. NG[[
−→γ ]A] ⊆ NG[[

−→α ]A] ∩NG[[
−→
β ]A] for γ = max≤{

−→α ,
−→
β };

3. for every finite F ⊆ A there is an A-box Z covering F .

In particular, any two points of A are joined by κ-many disjoint paths of length 2 and hence A is

κ-unseparable.

Given a set of increasing covers A = {(Ai
α)α<λi

: i ∈ I} of A and X ⊆ A we write A ↾ X for

{(Ai
α ∩X)α<λi

: i ∈ I}.

Observation 3.3.4. Suppose that A is (A, κ)-centered in a graph G. Let X ⊆ A, −→α ∈
−→
λ and H denote

the subgraph in G spanned by X ∪NG[[
−→α ]A]. Then X is (A ↾ X,κ)-centered in H.
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Observation 3.3.5. Suppose that (Ãi
α)α<λ̃i

is a cofinal subsequence of (Ai
α)α<λi

for each i ∈ I. Let

A and Ã denote {(Ai
α)α<λi

: i ∈ I} and {(Ãi
α)α<λ̃i

: i ∈ I} respectively. Then a set of vertices A in a

graph G = (V,E) is (A, κ)-centered iff (Ã, κ)-centered.

In particular, we can always suppose that λi = cf(λi), each cover is strictly increasing and hence

λi ≤ |A|.

We say that a set of vertices Y ⊆ V is (A, κ)-dense iff

|Y ∩NG[[
−→α ]A]| ≥ κ

for all −→α ∈ Π
−→
λ .

Observation 3.3.6. Suppose that A is (A, κ)-centered in a graph G and Y ⊆ V is (A, κ)-dense. Then

1. Y ∩NG[[
−→α ]A] is (A, κ)-dense for all −→α ∈ Π

−→
λ ,

2. for any X ⊆ A, X is (A ↾ X,κ)-centered in G ↾ (X ∪ Y ).

Our first non-trivial result connects the previously developed theory of Hκ,κ to this new notion of

(A, κ)-centered subsets.

Lemma 3.3.7. Suppose that G = (V,E) is a bipartite graph on classes A,B where |A| = κ, and A is

(A, κ)-centered for some A. Then there is a copy H of the graph Hκ,κ with main class X ⊆ A.

Proof. We can suppose that λi = cf(λi) ≤ κ for all i ∈ I by Observation 3.3.5. Find a maximal J ⊆ I

such that there is αj < λj for j ∈ J so that X−1 =
⋂

j∈J A
j
αj

has size κ. Note that J might be empty in

which case X−1 = A. Note that X−1 =
⋃

{X−1 ∩ Ai
α : α < λi} is a union of sets of size < κ and hence

cf(κ) ≤ λi = cf(λi) for all i ∈ I \ J . Without loss of generality, I 6= J otherwise Kκ,κ embeds into G.

Let us fix J , αj and Aj
αj

as above.

First, suppose that κ is a limit cardinal and take a strictly increasing cofinal sequence (κξ)ξ<cf(κ) in

κ. Now inductively find (αi(ξ))i∈I\J ∈ Πi∈I\Jλi for ξ < cf(κ) so that (αi(ξ))i∈I\J ≤ (αi(ζ))i∈I\J and

Xξ = X−1 ∩
⋂

i∈I\J

Ai
αi(ξ)

has size at least κξ

for all ξ ≤ ζ < cf(κ).

Suppose (αi(ξ))i∈I\J is constructed for ξ < ζ. List I \ J as {i0, ..., im}. First, find αi0(ζ) ∈ λi0 \

sup{αi0(ξ) : ξ < ζ} such that

|X−1 ∩ A
i0
αi0

(ζ)| ≥ κ+m
ζ .

If we have αi0(ζ), ..., αik−1
(ζ) for some k < m so that

|X−1 ∩
⋂

l<k

Ail
αil

(ζ)| ≥ κ+m−k
ζ

then find αik(ζ) ∈ λik \ sup{αik(ξ) : ξ < ζ} so that

|X−1 ∩
⋂

l≤k

Ail
αil

(ζ)| ≥ κ+m−k−1
ζ .
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Let X =
⋃

{Xξ : ξ < cf(κ)} and note that Xξ has size < κ and |N [Xξ]| = κ since Xξ is an A-box

for each ξ < cf(κ). Observation 3.2.4 can be applied now to find a copy H of Hκ,κ with main class X .

If κ = µ+ we inductively find (αi(ξ))i∈I\J ∈ Πi∈I\Jλi for ξ < cf(κ) so that

Xξ = X−1 ∩
⋂

i∈I\J

Ai
αi(ξ)

has size µ

and Xξ ( Xζ for all ξ ≤ ζ < κ. First, note that λi = κ for all i ∈ I \ J . As before, suppose (αi(ξ))i∈I\J

is constructed for ξ < ζ and list I \ J as {i0, ..., im}. Fix x ∈ X−1 \
⋃

{Xξ : ξ < ζ}. Suppose we have

αi0(ζ), ..., αik−1
(ζ) for some k < m so that

|X−1 ∩
⋂

l<k

Ail
αil

(ζ)| = µ

and x ∈ X−1 ∩
⋂

l<k A
il
αil

(ζ). We claim that there is αik(ζ) ∈ κ \ sup{αik(ξ) : ξ < ζ} so that

|X−1 ∩
⋂

l≤k

Ail
αil

(ζ)| = µ

and x ∈ X−1 ∩
⋂

l≤k A
il
αil

(ζ). Indeed, we cannot write a set of size µ as an increasing union of µ+ sets of

size < µ.

Finally, let X =
⋃

{Xξ : ξ < κ}. As before, Xξ has size < κ and |N [Xξ]| = κ for each ξ < κ. Hence

Observation 3.2.4 can be applied to find a copy H of Hκ,κ with main class X .

The next lemma shows that the property of being “(A, κ)-centered for some A” is inherited by

subgraphs in a strong sense.

Lemma 3.3.8. Suppose that G = (V,E) is a bipartite graph on classes A,B and A is (A, κ)-centered

for some A. Suppose that H is a subgraph of G such that

|NG[x] \NH [x]| < κ

for all x ∈ X = V (H) ∩ A. Then there is a finite A′ ⊇ A ↾ X so that X is (A′, κ)-centered in H.

Proof. We define A′ by extending A ↾ X with at most two new covers depending on the size of X and

on κ being a limit or successor cardinal.

First, if X happens to have size κ then let (X0
α)α<cf(κ) be an increasing sequence of subsets of X of

size less than κ with union X . We put (X0
α)α<cf(κ) into A′ if |X | = κ.

Second, if κ is a limit cardinal then let us take a strictly increasing cofinal sequence (κα)α<cf(κ) in

κ and let

X1
α = {x ∈ X : |NG[x] \NH [x]| ≤ κα}

for α < cf(κ). We put (X1
α)α<cf(κ) into A′ as well if κ is a limit.

Let us show that A′ works. If Z ⊆ X is an A′-box then |Z| < κ and there is λ < κ such that

|NG[x] \NH [x]| ≤ λ for all x ∈ Z. In particular

|
⋃

x∈Z

NG[x] \NH [x]| ≤ |Z| · λ < κ.
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Also, |NG[Z]| = κ as Z is contained in an A-box. Hence the set

NH [Z] = NG[Z] \
(

⋃

x∈Z

NG[x] \NH [x]
)

has size κ.

Lemma 3.3.8 is the reason we work with this new class of bipartite graphs instead of Hκ,κ. Note that

if X is a subset of the main class of Hκ,κ then X is not necessarily covered by a subgraph isomorphic to

Hλ,λ for some λ ≤ κ.

The next lemma is our final preparation to the proof of Theorem 3.3.2.

Lemma 3.3.9. Suppose that G = (V,E) is a bipartite graph on classes A,B where |A| = κ and A is

(A, κ)-centered for some A. Let c be a finite edge colouring of G and suppose that G0 is a subgraph of

G with classes V (G0) ∩ A = A0 and V (G0) ∩B = B0. If

1. |A0| = κ and B0 is (A, κ)-dense in G, and

2. | ran(c ↾ E(G0))| is minimal among subgraphs of G satisfying (1)

then

3. for every i ∈ ran(c ↾ E(G0)) and every X ∈ [A0]
κ there is a set of κ independent edges {{xα, yα} :

α < κ} ⊆ c−1(i) so that {xα : α < κ} ⊆ X and {yα : α < κ} is (A, κ)-dense in G.

Proof. Suppose A = {(Ai
α)α<λi

: i ∈ I} and
−→
λ = (λi)i∈I as before. Again, we can suppose that Π

−→
λ

has size ≤ κ by Observation 3.3.5. Take a subgraph G0 of G which satisfies (1) and suppose that (3)

fails; we will show that | ran(c ↾ E(G0))| is not minimal i.e. (2) fails.

Let i ∈ ran(c ↾ E(G0)) and X ∈ [A0]
κ witness that condition (3) fails. Enumerate Π

−→
λ as {−→α (ξ) : ξ <

κ} such that each −→α ∈ Π
−→
λ appears κ times. Start inductively building independent edges {{xξ, yξ} :

ξ < ζ} ⊆ c−1(i) from X so that yξ ∈ B0 ∩ NG[[
−→α (ξ)]A]. There must be a ζ < κ such that we cannot

pick {xζ , yζ}. That is, every edge from X \ {xξ : ξ < ζ} to B0 ∩ NG[[
−→α (ζ)]A] \ {yξ : ξ < ζ} is not

coloured i. Let A1 = X \ {xξ : ξ < ζ} and B1 = B0 ∩ NG[[
−→α (ζ)]A] \ {yξ : ξ < ζ}. It is easy to see

that G1 = G0 ↾ A1 ∪ B1 satisfies (1); indeed, A1 has size κ and Observation 3.3.6 implies that B1 is

(A, κ)-dense in G. Finally, i /∈ ran(c ↾ E(G1)) implies | ran(c ↾ E(G1))| < | ran(c ↾ E(G0))| and we are

done.

Proof of Theorem 3.3.2. We prove the statement by induction on r ≥ 1 for every G = (V,E), A and c

simultaneously.

First, suppose r = 1. Lemma 3.3.7 implies that we can find a copy H of Hκ,κ in G with main class

X ⊆ A. Hence, by Theorem 3.2.20, there is a path P of size κ which is concentrated on X . As A is

κ-unseparable (by Observation 3.3.3) we can cover A by a single path in G using Lemma 3.1.3.

Now, suppose we proved the statement for r − 1 and fix G = (V,E), A and an r-edge colouring c.

We will show that there is a colour i < r and a path P of colour i in G such that A \ P is one class of a

bipartite subgraph G1 of G so that

(i) V (G1) ∩ P = ∅,
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(ii) i /∈ ran(c ↾ E(G1)),

(iii) A \ P is (A′, κ)-centered in G1 for some finite A′ ⊇ A.

Once we find such a path P and subgraph G1, applying the inductive hypothesis finishes the proof.

First, take a subgraph G0 of G with classes V (G0) ∩ A = A0 and V (G0) ∩B = B0 such that

1. |A0| = κ and B0 is (A, κ)-dense in G, and

2. | ran(c ↾ E(G0))| is minimal among subgraphs of G satisfying (1).

Find a partition of B0 into B0
0 and B1

0 so that both sets are (A, κ)-dense in G. Let Gl
0 = G0 ↾

(A0 ∪ Bl
0) and note that ran(c ↾ E(G1

0)) = ran(c ↾ E(G0)) by (2). Hence, by Lemma 3.3.9, for every

i ∈ ran(c ↾ E(G0)) and every X ∈ [A0]
κ there is a set of κ independent edges {{xα, yα} : α < κ} ⊆ c−1(i)

so that {xα : α < κ} ⊆ X and {yα : α < κ} ⊆ B1
0 is (A, κ)-dense in G.

Now, embed a copy H of Hκ,κ in G0
0 using Lemma 3.3.7. By Theorem 3.2.20, we can find i < r and

a set X in the main class of H which satisfies all three conditions of Lemma 3.1.8 in colour i. By (2),

there is a set of κ independent edges {{xα, yα} : α < κ} ⊆ c−1(i) in G1
0 so that {xα : α < κ} ⊆ X and

Y = {yα : α < κ} ⊆ B1
0 is (A, κ)-dense in G.

A A0

B0
0 B1

0

b b b

b b b

X

Y

edges of colour icopy of Hκ,κ

Figure 3.4: Preparing the cover of A.

Let

X̄ = X ∪ {x ∈ A : |NG(x, i) ∩ Y | = κ}.

Note that X̄ is still κ-unseparable in G.

Claim 3.3.10. There is Y1 ∈ [Y ]κ so that Y1 is (A, κ)-dense in G and

|NG(x, i) ∩ Y \ Y1| = κ

for all x ∈ X̄ \X.

Proof. The proof goes by an easy induction of length κ.

Note that X̄ still satisfies all three condition of Lemma 3.1.8 in V \ Y1 and |NG(x, i)∩ Y1| < κ for all

x ∈ A \ X̄ . Now find a path P of colour i in V \ Y1 which covers X̄; this can be done by Lemma 3.1.8.

Note that A \ P is (A ↾ A \ P, κ)-centered in G ↾ (A \ P ∪ Y1) and the subgraph

G1 = (A \ P ∪ Y1, c
−1(r \ {i}))
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satisfies the assumptions of Lemma 3.3.8. In particular, A \ P is (A′, κ)-centered for some finite

A′ ⊇ A in G1. This finishes the proof.

3.4 The main decomposition theorem

At this point, it would be rather easy to show (using Theorem 3.3.2) that every κ-complete graph is

covered by 2r (not necessarily disjoint) monochromatic paths. However, we prove the following much

stronger theorem which is the main result of this chapter:

Theorem 3.4.1. Suppose that c is a finite-edge colouring of a κ-complete graph G = (V,E). Then the

vertices can be partitioned into disjoint monochromatic paths of different colours.

Proof. We can suppose κ > ω. First, note that any κ-complete graph G = (V,E) is actually |V |-

complete; thus it suffices to prove the theorem for κ-complete graphs of size κ. The next arguments will

be reminiscent of the proof of Theorem 3.2.20.

Claim 3.4.2. Suppose that c is an r-edge colouring of G with r ∈ ω. Then there is A ∈ [V ]κ and i < r

so that A is κ-connected in colour i < r and satisfies ♠κ,i in G ↾ A at the same time.

Proof. Suppose there is no such A. By a finite induction, we construct sets A0 ⊇ A1 ⊇ . . . of size κ and

a 1-1 sequence i0, i1, . . . in r so that Ak is κ-connected in colour ik.

Suppose k = 0. As G is of type Hκ,κ with main class V (see Observation 3.2.5) we can apply Claim

3.2.18 with I = ∅ and X = V . We find a colour i0 and a set A0 of size κ which is connected in colour i0.

Suppose k < r − 1 and we defined Ak. As Aj must fail ♠κ,ij in G ↾ Aj for all j ≤ k, we have

A∗
j ∈ [Aj ]

<κ and λj < κ such that there is no path P in colour ij in G ↾ Aj \A∗
j which is concentrated

on Aj and has order type λj . Set A∗ =
⋃

{A∗
j : j ≤ k} and λ = max{λj : j ≤ k}. Note that

H = G ↾ (Ak \ A∗) is of type Hκ,κ with main class Ak \ A∗ and there is no λ-configuration in colours

I = {ij : j ≤ k} inside H . Indeed, otherwise Claim 3.2.15 would imply that there is a path of type λ

in colour ij inside in G ↾ Aj \ A∗
j for some j ≤ k (recall that Ak \ A∗ is κ-unseparable in colour ij in

G ↾ Aj \ A∗
j ). Hence, Claim 3.2.19 and 3.2.18 implies that we can find a set Ak+1 ∈ [Ak]

κ and colour

ik+1 ∈ r \ {ij : j ≤ k} so that Ak+1 is κ-connected in colour ik+1.

Suppose we defined Ar−1. By assumption, Ar−1 fails ♠κ,i in G ↾ Ar−1 for all i < r. However,

Theorem 3.2.20 implies the existence of a monochromatic path of size κ in some colour i < r which in

turn implies that ♠κ,i must hold for some i < r by Observation 3.1.7.

Claim 3.4.3. There are sets A, Y ∈ [V ]κ and i < r so that Y ⊆ A and A\Z satisfies all three conditions

of Lemma 3.1.8 in colour i in G ↾ A \ Z for all Z ⊆ Y . Moreover, we can suppose that A is a maximal

κ-connected subset.

In particular, A \ Z is a single path of colour i for every choice of Z ⊆ Y by Lemma 3.1.8.

Proof. This claim is proved by induction on r. If r = 1 then let A = V and let Y ⊆ A such that A \ Y

and Y has size κ. Given Z ⊂ Y , we know that G ↾ (A \ Z) is κ-complete and hence of type Hκ,κ with

main class A \ Z. Hence, by Observation 3.2.7, A \ Z satisfies all three conditions of Lemma 3.1.8 in

G ↾ (A \ Z).
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Suppose that r > 1. Now, we can suppose that any set X ∈ [V ]κ satisfies condition (3) of Lemma

3.1.8 in G ↾ X in all colours i < r. Indeed, note that G ↾ X is of type Hκ,κ with main class X and

suppose X fails condition (3) of Lemma 3.1.8 in G ↾ X in some colour i < r. Now Lemma 3.2.8 implies

that there is X̃ ∈ [X ]<κ so that X \ X̃ is covered by a subgraph H of G ↾ X of type Hκ,κ with main class

X \ X̃ so that i /∈ ran(c ↾ E(H)). Without loss of generality V (H) ∩ X̃ = ∅ i.e. V (H) is the main class

of H . Hence Observation 3.2.5 implies that we can find a κ-complete subgraph G′ in H ; the inductive

hypothesis can be applied to G′ as i /∈ ran(c ↾ E(G′)).

Now, take A ∈ [V ]κ which is a maximal κ-connected subset in some colour i < r and satisfies ♠κ,i

in G ↾ A; this can be done by Claim 3.4.2. It is easy to see that we can find Y ∈ [A]κ so that A \ Z

is still κ-connected in colour i and satisfies ♠κ,i in G ↾ A \ Z for any Z ⊆ Y . Indeed, we construct Y

by an induction of length cf(κ): let {κα : α < cf(κ)} be a cofinal sequence of cardinals in κ (κα = λ

if κ = λ+) and let Aα ∈ [A]κα increasing so that A =
⋃

{Aα : α < cf(κ)}. Define sets Yα ∈ [A]κα ,

Wα ∈ [A]κα for α < cf(κ) so that Yα ∩Wβ = ∅ for all α, β < cf(κ) and

1. there are κα many disjoint paths of order type κα and colour i in G ↾Wα concentrated on A, and

2. for any u 6= v ∈ Aα, there are κα many disjoint paths of colour i from v to u in Wα ∪ {u, v}.

It is clear that Y =
⋃

{Yα : α < cf(κ)} is as desired. As A \ Y satisfies (3) of Lemma 3.1.8, we are done.

Find A, Y ⊂ V and i < r as in Claim 3.4.3 with A being a maximal κ-connected subset in colour

i. Let X = V \ Ā. Let H denote the bipartite subgraph of G on classes X,Y where {v, w} ∈ E(H) iff

v ∈ Y,w ∈ X and c(v, w) 6= i. Note that

|Y \NH(x)| < κ for all x ∈ X ;

otherwise Ā ∪ {x} is still κ-connected in colour i.

If K denotes the complete bipartite graph on classes X,Y then X is (∅, κ)-centered in K. Further-

more, the subgraph H of K satisfies the conditions of Lemma 3.3.8 and hence there is a finite A′ so that

X is (A′, κ)-centered in H .

By Theorem 3.3.2, there is a set of disjoint monochromatic paths Q in H which covers X ; recall

that i /∈ ran(c ↾ E(H)) and hence none of the paths in Q has colour i. Note that Z = ∪Q \ X ⊆ Y

and hence V \ ∪Q = Ā \ Z satisfies all three conditions of Lemma 3.1.8 in colour i in G ↾ (V \ ∪Q).

In particular, V \ ∪Q is a single path in colour i and hence Q ∪ {P} is a decomposition of V (G) into

disjoint monochromatic paths of different colours.

3.5 Open problems

It is a natural question if one can extend our result to infinite complete bipartite graphs:

Conjecture 3.5.1. Suppose that the edges of an infinite complete bipartite graph are coloured with r ∈ ω

colours. Then we can partition the vertices into 2r − 1 disjoint monochromatic paths.

Note that Theorem 3.3.2 implies that we can find a cover (not necessarily disjoint) by 2r monochro-

matic paths. Also, the conjecture holds for the countably infinite case by Theorem 2.4.1.
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3.5.1 Same problem, more colours

One can consider the monochromatic path decomposition problem when the edges of the complete graph

are coloured with infinitely many colours. There is a simple limitation of proving a monochromatic path

decomposition theorem, namely one might not be able to decompose the vertices into sets so that each

set is connected in some colour. This problem was investigated by A. Hajnal, P. Komjáth, L. Soukup

and I. Szalkai in [44]. Let’s say that a µ-decomposition of an edge coloured graph is a partition of the

vertices into µ sets so that each set is connected in some colour. The following was proved in [44]:

Theorem 3.5.2 ([44]). 1. If µ < ω and κ ≥ ω then there is a µ-decomposition for every µ-edge

colouring of Kκ.

2. Suppose GCH holds. If cf(κ) = µ+ then there is a µ-edge colouring of Kκ with no µ-decomposition.

3. Suppose MAκ holds. Then there is an ω-decomposition for every ω-edge colouring of Kκ.

4. If cf(κ) > 2µ then there is a µ-decomposition for every µ-edge colouring of Kκ.

5. It is consistent that 2ω is arbitrarily large and there is an ω-edge colouring of Kω1
with no ω-

decomposition.

A possible first step towards a general result could be looking at the following Ramsey-theoretic

problem: let P denote the class of cardinals κ such that for every edge colouring c : [κ]2 → ω of Kκ

there is a monochromatic path of size κ. It is easy to colour the edges of Kω1
with ω colours without

monochromatic cycles and hence ω1 /∈ P. Furthermore, note that if κ satisfies the partition relation

κ→ (κ)2ω then κ ∈ P hence many large cardinals are in P.

Problem 3.5.3. Can we prove that P is non empty in ZFC? If so, what is minP?

ω2 or c+ seem to be natural candidates for minP.
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The chromatic number and

obligatory subgraphs

4.1 A brief history of the problem

A fundamental problem of graph theory asks how large chromatic number affects structural properties

of a graph and in particular, is it true that a graph with large chromatic number has certain obligatory

subgraphs? Let us review some of the most important results.

The first result in this area is due to W. Tutte, alias Blanche Descartes [10] (and independently A.

Zykov [105]): a construction of triangle free graphs of arbitrary large finite chromatic number. This

result was significantly extended by Paul Erdős:

Theorem 4.1.1 ([15]). For any natural numbers k, l ∈ N there are graphs G of chromatic number ≥ k

such that any cycle in G has size ≥ l.

Tutte’s result extends to arbitrary infinite chromatic number [26] but can we generalize the Erdős’

theorem to graphs with uncountable chromatic number? Note that there is no difficulty in constructing

a graph G with Chr(G) = ω without small cycles; indeed, one takes disjoint copies of graphs Gk with

chromatic number ≥ k without cycles of a given size.

In 1966 in their seminal paper, P. Erdős and A. Hajnal proved the following:

Theorem 4.1.2 ([20, Corollary 5.6]). Every graph G with Col(G) > ω contains a copy of the complete

bipartite graph Kn,ω1
for each n ∈ ω.

We present a simple proof of this theorem in Corollary 4.2.4. A particular consequence is that a copy

of a four cycle embeds into G if Chr(G) > ω which is in striking contrast with the finite case and Erdős’

result. We mention that it was already shown in [20] that one can find graphs G with uncountable

chromatic number but without copies of Kω,ω. What can be said about odd cycles then?

Theorem 4.1.3 ([20, Theorem 7.4]). For each infinite κ and j ∈ ω, there is a graph G of chromatic

number and size κ such that G contains no cycles of length 2i+ 1 for 1 ≤ i ≤ j.

In particular, a finite graph H embeds into every graph G with uncountable chromatic/colouring

number if and only if H is bipartite. However, any graph G with Chr(G) > ω contains all sufficiently

large odd cycles [23, 97].

50
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Yet another consequence of Theorem 4.1.2 is that every uncountably chromatic graph G contains an

n-connected subgraph for each finite n (namely Kn,n). We will return to the connection of connectivity

and chromatic number in Chapter 5 and 6.

There is a lot more that can be said about finite subgraphs of graphs with uncountable chromatic

number, both results and open problems, but let us turn now to infinite obligatory subgraphs. A. Hajnal

and P. Komjáth proved in 1983 the following

Theorem 4.1.4 ([42, Theorem 1]). The graph Hω,ω+1 embeds into every graph G with Chr(G) > ω.

Again, this result is included in our Corollary 4.2.4. Also, note that every graph G with Chr(G) > ω

contains an infinite path (this was already proved in [20]) as Hω,ω+1 contains an infinite path. We

deal with generalizations of this fact in Section 4.3. Let us remark that Theorem 4.1.4 is sharp in the

following sense: Hω,ω+2 does not embed into every graph with uncountable chromatic number. This was

first shown using CH in [42, Theorem 3], later in ZFC [64, Theorem 10] and we present another ZFC

example in Section 6.5.

Let us recall a result of Komjáth from 1985 [56] which settles the obligatory subgraph problem for

graphs with Col(G) > ω.

Theorem 4.1.5 ([56, Theorem 3.1, Theorem 3.6]). There are bipartite graphs Γω,∆ω such that

1. Γω is countable, embeds into every graph G with Col(G) > ω and Γω contains each countable graph

with this property;

2. ∆ω has size ℵ1, embeds into every graph G with Col(G) > ω and ∆ω contains each graph sharing

this property.

The graphs Γω,∆ω resemble Hω,ω+1 in some sense but we omit their definitions as we will not use

this result. We lack such satisfactory results for the chromatic number.

Also in [56], it is proved that there are two simple operations which result in obligatory subgraphs

when applied to obligatory ones: if Γ embeds into every graph G with uncountable chromatic number

then so does ℵ1 disjoint copies of Γ and the graph Γ ∪
⋃

{Vx : x ∈ V (Γ)} where Vx are disjoint sets of

size ℵ1 and {x, y} is an edge for all x ∈ V (Γ), y ∈ Vx.

Lastly, we remark that work has already been done on the hard task of characterizing obligatory

substructures of uncountably chromatic triple systems [59, 43, 66].

This short introduction barely touched the immense and fascinating theory of graphs with uncount-

able chromatic number (not to speak of results on chromatic number of finite graphs); we return to

some open problems in Section 4.4. Finally, we refer the interested reader to the recent surveys by P.

Komjáth [61, 63] and S. Todorcevic [102] on various topics concerning infinite graphs and chromatic

number problems.

4.2 Classical results on obligatory subgraphs

Our goal in this section is to review the most important results on obligatory subgraphs of graphs with

uncountable chromatic number. In doing so, we provide simplified proofs to several classical results from

the literature.

Claim 4.2.1. Suppose that G = (V,E) is a graph, N ≺ H(θ) with G ∈ N and x ∈ V \N . Then
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1. NG[a] is uncountable for all a ∈ [NG(x) ∩N ]<ω,

2. if NG(x) ∩N is infinite then G contains a copy of Kn,ω1
for all n ∈ ω, a copy of Hω,ω+1 and an

infinite ω1-unseparable set.

Proof. Note that X =
⋂

{NG(y) : y ∈ a} ∈ N for any finite a ⊆ NG(x) ∩ N . |X | ≥ ω1 follows from

x ∈ X \N . This proves (1).

If NG(x) ∩ N is infinite then we can choose a ∈ [NG(x) ∩ N ]n for given n ∈ ω and (1) implies

the existence of Kn,ω1
in G. To build a copy of Hω,ω in G we inductively pick vertices vn, wn so

that vn ∈ NG(x) ∩ N \ {vm, wm : m < n} and wn ∈ NG[{vm : m ≤ n}] \ {wm : m < n}. The set

{vn, wn : n ∈ ω} is a copy of Hω,ω.

Finally, the infinite set NG(x) ∩ N is ω1-unseparable as any two points are joined by uncountable

many disjoint paths of length 2.

Erdős and Kakutani [25, Theorem 1] proved that κ = ω1 is the only uncountable cardinal such that

the edges of Kκ can be partitioned into countably many trees i.e. graphs without cycles. S. Todorcevic

proves that κ = ω1 is the only uncountable cardinal such that the edges of Kκ can be partitioned into

countably many graphs without infinite paths [101, Lemma 3.4.15 and 3.4.17]. Actually, the following

holds:

Corollary 4.2.2. κ = ω1 is the only uncountable cardinal such that the edges of Kκ can be partitioned

into countably many graphs without a copy of Hω,ω+1.

Proof. If κ = ω1 then we refer to the above cited [25, Theorem 1]. Alternatively, take any colouring

f : [ω1]
2 → ω such that f(·, β) : β → ω is 1-1 for each β < ω1.

Now, fix a colouring f : [ω2]
2 → ω and take an elementary submodel M of size ω1 so that f ∈ M .

Note that for any β ∈ ω2 \M there is n ∈ ω with

|{α ∈M : f(α, β) = n}| ≥ ω.

Applying Claim 4.2.1 finishes the proof.

Claim 4.2.3. If Col(G) > ω then there is an elementary submodel M with G ∈M so that

|NG(x) ∩M | ≥ ω

for some x ∈ V \M .

Proof. We can suppose that every G′ ⊂ G of size < |G| has countable colouring number by restricting

ourselves to a subgraph of G. Take a continuous chain of elementary submodels (Mα)α<κ covering G so

that G ∈M0 and Mα has size < |G|. Suppose that |NG(x) ∩Mα| < ω for all x ∈ V \Mα and we prove

that G has colouring number ≤ ω. By assumption, there is a well ordering ≺α on Vα = V ∩Mα+1 \Mα

witnessing that Col(G ↾ Mα+1 \Mα) ≤ ω. Let x ≺ y iff x ∈ Vα, y ∈ Vβ and α < β or x, y ∈ Vα and

x ≺α y. It is clear that ≺ witnesses Col(G) ≤ ω.

The following was first proved by Erdős, Hajnal [20, Corollary 5.6] and Hajnal, Komjáth [42, Theorem

1] respectively.
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Corollary 4.2.4. Every graph G with Col(G) > ω contains a copy of Kn,ω1
for all n ∈ ω and a copy

of Hω,ω+1.

Proof. Apply Claims 4.2.3 and 4.2.1.

As we already mentioned, these results are sharp: there are graphs G with Chr(G) > ω so that G has

no triangles nor copies of Hω,ω+2; this was proved first in [42, Theorem 3] from CH, then [64, Theorem

10] in ZFC and we present another example in Section 6.5.

Also, from Claims 4.2.3 and 4.2.1 we get the following:

Corollary 4.2.5. Every graph G with Col(G) > ω contains an infinite ω1-unseparable subset.

In Corollary 4.3.8, we show that there are graphs G with Col(G) > ω which contain no uncountable

ω1-unseparable subsets.

The following was proved by Erdős and Hajnal [20, Theorem 7.2]:

Theorem 4.2.6. Every graph G = (V,E) with Chr(G) > ω contains a graph H with Chr(H) > ω and

minimal degree ω.

Proof. We prove by contradiction: suppose Chr(G) > ω but the minimal degree of G ↾ U is finite for

every U ⊆ V with Chr(G ↾ U) > ω. Hence, we can build a well ordered set W = {vα : α < µ} for some

ordinal µ with the property that

|{β ∈ µ \ α : vβ ∈ NG(vα)}| < ω

for all α < µ and V \W is countably chromatic. Indeed, we inductively pick vertices vβ ∈ V \{vα : α < β}

so that |NG(vβ) ∩ V \ {vα : α < β}| < ω provided that the chromatic number of the induced subgraph

on V \ {vα : α < β} is uncountable.

To reach a contradiction it suffices to show that Chr(G ↾W ) ≤ ω. The next claim finishes the proof:

Claim 4.2.7. Suppose that a graph G on a well ordered vertex set W = {vα : α < µ} satisfies |{β ∈

µ \ α : vβ ∈ NG(vα)}| < ω for all α < µ. Then there is another well order ≺ on W with the property

that

|{w ∈ NG(v) : w ≺ v}| < ω

for all v ∈W .

Indeed, ≺ witnesses that Col(G ↾W ) ≤ ω and hence Chr(G ↾W ) ≤ ω by Fact 1.4.3.

Proof. First, note that ifM ≺ H(Θ) is an elementary submodel and G, {vα : α < µ} ∈M then the finite

set {vβ ∈ NG(vα) : β ∈ µ \ α} is an element and hence a subset of M for all α < µ such that vα ∈M .

Now take a sequence of countable elementary submodels (Mξ)ξ<µ covering W so that (vα)α<µ,

G ∈Mξ for all ξ < µ. Let M<ζ =
⋃

{Mξ : ξ < ζ} for ζ < µ.

Fix α < µ. Note that

NG↾W [vα] ∩M<ζ ⊆ {vβ ∈ NG(vα) : β ∈ µ \ α}

whenever vα /∈ M<ζ . Indeed, if vβ ∈ NG(vα) ∩Mξ (for some ξ < ζ) and vα /∈ Mξ then β > α by the

previous observation. Hence NG↾W [vα] ∩M<ζ is finite if vα /∈M<ζ .
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Finally, define a well order ≺ on W so that

1. W ∩Mζ \M<ζ has order type ≤ ω, and

2. v ∈M<ζ and w ∈W \M<ζ implies v ≺ w

for all ζ < µ. It is clear that ≺ satisfies the required property.

4.3 Paths and the chromatic number

Erdős and Hajnal proved that every graph G with Col(G) > ω contains an infinite path [20, Theorem

7.1]; note that this also follows from the fact that Hω,ω embeds into G. We wish to examine if this result

extends to longer paths.

Proposition 4.3.1. Hω,ω contains a path of order type ξ for all ξ < ω1.

Proof. Suppose Hω,ω has classes A,B. We need the following

Observation 4.3.2. There are pairwise disjoint An ⊂ A and Bn ⊂ B such that An ∪Bn is isomorphic

to Hω,ω.

We prove the proposition by induction on ξ < ω1 with the extra condition that if ξ is a successor

ordinal then we can find a path of order type ξ which extends to a path terminating in a point of A;

clearly, we can suppose that ξ > ω. If we are done for ξ then take An, Bn as in the observation and find

a path P of order type ≥ ξ in A0, B0, terminating in A0 if ξ is a successor. If ξ is a limit then B0 ∩ P

is cofinal in P and so any point of A1 is a valid continuation of P , i.e. Pa(x) is a path of order type

ξ + 1 for any x ∈ A1. If ξ is successor then we can further extend to a path of order type ξ + ω using

points for A1 ∪B1. Indeed, note that Bi ⊆
∗ NG(x) ∩NG(x

′)1 for all x, x′ ∈ A and i < ω. So we choose

xξ+2k ∈ A1 for k ∈ ω and let xξ+2k+1 ∈ B1 ∩N(xξ+2k) ∩N(xξ+2k+2).

Now suppose ξ is a limit and we proved the statement for all ζ < ξ. Take An, Bn as in the observation

and a cofinal ω-type sequence (ξn)n∈ω in ξ. Find paths Pn ⊂ A2n ∪ B2n of order type ξn + kn with

kn ∈ ω so that the starting and terminating point of Pn, say un, vn, are in A. Find a finite path Qn

from vn to un+1 so that Qn \ {un, vn+1} ⊂ A2n+1 ∪B2n+1. The set

P0 ∪Q0 ∪ P1 ∪Q1 ∪ . . .

is a path of order type ξ.

Corollary 4.3.3. If the edges of the complete graph on ω2 vertices are coloured with countably many

colours then we can find a monochromatic path of order type ξ for any ξ ∈ ω1.

Proof. Indeed, we can find a monochromatic copy of Hω,ω by Corollary 4.2.2 and hence monochromatic

paths of type ξ for any ξ ∈ ω1 by Proposition 4.3.1.

Corollary 4.3.4. Every graph G with Col(G) > ω contains a path of order type ξ for all ξ < ω1.

Proof. Again, as Hω,ω embeds into G if Col(G) > ω, we are done by Proposition 4.3.1.

1⊆∗ stands for contained modulo finite
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Naturally, we would like to see if these results extend to uncountable paths. First, we remark that

Observation 1.3.10 and Claim 4.2.1 has the following corollaries on subgraphs of uncountable paths:

Corollary 4.3.5. Every uncountable path P satisfies Col(P ) > ω and hence P contains a copy of Kn,ω1

for all n ∈ ω and a copy of Hω,ω+1.

Also, it is not hard to see that there are paths which are triangle-free and contain no copies ofHω,ω+2.

Second, note that Col(Kω,ω1
) = ω1 however Kω,ω1

contains no uncountable paths. Now, we show

that not even graphs with uncountable chromatic number necessarily contain uncountable paths. Let

us start by an easy observation:

Observation 4.3.6. Suppose that the tree T does not contain chains of size ω1. Then the comparability

graph G(T ) contains no ω1-unseparable subsets.

Proof. Take any A ∈ [T ]ω1 and find incomparable x, y ∈ T . It suffices to check that any finite path from

x to y intersects the countable set x↓ ∪ y↓ where

t↓ = {s ∈ T : s ≤ t}.

Indeed, the connected component of x in T \ x↓ contains only elements s with s ≥ x.

Corollary 4.3.7. If T is a non special tree with no uncountable chains then the graph G = G(T ) satisfies

Chr(G) > ω while G contains no uncountable ω1-unseparable subsets.

Recall that σQ = {s ⊆ Q : s is bounded and well ordered in Q} with s ≤ t iff s is an initial segment

of t is a non special tree with no uncountable chains. Hence

Corollary 4.3.8. If G = G(σQ) then |G| = 2ω, Chr(G) = ω1 while there are no uncountable

ω1-unseparable subsets of G; in particular, every path in G is countable.

Proof. G has uncountable chromatic number by Kurepa’s result and the mapping t → tp(t) ∈ ω1 is a

good colouring. Thus we are done by Corollary 4.3.7 and Observation 1.3.11.

Corollary 4.3.7 also gives several consistent examples of G with |G| = Chr(G) = ω1 without un-

countable paths, i.e. if T is a non special Aronszajn tree.

Next, we present a consistent example of a graph G which fails the consequence of Observation 1.3.10

but has uncountable chromatic number; in particular, G contains no uncountable paths. Recall that a

Hajnal-Máte graph G on ω1 is a graph G = (ω1, E) of uncountable chromatic number so that NG(α)∩α

is either finite or a cofinal increasing sequence of type ω in α.

Theorem 4.3.9. Suppose that ♦∗
S holds for a stationary, co-stationary S ⊂ ω1. Then there is a Hajnal-

Máte graph G (so Chr(G) = |G| = ω1) such that G contains no path of order type ω1.

Proof. Recall that ♦∗
S is the statement that there is sequence {Cα : α ∈ S} so that Cα ∈ [P (α)]ω and for

all X ⊂ ω1 there is a club C so that

C ∩ S ⊂ {α ∈ S : X ∩ α ∈ Cα}.

Without loss of generality, every α ∈ S is a limit ordinal.
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Now, construct a ladder Cα ⊂ α for all α ∈ S so that A ∩ Cα 6= ∅ if supA = α and A ∈ Cα. Our

graph is simply G = (ω1, E) with

E = {{δ, α} : δ ∈ Cα, α ∈ S}.

It is easy to see now that our graph G cannot contain a path of size ω1; indeed, ω1 \ S is stationary

and for all α ∈ ω1 \ S we have

|NG(β) ∩ α| < ω

for β ∈ ω1 \ α.

Let us prove now that Chr(G) > ω; it suffices to show that there is no stationary independent subset

of S. Indeed, if T ⊂ S is stationary then, by the definition of ♦∗
S , we can find a club C so that T ∩α ∈ Cα

for α ∈ C ∩ S. Fix any α ∈ T ′ ∩ T ∩ C; by the definition of Cα, we must have Cα ∩ T 6= ∅. I. e. if

δ ∈ Cα ∩ T then {δ, α} ∈ E is an edge in T .

In contrast, we prove the following

Theorem 4.3.10. Suppose that MAκ holds. Then every graph G with Chr(G) > ω and size < κ

contains a path of size ω1.

As the example G = Kω,ω1
shows, the assumption Col(G) > ω would not be sufficient.

Proof. We fix a graph G = (V,E) of size < κ and consider the poset

PG = {p ∈ Fn(V, ω, ω) : p is a good colouring}.

Recall that Fn(V, ω, ω) denotes the set of finite partial functions from V to ω. Now, either PG is ccc in

which case MAκ implies that Chr(G) ≤ ω or PG contains an uncountable antichain; we show that an

uncountable antichain in PG implies that G contains an uncountable path.

Fix an antichain A = {pξ : ξ < ω1} ⊂ PG. Let dξ = dom pξ and we can suppose that {dξ : ξ < ω1}

forms a delta system with kernel d, there is n ∈ ω with |dξ| = n and there is r ∈ Fn(V, ω, ω) with

pξ ↾ d = r for all ξ ∈ ω1. If there is ξ 6= ζ ∈ ω1 so that there are no edges between dξ \ d and dζ \ d then

pξ ∪ pζ ∈ PG. As A is an antichain, we have that there is an edges between dξ \ d and dζ \ d for any

ξ 6= ζ ∈ ω1.

It suffices to prove the following:

Lemma 4.3.11. Suppose that H is a graph and there is an uncountable family B ⊂ [V (H)]n of disjoint

sets for some n ∈ ω \ {0} such that there is an edge between b and b′ for all b 6= b′ ∈ B. Then H contains

an uncountable path.

Note that for n = 1 the statement is trivial as H contains a complete uncountable graph.

Proof. We actually prove the following slightly stronger statement: if there is Bi = {bξ,i : ξ ∈ ω1} for

i < 2 where bξ,i ∈ [V (H)]n pairwise disjoint and there is an edge between bξ,0 and bζ,1 for all ξ ≤ ζ < ω1

then H contains an uncountable path.

Consider the following edge colouring c of Hω1,ω1
(with vertices ω1 × 2) with finitely many colours:

c((ξ, 0), (ζ, 1)) = (i, j) ∈ n2
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iff there is an edge between the ith element of bξ,0 and the jth element of bζ,1 (and (i, j) is the minimal

such pair).

It should be clear that a monochromatic path in this edge coloured Hω1,ω1
gives a path in our original

graph H . Indeed, suppose P = {pν : ν < ω1} is a path in colour (i, j). For each ν there is ξ(ν) so that

pν = (ξ(ν), 0) or pν = (ξ(ν), 0). Let

qν =







the ith element of bξ(ν),0 if pν = (ξ(ν), 0),

the jth element of bξ(ν),1 if pν = (ξ(ν), 1).

The sequence Q = (qν)ν<ω1
is a path in H .

We mention the following result of Fremlin [27, Theorem 41H] (which does not imply the existence

of uncountable paths):

Theorem 4.3.12. Suppose that MAκ holds and the graph G = (V,E) has Chr(G) > ω and size < κ.

Then

1. there is an uncountable Y ⊆ V so that |NG[F ]| > ω for all F ∈ [Y ]<ω, and

2. Kω,ω1
embeds into G.

Either Theorem 4.3.12(1) or Theorem 4.3.10 implies the following:

Corollary 4.3.13. If MAκ holds and G is a graph with uncountable chromatic number and size < κ

then G contains an uncountable set which is ω1-unseparable.

Proof. Apply Theorem 4.3.10 and Observation 1.3.11.

4.4 Open problems on chromatic number and the subgraph

structure

We list some of the intriguing open problems on obligatory subgraphs in this section. A highly popular

problem of Erdős and Hajnal (see [17, 18, 24, 49]) is the following:

Problem 4.4.1. Suppose that f : N → N is increasing. Is it true that there is an uncountably chromatic

graph G such that every n-chromatic subgraph of G has at least f(n) vertices (for all n ≥ 3)?

P. Komjáth and S. Shelah used forcing and truly virtuoso combinatorial ideas to prove that the

answer to the above problem is consistently yes [65]. A similar situation is present with the following

problem of Erdős and Hajnal (see [17, 21, 22]):

Problem 4.4.2. Is there an uncountably chromatic graph which contains no triangle free uncountably

chromatic subgraphs?

In [64], Komjáth and Shelah showed that there is a range of forcings which give graphs with the

above property and hence the answer is consistently yes.

The finite counterpart of the beautiful Problem 4.4.2 is in fact completely open:
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Conjecture 4.4.3 ([16]). For every k, l ∈ N there exists f(k, l) ∈ N such that any graph with chromatic

number at least f(k, l) contains a subgraph of girth bigger than l and chromatic number at least k.

The only non-trivial advance is due to V. Rödl saying that f(k, 4) exists [79].

Let us mention another fascinating conjecture by Erdős:

Conjecture 4.4.4. Any two uncountably chromatic graphs have a common 4-chromatic subgraph.

The analogous statement for 3-chromatic subgraphs hold as every two uncountably chromatic graphs

contain an odd cycle of the same length by a result of Erdős, Hajnal, Shelah and Thomassen [23, 97].



Chapter 5

The chromatic number and

connectivity

Observe that any graph G with uncountable chromatic number contains a connected component H with

uncountable chromatic number. Furthermore, a graph G with uncountable chromatic number always

contains a copy of Kn,n and hence an n-connected subgraph for each n ∈ N. How much more can we

say about connected subgraphs of graphs with large chromatic number?

5.1 An overview of previous results

Erdős and Hajnal [20] asked if one can find subgraphs of large chromatic number and high connectivity

in graphs with large chromatic number. In particular, in [20] they ask if every graph with chromatic

number and size ω1 contains a subgraph of chromatic number ω1 which is ω-connected i.e. any two points

are connected by infinitely many pairwise disjoint paths. In 1985, Erdős and Hajnal asked if every graph

of chromatic number ω1 contains an uncountably chromatic ω-connected subgraph [22]; these problems

are included in the recent surveys [61] and [63] as well.

Most advances on these questions are due to Péter Komjáth. First, he proved

Theorem 5.3.1 ([55]). Every uncountably chromatic graph G contains n-connected uncountably chro-

matic subgraphs Hn for every n ∈ N.

The goal of this chapter is to provide a rather simple proof to this theorem in Section 5.3 by modern

methods, with the use of Davies-trees. We remark that Komjáth also proves in [55] that one can find

such subgraphs Hn which have minimal degree ω; we were not able to deduce this stronger result with

our tools.

Regarding infinitely connected subgraphs, he shows the following

Theorem 5.1.1 ([57]). Suppose V |= CH and G is a graph of size ω1 that has no uncountably chromatic

ω-connected subgraphs. Then there is a ccc forcing PG of size ω1 such that V PG |= Chr(G) ≤ ω.

In particular, under PFA (the Proper Forcing Axiom) every graph of size and chromatic number ω1

contains an uncountably chromatic ω-connected subgraph; this is a simple application of the cardinal

collapsing trick [6]. On the other hand

59
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Theorem 5.1.2 ([57]). It is consistent that there is a graph G of size and chromatic number ω1 such

that every ω-connected subgraph of G is countably chromatic.

Hence the original question of Erdős and Hajnal from [20] is independent of ZFC. Komjáth’s proof

was slightly flawed (see the introduction of [62] for details), but the error is corrected in the recent [62]

where he forces a stronger example:

Theorem 5.1.3 ([62]). It is consistent that there is a graph of size and chromatic number ω1 without

uncountable ω-connected subgraphs.

Note that the answer to the question from [22] is consistently no. In Chapter 6, we show that there

are graphs with size 2ω and chromatic number ω1 without uncountable ω-connected subgraphs purely

in ZFC and hence we provide a complete solution to the question of Erdős and Hajnal from [22].

5.2 Davies-trees and infinite combinatorics

The goal of this section is to introduce the notion of Davies-trees and review applications prior to our

work.

5.2.1 An introduction to Davies-trees

Let us define and prove the existence of Davies-trees at the same time:

Fact 5.2.1. Suppose that A is a countable set and X is an arbitrary set. Then there is a large enough

cardinal Θ and a sequence of M = (Mα)α<κ of countable elementary submodels of H(Θ) so that

1. {X} ∪ A ⊂Mα for all α < κ,

2. X ⊂
⋃

α<κMα,

3. for every β < κ there is mβ ∈ N and models Nβ,i ≺ H(Θ) such that {X} ∪ A ⊂ Nβ,i for i < mβ

and
⋃

{Mα : α < β} =
⋃

{Nβ,i : i < mβ}.

We will refer to a sequence of models M with property (3) as a Davies-tree.

Note that if the sequence (Mα)α<κ is increasing then
⋃

{Mα : α < β} is also an elementary submodel

of H(Θ) for each β < κ; however, there is no way to cover a set of size bigger than ω1 with an increasing

chain of countable sets. Fact 5.2.1 says that we can cover by countable elementary submodels and almost

maintain the property that the initial segments
⋃

{Mα : α < β} are submodels. Indeed, each initial

segment is the union of finitely many submodels by condition (3) while these models contain everything

relevant (denoted by A above) as well.

Proof. Suppose that X has size λ. We recursively construct a tree T of finite sequences of ordinals and

elementary submodels M(a) for a ∈ T . Let ∅ ∈ T and let M(∅) be an elementary submodel of size λ so

that

• {X} ∪ A ⊂M(∅),

• X ⊂M(∅).
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Suppose that we defined a tree T ′ and corresponding models M(a) for a ∈ T ′. Fix a ∈ T ′ and suppose

that M(a) is uncountable. Find a continuous sequence of elementary submodels (M(a⌢ξ))ξ<ζ so that

• {X} ∪ A ⊂M(a⌢ξ) for all ξ < ζ,

• M(a⌢ξ) has size less than M(a).

We extend T ′ with {a⌢ξ : ξ < ζ} and iterate this procedure to get T .

M(∅)

M(0) M(1) . . . M(α) . . . M(β) . . .

M(α⌢0) M(α⌢1) . . . M(α⌢γ) . . .

It is easy to see that this process produces a downwards closed subtree T of Ord<ω and if a ∈ T is

a branch then M(a) is countable. Let us well order {M(a) : a ∈ T is a branch} by the lexicographical

ordering.

We wish to show that if b ∈ T is a branch then
⋃

{M(a) : a <lex b, a ∈ T is a branch} is the union

of finitely many submodels containing {X} ∪ A. Suppose that |b| = n ∈ N and write

Nb,i =
⋃

{M((b ↾ i− 1)⌢ξ) : ξ < b(i− 1)}

for i = 1 . . . n. It is clear that Nb,i is an elementary submodel as a union of an increasing chain. Also, if

a <lex b then M(a) ⊂ Nb,i must hold where i = min{j ≤ n : a(j) 6= b(j)}.

Remark: note that this proof shows that if X has size ℵn then every initial segment in the lexico-

graphical ordering is the union of n elementary submodels (the tree T has height n).

In the future, when working with a sequence of elementary submodels M = (Mα)α<κ, we use the

notation

M<β =
⋃

{Mα : α < β}

for β < κ.

5.2.2 The first applications

The very first

As we mentioned already, the above constructed tree of models is originated in the work of Roy O.

Davies [9] from the early 60’s. He proves that the plane R2 can be covered by countably many rotated

graphs of functions; this was known to be true under the Continuum Hypothesis (proved by Sierpinski

in the 30’s) while Davies’ result holds regardless of cardinal arithmetic.

The importance of the tree construction is that we can cover arbitrary large structures (in this case

R2) with countable sets in a way that initial segments are fairly close to models (unions of finitely many

models). This way the assumption of CH can be eliminated from Sierpinski’s original result.
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The Steinhaus tiling problem

Probably the most important application of Davies-trees is S. Jackson and R. D. Mauldin’s solution

from 2002 to the Steinhaus tiling problem. In the late 50’s H. Steinhaus asked if there is a subset S

of R2 such that every rotation of S tiles the plane or equivalently, S intersects every isometric copy of

the lattice Z × Z in exactly one point. Jackson and Mauldin provides an affirmative answer (surveyed

in [48]); their proof elegantly combines hard combinatorial, geometrical and set theoretical methods (a

transfinite induction using Davies-trees).

Again, their proof becomes somewhat simpler assuming CH. However, this assumption can be elim-

inated, as before, if one uses Davies-trees as a substitute for increasing chains of models.

Topology

In 2008, D. Milovich published a paper [71] in set theoretic topology (order theory of bases) where he

further polished Jackson and Mauldin’s Davies-tree decomposition technique. In particular, one can

guarantee that the Davies-tree (Mα)α<κ has the additional property that {Nα,i : i < mα} ∈ Mα for all

α < κ. This extra hypothesis is very useful in several situations.

One can find easy-to-read introduction to Davies-trees in the presentations of D. Milovich [70, 72]

(with slightly different terminology) and L. Soukup [95]. Also, it is likely that there are other papers,

even earlier then Davies’, where similar techniques appear either explicitly or implicitly however at the

point of writing this note we are not aware of further references.

5.3 The chromatic number and n-connected subgraphs

We proceed with our main application of Davies-trees which highly simplifies the original proof.

Theorem 5.3.1. Every uncountably chromatic graph G contains n-connected uncountably chromatic

subgraphs for every n ∈ N.

Fix a graph G = (V,E), n ∈ ω and consider the set A of all subsets of V spanning maximal

n-connected subgraphs of G.

We will follow Komjáth’s framework in the sense that we are going to define a good ordering on A.

The following lemma explains what we mean by a good ordering.

Lemma 5.3.2. Suppose that G = (V,E) is a graph, {Aξ : ξ < µ} is a cover of V with countably chromatic

subsets so that |NG(x)∩
⋃

A<ξ| < ω for all ξ < µ and x ∈ Aξ \
⋃

A<ξ where A<ξ = {Aζ : ζ < ξ}. Then

Chr(G) ≤ ω.

Proof. Suppose that gξ : Aξ → ω witnesses that the chromatic number of Aξ is ≤ ω. We define

f : V → ω × ω by defining f ↾ (Aξ \
⋃

A<ξ) by induction on ξ < µ. If x ∈ Aξ \
⋃

A<ξ then the

first coordinate of f(x) is gξ(x) while the second coordinate of f(x) avoids all the finitely many second

coordinates appearing in {f(y) : y ∈ NG(x) ∩
⋃

A<ξ}. It is easy to see that f witnesses that G has

countable chromatic number.

Let us continue with some straightforward observations about the maximal n-connected sets:

Observation 5.3.3. 1. A 6⊆ A′ for all A 6= A′ ∈ A,
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2. |A ∩ A′| < n for all A 6= A′ ∈ A,

3. |{A ∈ A : a ⊂ A}| ≤ 1 for all a ∈ [V ]≥n,

4. |NG(x) ∩A| < n for all x ∈ V \A and A ∈ A.

The next claim is fairly simple and describes a situation when we can join n-connected sets.

Claim 5.3.4. Suppose that Ai ⊂ V spans an n-connected subset for each i < n and we can find

Y = {yi,k : i < n, k < n} and X = {xk : k < n} distinct points so that

yi,k ∈ Ai ∩NG(xk)

for all i < n, k < n. Then A =
⋃

{Ai : i < n} ∪X is n-connected.

Proof. Let F ∈ [A]<r and note that there is a k < n so that {yi,k, xk : i < n} ∩ F = ∅ for some k < n.

Thus ∪{Ai : i < n} ∪ {yi,k, xk : i < n} \ F is connected as Ai \ F is connected for all i < n. Finally, if

xj ∈ A \ F then NG(xj) ∩ ∪{Ai : i < n} \ F 6= ∅ so we are done.

Now, we deduce some useful facts about elementary submodels and maximal n-connected sets.

Lemma 5.3.5. Suppose that N ≺ H(Θ) with G ∈ N and

|NG(x) ∩N | ≥ n

for some x ∈ V \N . Then x ∈ A for some A ∈ A ∩N .

Proof. Let a ∈ [NG(x) ∩N ]n. There is a copy of Kn,ω1
(complete bipartite graph with classes of size n

and ω1) which contains a ∪ {x} (see Claim 4.2.1). As Kn,ω1
is n-connected, there must be A ∈ A with

a ∪ {x} ⊂ A as well. Also, there is A′ ∈ A ∩ N with a ⊂ A′ by elementarity; as |A ∩ A′| ≥ n we have

A = A′ which finishes the proof.

Lemma 5.3.6. Suppose that N ≺ H(Θ) with G ∈ N and

|NG(x) ∩
⋃

(A ∩N)| ≥ ω

for some x ∈ V \N . Then x ∈ A for some A ∈ A ∩N .

Proof. Suppose that the conclusion fails; by the previous lemma, we have |NG(x)∩N | < n. In particular,

there is sequence of distinct Ai ∈ A ∩N for i < n so

(NG(x) ∩ Ai) \N 6= ∅

for all i < n (as NG(x) ∩ A is finite if A ∈ N ∩ A).

Thus

N |= ∀F ∈ [V ]<ω∃x ∈ V \ F and yi ∈ (Ai ∩NG(x)) \ F.

Now, we can find distinct {yi,k : i < n, k < n} and X = {xk : k < n} so that

yi,k ∈ Ai ∩NG(xk).

Finally, ∪{Ai : i < n} ∪X is n-connected by Claim 5.3.4 which contradicts the maximality of Ai.
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Proof of Theorem 5.3.1. Let G,A be as above and suppose that every A ∈ A is countably chromatic;

we will show that in this case, G is countably chromatic.

First, we prove that
⋃

A is countably chromatic. Take a Davies-tree covering A i.e. a sequence

(Mα)α<κ of countable elementary submodels such that for all α < κ there is a finite sequence of

elementary submodels (Nα,j)j<mα
so that

⋃

M<α =
⋃

{Nα,j : j < mα},

with G ∈Mα ∩Nα,j and A ⊂
⋃

{Mα : α < κ}.

Let A<α = A∩
⋃

M<α and Aα = (A∩Mα) \ A<α for α < κ. Well order A as {Aξ : ξ < µ} so that

1. Aζ ∈ A<α, Aξ ∈ A \ A<α implies ζ < ξ and

2. Aα \ A<α has order type ≤ ω

for all α < κ.

We claim that the above enumeration ofA satisfies Lemma 5.3.2 and thus
⋃

A is countably chromatic.

By the second property of our enumeration and Observation 5.3.3 (4), it suffices to show that

|NG(x) ∩
⋃

A<α| < ω

if x ∈ A \
⋃

A<α for all A ∈ Aα \ A<α and α < κ.

However, as A<α =
⋃

{A∩Nα,j : j < mα}, this should be clear from applying Lemma 5.3.6 for each

of the finitely many models Nα,j where j < mα.

Now, we show that G is countably chromatic; otherwise, the graph spanned by V \
⋃

A is uncountably

chromatic. However, every uncountably chromatic graph, and so V \
⋃

A as well, contains an n-connected

subgraph (actually a copy of Kn,ω1
) which contradicts the definition of A.

5.4 Further applications of Davies trees

Degrees of disjointness

We start by proving a simple fact from the theory of almost disjoint set systems.

Definition 5.4.1. We say that a family of sets X is n-almost disjoint for some n ∈ N iff |A ∩B| < n

for every A 6= B ∈ X . X is essentially disjoint iff we can select finite FA ⊂ A for each A ∈ A so that

{A \ FA : A ∈ A} is disjoint.

Theorem 5.4.2 ([53]). Every n-almost disjoint family X of countable sets is essentially disjoint for

every n ∈ N.

Proof. Take a Davies-tree M = {Mα : α < κ} such that X ⊂
⋃

M and that X ∈ Mα for each

α < κ. Recall that
⋃

M<α =
⋃

{Nα,i : i < mα} for each α < κ. We define a map F on X such that

F (A) ∈ [A]<ω for each A ∈ X and {A \ F (A) : A ∈ X} is pairwise disjoint.

Let Xα = (X ∩Mα) \
⋃

M<α and X<α = X ∩ (
⋃

M<α). We define F on each Xα independently so

fix α < κ.

Observation 5.4.3. |A ∩ (
⋃

X<α)| < ω for all A ∈ Xα.
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Proof. Otherwise, there is i < mα so that A ∩
⋃

(X ∩ Nα,i) is infinite and in particular, we can select

a ∈ [A∩
⋃

(X ∩Nα,i)]
n. Note that

⋃

(X ∩Nα,i) ⊂ Nα,i as each set in X is countable hence a ⊂ Nα,i and

a ∈ Nα,i. However, Nα,i |= ”there is a unique element of X containing a” (by n-almost disjointness)

hence A ∈ Nα,i ⊂
⋃

M<α (by elementarity) which contradicts A ∈ Xα.

Now list Xα as {Aα,l : l ∈ ω}. Let

F (Aα,l) = Aα,l ∩
(

⋃

X<α ∪
⋃

{Aα,k : k < l}
)

for l < ω. Clearly, F witnesses that X is essentially disjoint.

Clouds above the Continuum Hypothesis

The next theorem we prove has a certain similarity to Davies’ result. The reason that this proof is of

greater interest is that it highlights the fact that a set of size ℵn can be covered by a Davies-tree such

that the initial segments are expressed as the union of n elementary submodels (for n ∈ N). The same

fact is utilized in an application presented in [95].

Definition 5.4.4. We say that A ⊂ R2 is a cloud around a point a ∈ R2 iff every line l through a

intersects A in a finite set.

Note that one or two clouds cannot cover the plane; indeed, if Ai is a cloud around ai for i < 2 then

the line l through a0 and a1 intersects A0 ∪A1 in a finite set. How about three or more clouds?

Theorem 5.4.5 ([60] and [85]). The following are equivalent for each n ∈ N:

1. 2ω ≤ ℵn,

2. R2 is covered by at most n+ 2 clouds.

We only prove (1) implies (2) and follow Komjáth’s original proof for the 2ω = ω1 case.

Proof. Fix n ∈ ω and suppose that the continuum is ℵn. This implies that R2 can be covered by a

Davies-tree {Mα : α < κ} so that
⋃

M<α =
⋃

{Nα,i : i < n} for every α < κ.

Fix n + 2 points {ak : k < n + 2} in R2 in general position (i.e. no three are collinear). Let Lk

denote the set of lines through ak and let L =
⋃

{Lk : k < n+ 2}. We will define clouds Ak around ak

by defining a map F : L → [R2]<ω such that F (l) ∈ [l]<ω and letting

Ak = {ak} ∪
⋃

{F (l) : l ∈ Lk}

for k < n+ 2. We have to make sure that for every x ∈ R2 there is l ∈ L so that x ∈ F (l).

Now let Lα = (L ∩Mα) \
⋃

M<α and L<α = L ∩
⋃

M<α for α < κ. We define F on Lα for each

α < κ independently.

Fix an α < κ and list Lα \ L′ as {lα,j : j < ω} where L′ is the set of
(

n+2
2

)

lines determined by

{ak : k < n+ 2}. We let

F (lα,j) =
⋃

{l ∩ lα,j : l ∈ L′ ∪ {lα,j′ : j
′ < j}}
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for j < ω.

We claim that this definition works: fix a point x ∈ R2 and we will show that there is l ∈ L with

x ∈ F (l). Find the unique α < κ such that x ∈ Mα \
⋃

M<α. It is easy to see that ∪L′ is covered by

our clouds hence we suppose x /∈
⋃

L′. Let lk denote the line through x and ak.

Observation 5.4.6. |
⋃

M<α ∩ {lk : k < n+ 2}| ≤ n.

Proof. Suppose that this is not true. Then (by the pigeon hole principle) there is i < n such that

|Nα,i ∩ {lk : k < n + 2}| ≥ 2 and in particular the intersection of any two of these lines, the point x, is

in Nα,i ⊂
⋃

M<α. This contradicts the choice of α.

We have now that

|{lk : k < n+ 2} ∩ (Lα \ L′)| ≥ 2

i.e. there is j′ < j < ω such that lα,j′ , lα,j ∈ {lk : k < n+2}. Hence x ∈ F (lα,j) is covered by one of the

clouds.

Conflict free chromatic number

Let us mention, without proof, the following application of Davies trees due to L. Soukup [95].

Definition 5.4.7. If A is a set system then the conflict free chromatic number of A is the least cardinal

κ so that there is a map f : A → κ such that for every A ∈ A there is α < κ with |A ∩ f−1(α)| = 1.

Theorem 5.4.8 ([41]). Let m, d ∈ ω and suppose that A ⊆ [ωm]ω is d-almost disjoint. Then the conflict

free chromatic number of A is at most ⌊ (m+1)(d−1)+1
2 ⌋+ 2

Future work

There seems to be great possibilities in the use of Davies-trees beyond finding new proofs or eliminating

CH from known results. Recently, L. Soukup started to develop the analogue of Davies-trees with

σ-closed models.

Theorem 5.4.9 ([95]). Suppose V = L. Then for every cardinal κ there is a sequence (Mα)α<κ of

elementary submodels of H(Θ) covering κ such that

1. [Mβ]
ω ⊂Mβ and |Mβ| = ω1,

2. there are Nβ,j ≺ H(Θ) with [Nβ,j]
ω ⊂ Nβ,j for j < ω such that

⋃

{Mα : α < β} =
⋃

{Nβ,j : j < ω}

for all β < κ.

The presentation [95] contains further details on σ-Davies-trees. In particular, L. Soukup provides a

new proof of the fact that V = L implies that the poset 〈[κ]ω,⊆〉 has the weak Freese-Nation property

[28] i.e. there is a map f : [κ]ω → [[κ]ω]ω so that p ≤ q implies that p ≤ r ≤ q for some r ∈ f(p) ∩ f(q)

for all p, q ∈ [κ]ω.



Chapter 6

The chromatic number and infinitely

connected subgraphs

The main goal of this chapter is to construct a graph of chromatic number ω1 without an uncountable

infinitely connected subgraph. This will be done by defining graphs through ladder systems on non

special trees. After a short introduction, we present the main construction in Section 6.3 followed by

further results, general remarks and open problems.

6.1 A short introduction to trees and ladder systems

D. Kurepa was the first to systematically study set theoretic trees [68]; his work on Souslin’s Problem

lead to several fundamental results on Aronszajn and Souslin trees. We refer the reader to the survey

[47] for further details on Kurepa’s work. In the Handbook of Set Theoretic Topology, S. Todorcevic [99]

gives an excellent review of the most important results and references on the topic of trees and linearly

ordered sets up to 1984. More recently, the survey by J. Moore [75] on Aronszajn trees summarizes the

advances made since the publication of [99].

Trees with strong combinatorial properties played an important part in solving deep problems of set

theoretical nature, in particular in general topology and the theory of partition relations. Let us mention

that M. E. Rudin used Souslin trees to construct S-spaces [80] and Dowker spaces [81]. S. Todorcevic

extended the theory of partition relations from ordinals to partially ordered sets through trees [100] and

he uses special Aronszajn trees to construct square bracket colourings on ω1 in ZFC [101]. On a related

note, Shelah used a Souslin tree to aid the construction of a square bracket colouring with no rainbow

triangles in [86].

Undoubtedly, our most important reference for this chapter is Todorcevic’s inspirational “Stationary

sets, trees and continuums” [98]. We already recalled the definition of the trees T (S) (where S ⊆ ω1)

and listed their most important properties in Section 1.5.

We are interested in graphs associated to trees through the comparability relation i.e. for a tree

(T,≤T ) we look at the graph G(T ) = (T,E) where {s, t} ∈ E iff s ≤T t. The class of graphs which arise

as comparability graphs of some partial order were studied in detail [103, 104, 32, 31, 33]. While every

finite comparability graph G is perfect [73] i.e. Chr(G) is the size of the largest clique, this theorem

does not extend to the infinite case (see [84] for an exposition). Indeed, we will exploit the fact that for

67
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the above defined tree T = T (S), when S is stationary and costationary, the comparability graph G(T )

has chromatic number ω1 while G(T ) has no uncountable cliques (as T has no uncountable branches).

Ladder systems on the ordinal ω1 played a central role in recent advances in set theory. We mention

two outstanding examples: the ground breaking work of S. Todorcevic on minimal walks [101] and

Shelah’s work on uniformization and his solution to the Whitehead problem [88, 89].

Graphs G on ω1 with chromatic number ω1 where the edge relation is given by a ladder system

were introduced in [45] and hence named Hajnal-Máté graphs. In [45], the authors prove that MAω1

implies that there are no Hajnal-Máté graphs while one can construct Hajnal-Máté graphs under ♦∗.

Let us remark that Abraham, Devlin and Shelah proved that CH is not sufficient for the existence of

Hajnal-Máté graphs [1]; we believe that it is not known whether ♣ implies the existence of Hajnal-Máté

graphs.

P. Komjáth has a series of papers on the subject exploring several constructions with further interest-

ing properties: in [52], he constructs Hajnal-Máté graphs from ♦ which contain no triangles; in [54], he

constructs Hajnal-Máté graphs from ♦∗ that contain no cycles which are the union of two <ω1
-monotone

paths; in [58], the previous ♦∗ construction is further developed to have certain extra structural prop-

erties. Later, Komjáth and Shelah [64] showed that one can even exclude Kω,ω (even Hω,ω+2) and odd

cycles up to a given length at the same time using Hajnal-Máté graphs; this is done by forcing and ♦

constructions as well. Finally, in [64, Theorem 10], the authors refer to an idea of F. Galvin and carry

out the Hajnal-Máté graph construction based on the tree
⋃

{ωα : α < ω1} purely in ZFC1. Recently,

U. Abraham and Y. Yin [2] investigated the chromatic number of a related class of graphs.

Our aim in this chapter is to use ladder systems not on ω1 but on non special trees T in order to

select a Hajnal-Máté-like nice subgraph of the comparability graph G(T ) in ZFC, without the use of any

guessing principles. We are only aware of a handful of references where trees and ladder systems appear

in such close relation. The most relevant reference is the above mentioned [64, Theorem 10]. The paper

[96] by Z. Spasojević deals with the uniformization properties of ladder systems on trees. The notion of

a T -uniformization of ladder systems on ω1 for a tree T appears in Moore’s [74].

Our proofs in this chapter were deeply motivated by arguments in [98], as well as by certain diago-

nalization arguments of M. E. Rudin [82] and Z. Balogh [5] using elementary submodels.

6.2 Preliminaries

We will use the following terminology:

Definition 6.2.1. We say that a set of vertices F in a graph separates two vertices s and t iff every

path from s to t passes through F . We say that F separates a set of vertices A iff there are distinct

s, t ∈ A such that F separates s and t.

Hence a graph G is ω-connected iff no finite set separates two points of G. Furthermore, recall

Corollary 4.3.7. If T is a non special tree with no uncountable chains then the graph G = G(T ) satisfies

Chr(G) > ω while every uncountable set of vertices can be separated by a countable set.

The above simple corollary indicates that it is reasonable to investigate non special trees T without

uncountable chains and the corresponding graphs G(T ) regarding the Erdős-Hajnal question.

1We were not aware of this reference when proving the results of Chapter 6.
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Indeed, we will work with trees of the form T (S) = {t ⊂ S : t is closed} where S ⊆ ω1 is stationary,

costationary. Recall from Section 1.5 that the comparability graph of T (S) has size 2ω and chromatic

number ω1.

Our aim is to construct a subgraphX of the comparability graph of T (S) (where S ⊆ ω1 is stationary,

costationary) which has chromatic number ω1 and does not contain uncountable ω-connected subsets

i.e. every uncountable set of vertices A contains two points s, t ∈ A and a finite set F ⊂ A such that

any path P ⊂ A between s and t passes through F .

6.3 The main construction

We start by defining ladder system graphs on trees and characterizing connectivity properties by simple

combinatorial facts about the ladder system.

Definition 6.3.1. Suppose that T is a tree. A ladder system on T is a family C = {Ct : t ∈ T } so that

Ct ⊂ t↓ is either finite or a cofinal sequence of type ω.

Each ladder system C defines a subgraph XC of G(T ) with vertices T and edges

{{s, t} : s ∈ Ct, t ∈ T }.

This is in direct analogy with the Hajnal-Máté graphs introduced in [45] i.e. the case where the tree T

is simply the cardinal ω1.

Definition 6.3.2. A ladder system C on T is transitive iff

Ct ∩ s
↓ ⊆ Cs

for all t ∈ T and s ∈ Ct.

Note that C is transitive iff Ct spans a complete graph in XC for all t ∈ T . The next two lemmas

explain why we introduced the notion of a transitive ladder system.

Lemma 6.3.3. Suppose that T is a tree and C is a transitive ladder system on T . If s, t ∈ T and P is

a finite path in XC from s to t then there is a path Q ⊆ P which is the union of two monotone paths.

A monotone path in XC is a path which is a chain in the tree ordering.

Proof. Let Q ⊆ P be a path of minimal length from s to t. Let {qi : i < n} enumerate Q by its path

ordering. Note that we cannot have qi−1, qi+1 < qi for any 1 ≤ i ≤ n− 1; indeed, this would imply that

qi−1, qi+1 ∈ Cqi and hence, by transitivity, qi−1 and qi+1 are connected by an edge which contradicts the

minimality of Q. This means that if qi−1 < qi then qi < qi+1 for any 1 ≤ i ≤ n− 1 i.e. Q is monotone

increasing from the first step up (in the tree ordering). In other words, Q is the union of a monotone

decreasing and a monotone increasing path.

Lemma 6.3.4. Suppose that T is a tree and C is a transitive ladder system on T . If T has no branching

at limit levels and contains no uncountable chains then XC contains no uncountable ω-connected subsets.
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Proof. Fix an uncountable A ⊆ T and find two incomparable elements s, t ∈ A. Let r denote the

maximal common initial part of s and t; this exists and r < s, t as T does not branch at limits. Find

s′ ∈ A so that r < s′ ≤ s and

s′↓ ∩ A ⊆ r↓ ∪ {r}.

We claim that s′ and t are separated by the finite set F = {r} ∪ (r↓ ∩ Cs′ ).

Suppose that P = {pi : i < n} ⊂ A is a finite path from p0 = s′ to t. By Lemma 6.3.3, we can

suppose that P is the union of two monotone paths. Note that p1 ∈ A ∩ Cs′ as p1 < p0 = s′ and hence

p1 ∈ r↓ ∪ {r} by the choice of s′. In particular, p1 ∈ F ; this shows that F separates s′ and t.

We are ready now to prove our main result:

Theorem 6.3.5. Fix a stationary, costationary S ⊂ ω1 and let T = T (S). Then there is a subgraph X

of G(T ) such that Chr(X) = ω1 and X contains no uncountable ω-connected subsets.

We use the following notation: if T = T (S) for some S ⊆ ω1 then let

Tδ = {t ∈ T : max(t) = δ}

for δ ∈ ω1 and similarly define T<δ, T≤δ.

Proof. It suffices to show that there is a transitive ladder system C on T such that Chr(XC) = ω1; indeed,

T has no uncountable chains nor branches at limit levels hence Lemma 6.3.4 implies that XC has no

uncountable ω-connected subsets. Furthermore, as the tree T has height ω1 we have that Chr(XC) ≤

Chr(G(T )) ≤ ω1 for any C. Thus we will have to show that Chr(XC) > ω in the end.

By induction on δ ∈ S′ (where S′ denotes the accumulation points of S), we define the transitive

ladder system C on T<δ and hence the corresponding part of XC on T<δ.

First, let Ct = ∅ for t ∈ T<minS′ . Now, fix δ ∈ S′ and suppose that we already defined a transitive

ladder system (Ct : t ∈ T<δ) on T<δ. We extend this to T<δ+ while preserving transitivity where δ+ is

the minimum of S′ \ (δ + 1). Note that transitivity is necessarily preserved at limit steps. If δ /∈ S then

we let Ct = ∅ for t ∈ T<δ+ \ T<δ.

Suppose that δ ∈ S and let us define Ct for t ∈ Tδ first. Let {(Aξ, fξ) : ξ < c} denote a 1-1

enumeration of all the pairs (A, f) so that A ∈ [T<δ]
ω, f : A→ ω and A satisfies

(⋆) for every t ∈ A and ε < δ there are incomparable s0, s1 ∈ A so that si ≥ t and max(si) > ε for i < 2.

By induction on ξ < c we will find tξ ∈ Tδ \ {tζ : ζ < ξ} and sets Ctξ ⊆ t↓ξ so that

(

Ct : t ∈ T<δ ∪ {tξ : ξ < c}
)

is still a transitive ladder system. We will let Ct = ∅ for t ∈ Tδ \ {tξ : ξ < c}.

Fix a cofinal ω-type sequence {δn : n ∈ ω} in δ. Suppose we defined tζ ∈ Tδ and Ctζ ⊆ t↓ζ for ζ < ξ.

Define a map ψ : 2<ω → Aξ and a partial map ϕ : 2<ω → Aξ so that

(i) ψ and ϕ are order preserving injections and

ψ(x) ≤ ϕ(x) ≤ ψ(xai)

for i < 2 provided that x ∈ dom(ϕ),
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(ii) {ϕ(x ↾ k) : k ≤ |x|, x ↾ k ∈ dom(ϕ)} is a complete graph in T<δ,

(iii) ψ(xa0) and ψ(xa1) are incomparable and contained in Aξ \ T<δn ,

(iv) if there is t ∈ Aξ such that t ≥ ψ(x), fξ(t) = n and {ϕ(x ↾ k) : k < |x|, x ↾ k ∈ dom(ϕ)} ∪ {t} is

complete then x ∈ dom(ϕ) and fξ(ϕ(x)) = n as well

for all n ∈ ω and x ∈ 2n.

We define ψ(x) and ϕ(x) for x ∈ 2n by induction on n ∈ ω. We set ψ(∅) ∈ Aξ arbitrarily. If ψ(x) is

defined for some x ∈ 2n then check if

Rx = {t ∈ Aξ : t ≥ ψ(x), fξ(t) = n and {ϕ(x ↾ k) : k < |x|, x ↾ k ∈ dom(ϕ)} ∪ {t} is complete}

is empty or not. If Rx 6= ∅ then we put x into dom(ϕ) and pick ϕ(x) from Rx arbitrarily; otherwise

x /∈ dom(ϕ). Now find incomparable ψ(xa0), ψ(xa1) ∈ Aξ above ψ(x) so that max(ψ(xai)) ≥ δn and

ψ(xai) ≥ ϕ(x) if x ∈ dom(ϕ); this can be done as Aξ satisfies (⋆) above. This finishes the construction

of ψ and ϕ.

b

b

b

b

b

b

Aξ

{tζ : ζ < ξ} tξ = ψ(xξ)

Tδ

ϕ(xξ ↾ k)

ψ(∅)

Figure 6.1: Step ξ in the induction.

We extend ψ to 2ω in the obvious way:

ψ(x) =
⋃

{ψ(x ↾ k) : k < ω} ∪ {δ}

for x ∈ 2ω; note that ψ(x) is a closed subset of S by the second part of condition (iii) and hence

ψ(x) ∈ Tδ for all x ∈ 2ω. Also, ψ remains 1-1 on 2ω by the first part of condition (iii). Hence, we can

find an xξ ∈ 2ω such that ψ(xξ) ∈ Tδ \ {tζ : ζ < ξ} and we let tξ = ψ(xξ). Finally, let

Ctξ =
{

ϕ(xξ ↾ k) : k < ω, xξ ↾ k ∈ dom(ϕ)
}

.

Transitivity of this extension is assured by condition (ii). This finishes the induction on ξ < c and we

have a transitive ladder system C = (Ct : t ∈ T≤δ) on T≤δ. We now simply let Ct = ∅ for t ∈ T<δ+ \T≤δ.
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This finishes step δ of the main induction and hence, in the end, we have a transitive ladder system C

on T .

We are left to prove:

Claim 6.3.6. Chr(XC) > ω.

Proof. Fix a colouring f : T → ω; we will find s, t ∈ T so that f(s) = f(t) and s ∈ Ct. Take a countable

elementary submodel M ≺ H(c+) (where H(c+) is the collection of sets with hereditary cardinality ≤ c)

so that S,C, f ∈M and δ =M ∩ ω1 ∈ S; this can be done as S is stationary.

Consider the construction of {Ct : t ∈ Tδ}. If we set A = M ∩ T then there must be a ξ < c so

that (A, f ↾ A) = (Aξ, fξ); M being an elementary submodel ensures that A satisfies property (⋆) as the

branching of T reflects to M .

Our goal now is to prove that there is an s ∈ Ctξ so that f(s) = f(tξ); we let n = f(tξ). Recall that

in the definition of tξ we had two maps ψ and ϕ and tξ was of the form ψ(xξ) for an xξ ∈ 2ω. Ctξ was

defined to be {ϕ(xξ ↾ k) : k < ω, xξ ↾ k ∈ dom(ϕ)}.

Now, recall the definition of ϕ(xξ ↾ n): we looked at the set

Rxξ↾n = {s ∈ Aξ : s ≥ ψ(xξ ↾ n), fξ(s) = n and

{ϕ(xξ ↾ k) : k < n, xξ ↾ k ∈ dom(ϕ)} ∪ {s} is complete} (6.1)

and if Rxξ↾n was not empty the we chose ϕ(xξ ↾ n) ∈ Rxξ↾n; in particular, f(s) = n for s = ϕ(xξ ↾

n) ∈ Ctξ which would finish the proof.

Let us show that Rxξ↾n is not empty. Let

R = {s ∈ T : s ≥ ψ(xξ ↾ n), f(s) = n and

{ϕ(xξ ↾ k) : k < n, xξ ↾ k ∈ dom(ϕ)} ∪ {s} is complete} (6.2)

and note that R is in the model M and Rxξ↾n = R∩M . Hence, by elementarity, it suffices to show that

R 6= ∅. However, this is clear as tξ ∈ R.

This finishes the proof of the theorem.

Let us remark that we cannot hope to find graphs of chromatic number > ω1 without uncountable

infinitely connected subgraphs. Indeed, under V = L, the uncountable infinitely connected graph Kω,ω1

embeds into every graph G with Col(G) > ω1 by a result of Komjáth [56, Theorem 3.1].

6.4 A highly disconnected variation

In Theorem 6.3.5, we constructed a graphX such that any uncountable set A contained two incomparable

points s, t which are separated in A by a finite set F ; in particular, there could be paths connecting s

and t which avoid F by leaving A. The aim of this section is to refine the methods of Section 6.3 and

produce a ladder system C on a tree T such that any two <T -incomparable vertices are separated by a

finite set in the graph XC i.e. if s, t ∈ T are incomparable then there is a finite set F ⊂ T such that
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any path P from s to t intersects F . Note that this separation property is stronger than the lack of

uncountable ω-connected sets.

We use the following notation: if T is a tree then

• let supp(C) = {t ∈ T : |Ct| = ω} for any ladder system C on T ,

• if s ∈ T and ε < ht(s) then s ↾ ε denotes the unique element r ∈ s↓ with ht(r) = ε.

Let us introduce a somewhat technical property of ladder systems on trees. First, we need the

following definition: we will say that a sequence η = (ηt : t ∈ T ) is a true ladder system on a tree T iff

ηt = {t} for all successor t ∈ T and ηt is a cofinal sequence of type ω in t↓ if t is limit.

Definition 6.4.1. Suppose that C is a ladder system on a tree T . We say that C is coherent iff

1. Cs = Ct ∩ s↓

for all t ∈ supp(C) and s ∈ Ct with |Cs| < ω and there is a true ladder system η on T such that

2. ηt ∩ s↓ ⊑ ηs,

3. Ct ∩ r↓ = Cs ∩ r↓ for r = s ↾ ht(max
<T

(ηt ∩ s
↓)) + 1

for every s, t ∈ supp(C) with s ∈ Ct.

The next lemma explains how transitivity and coherence of a ladder system C gives the desired

separation property of the graph XC .

Lemma 6.4.2. Suppose that T is a tree with no branching at limits. If C is a transitive and coherent

ladder system on T then any two <T -incomparable points are separated by a finite set in XC.

We use the following notation in the proof: if s, t ∈ T then ∆(s, t) denotes the maximal common

initial segment of s and t.

Proof. Fix a point t′ ∈ T and we prove that for any t ∈ T which is incomparable with t′ there is a finite

set Ft which separates t and t′.

We will actually prove that the following choice of Ft works: let Ft = Ct if t /∈ supp(C) and let

Ft = Ct ∩ r
↓
t where rt = t ↾ ht(min

<T

{r ∈ ηt : r > ∆(t, t′)}) + 1

if t ∈ supp(C). The proof is done by induction on ht(t).

It is clear that if t /∈ supp(C) then Ft separates t and t
′ by transitivity and Lemma 6.3.3.

Suppose that t ∈ supp(C); we note that rt < t as ηt is nontrivial and ∆(t, t′) < t and hence Ft is

finite. Now, suppose that P = {p0 . . . pn} is a path from t to t′ which avoids Ft; we can suppose that P

has minimal length and is the union of two monotone paths by Lemma 6.3.3. We have p0 = t > p1 ∈ Ct

and p1 > ∆(t, t′) and hence ∆(t, t′) = ∆(p1, t
′). We let s = p1 and note that p2 ∈ Cs \ Ct as P has

minimal length and C is transitive. If |Cs| < ω then by assumption Ct ∩ s↓ = Cs which contradicts

p2 ∈ Cs \ Ct.

We conclude that s ∈ supp(C). As Fs separates s and t′ (by the inductive hypothesis) it suffices to

prove that Fs = Ft. By definition

rs = s ↾ ht(min
<T

{r ∈ ηs : r > ∆(s, t′)}) + 1.
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As t, s ∈ supp(C) we have ηt ∩ s↓ ⊑ ηs by coherence. Hence, by rt < s and ∆(t, t′) = ∆(s, t′) we must

have rs = rt. Finally, by coherence again, we have Ft = Ct ∩ rt
↓ = Cs ∩ rs

↓ = Fs.

We are ready to prove the main result of this section.

Theorem 6.4.3. Fix a stationary, costationary S ⊂ ω1 and let T = T (S). Then there is a subgraph X

of G(T ) such that Chr(X) = ω1 and any two <T -incomparable points are separated by a finite set in X.

In particular, every uncountable set A ⊆ T contains two vertices which are separated by a finite set in

X.

Proof. It suffices to find a transitive and coherent ladder system C on T such that Chr(XC) > ω; indeed,

T does not branch at limits (and every uncountable A ⊆ T contains two incomparable points) hence

Lemma 6.4.2 can be applied.

We define a true ladder system η on T first: fix a true ladder system {νδ : δ ∈ ω1} on ω1 and let

ηt = {t ∩ (ε+ 1) : ε ∈ νδ} where δ = max(t)

for any limit t ∈ T and let ηt = {t} for any successor t ∈ T .

Let D = (S ∩ S′)′ and let δ+ denote minD \ (δ + 1) for δ ∈ D. By induction on δ ∈ D, we define

a transitive ladder system C on T<δ, and hence the corresponding graph on T<δ, so that C is coherent

and its coherence is witnessed by η.

First, let Ct = ∅ for t ∈ T<minD. Now, suppose we defined (Ct)t∈T<δ
for some δ ∈ D. We define C

on T<δ+ in two steps: first we define Ct for t ∈ Tδ so that (Ct)t∈T≤δ
is still transitive and coherent and

then extend to T<δ+ in the trivial way: we let Ct = ∅ for t ∈ T<δ+ \ T≤δ.

We can suppose δ ∈ S otherwise Tδ = ∅. Let {((Aξ
n)n∈ω, fξ) : ξ < c} denote a 1-1 enumeration of all

pairs ((An)n∈ω, f) where

1. An ⊂ An+1 ∈ [T<δ]
ω for n < ω,

2. for every t ∈ An and ε < δn = sup{max(s) : s ∈ An} there are incomparable s0, s1 ∈ An so that

si ≥ t and max(si) > ε for i < 2,

3. f : A→ ω where A =
⋃

{An : n ∈ ω},

4. (δn)n∈ω is a strictly increasing cofinal sequence in δ.

By induction on ξ < c, we define tξ ∈ Tδ \ {tζ : ζ < ξ} and Ctξ ⊆ t↓ξ while preserving transitivity and

coherence. Suppose we defined tζ ∈ Tδ and Ctζ ⊆ t↓ζ for ζ < ξ.

We let Aξ =
⋃

{Aξ
n : n ∈ ω} and δξn = sup{max(s) : t ∈ Aξ

n}. Also, let

εn = max({δξn} ∪ (νδ ∩ δ
ξ
n+1))

for n ∈ ω and ε−1 = max(νδ ∩ δ
ξ
0). Finally, let {ln : n ∈ ω} enumerate each natural number infinitely

many times.

Define a map ψ : 2<ω → Aξ and a partial map ϕ : 2<ω → Aξ so that

(i) ψ and ϕ are order preserving injections and

ψ(x) ≤ ϕ(x) ≤ ψ(xai)
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for i < 2 provided that x ∈ dom(ϕ),

(ii) {ϕ(x ↾ k) : k ≤ |x|, x ↾ k ∈ dom(ϕ)} is a complete graph in T<δ,

(iii) ψ(xa0) and ψ(xa1) are incomparable and contained in Aξ
n+1 \ T<εn ,

(iv) if there is an s ∈ Aξ
n such that

(a) s ≥ ψ(x), fξ(s) = ln,

(b) {ϕ(x ↾ k) : k < |x|, x ↾ k ∈ dom(ϕ)} ∪ {s} is complete,

(c) νδ ∩ εn−1 ⊑ νmax(s) and

Cs ∩ r
↓ = {ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)}

for r = s ∩ (εn−1 + 1) if Cs is infinite,

(d) Cs = {ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)} if Cs is finite

then x ∈ dom(ϕ) and s = ϕ(x) satisfies (a)-(d) as well,

(v) if (iv) fails then x /∈ dom(ϕ)

for all n ∈ ω and x ∈ 2n.

b

b

b b

A
ξ
n+1

Aξ
n

εn−1

εn

Tδ

ψ(xa0) ψ(xa1)

ψ(x)

ϕ(x)

νδ ∩ δ
ξ
n

ω1

δ

δξn

δ
ξ
n+1

Figure 6.2: Extending the maps ϕ and ψ.

We define ψ(x) and ϕ(x) for x ∈ 2n by induction on n ∈ ω. We let ψ(∅) ∈ Aξ
0 \ T≤ε−1

arbitrarily.

Given ψ(x), we consider the set Rξ
x of all elements s ∈ Aξ

n such that

(a’) s ≥ ψ(x), fξ(s) = ln,

(b’) {ϕ(x ↾ k) : k < |x|, x ↾ k ∈ dom(ϕ)} ∪ {s} is complete,

(c’) νδ ∩ εn−1 ⊑ νmax(s) and

Cs ∩ r
↓ = {ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)}

for r = s ∩ (εn−1 + 1) if Cs is infinite,



Chapter 6. The chromatic number and infinitely connected subgraphs 76

(d’) Cs = {ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)} if Cs is finite.

If Rξ
x is not empty then we set x ∈ dom(ϕ) and choose an arbitrary ϕ(x) ∈ Rξ

x. Otherwise, x /∈

dom(ϕ). Now, we simply pick ψ(xai) for i < 2 satisfying conditions (i) and (iii) by applying condition

2. for Aξ
n+1. This finishes the construction of ψ and ϕ.

We extend ψ to 2ω in the obvious way:

ψ(x) =
⋃

{ψ(x ↾ k) : k < ω} ∪ {δ}

for x ∈ 2ω; note that ψ(x) is a closed subset of S by the second part of condition (iii) hence ψ(x) ∈ Tδ

for all x ∈ 2ω . Also, ψ remains 1-1 on 2ω by the first part of condition (iii). Hence, we can find an

xξ ∈ 2ω such that ψ(xξ) ∈ Tδ \ {tζ : ζ < ξ} and we let tξ = ψ(xξ). Finally, let

Ctξ =
{

ϕ(xξ ↾ k) : k < ω, xξ ↾ k ∈ dom(ϕ)
}

.

This finishes the induction on ξ < c and we define Ct = ∅ for t ∈ Tδ \ {tξ : ξ < c}.

Claim 6.4.4. {Ct : t ∈ T≤δ} is transitive and coherent.

Proof. Transitivity is assured by condition (ii). We check that η witnesses that {Ct : t ∈ T≤δ} is coherent.

Fix ξ < c and n < ω such that xξ ↾ n ∈ dom(ϕ) i.e. s = ϕ(xξ ↾ n) ∈ Ctξ .

If Cs is finite then we need that Cs = Ctξ ∩ s
↓; this is assured by condition (iv)-(d) above. Suppose

that Cs is infinite; we need to check that

ηtξ ∩ s
↓ ⊑ ηs and Ctξ ∩ r

↓ = Cs ∩ r
↓

for r = s ↾ ht(max
<T

(ηtξ ∩ s
↓)) + 1. Recall that

ηtξ = {tξ ∩ (ε+ 1) : ε ∈ νδ} and ηs = {s ∩ (ε+ 1) : ε ∈ νmax(s)}.

Note that u ∈ ηtξ ∩ s↓ iff u = tξ ∩ (ε + 1) for some ε ∈ νδ ∩ max(s). Furthermore, νδ ∩max(s) =

νδ ∩ εn−1 ⊑ νmax(s) by the choice of s and condition (iv)-(c). Hence, as s ⊑ tξ, we get that ηtξ ∩ s
↓ ⊑ ηs.

Finally, note that condition (iv)-(c) says that Cs and Ctξ agree below s∩(εn−1+1) and max(ηtξ∩s
↓) ≤

(s ∩ εn−1 + 1). This shows Ctξ ∩ r
↓ = Cs ∩ r↓.

This finishes our main induction and, as transitivity and coherence are preserved at limit steps, we

constructed a transitive and coherent ladder system C on the tree T . It is left to prove

Claim 6.4.5. Chr(XC) > ω.

Proof. Fix a colouring f : T → ω; we will find s, t ∈ T such that f(s) = f(t) and s ∈ Ct. We fix an

increasing sequence (Mn : n ∈ ω) of countable elementary submodels of H(c+) so that S,C, f ∈Mn for

all n ∈ ω and δ =M ∩ ω1 ∈ S for M =
⋃

{Mn : n ∈ ω}.

We consider the construction of {Ct : t ∈ Tδ}. There is a ξ < c so that Aξ
n = T ∩Mn for all n ∈ ω and

fξ = f ↾ (M ∩ T ). Our goal is to show that there is an s ∈ Ctξ such that f(s) = f(tξ); we let l = f(tξ).

Recall that there is an x = xξ ∈ 2ω so that tξ = ψ(x) and Ctξ = {ϕ(x ↾ k) : k < ω, x ↾ k ∈ dom(ϕ)}; we

will show that there is an n < ω such that x ↾ n ∈ dom(ϕ) and f(ϕ(x ↾ n)) = l, which finishes the proof.
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We first show that Ctξ is infinite, equivalently that there are infinitely many n ∈ ω such that

x ↾ n ∈ dom(ϕ). Suppose otherwise i.e. there is an n0 < ω such that x ↾ n /∈ dom(ϕ) for all n ∈ ω \ n0.

Let n be the minimal element of ω \ n0 such that l = ln.

Now, recall how we tried to construct ϕ(x ↾ n): we looked at the set Rξ
x↾n (elements from Aξ

n

which satisfied conditions (a’)-(d’)) and if Rξ
x↾n was not empty then we put x ↾ n ∈ dom(ϕ) and chose

ϕ(x ↾ n) ∈ Rξ
x↾n. Let us show that Rξ

x↾n is not empty. Let

R = {s ∈ T : s ≥ ψ(x ↾ n), f(s) = ln and Cs = {ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)}}

and note that R is in the model Mn and R ∩Mn ⊆ Rξ
x↾n. Hence, by elementarity, it suffices to show

that R 6= ∅. However, this is clear as tξ ∈ R. This contradicts x ↾ n /∈ dom(ϕ) and in turn shows that

Ctξ is infinite.

Now, with a quite similar argument, we will show that x ↾ n ∈ dom(ϕ) for the minimal n ∈ ω such

that l = ln; this finishes the proof of the claim as s = ϕ(x ↾ n) ∈ Ctξ and f(s) = l = f(tξ). Again, we

look at Rξ
x↾n and prove that Rξ

x↾n 6= ∅. Consider

R = {s ∈ T ∩ supp(C) : s ≥ ψ(x ↾ n), f(s) = ln,

{ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)} ∪ {s} is complete,

νδ ∩ εn−1 ⊑ νmax(s) and Cs ∩ r
↓ = {ϕ(x ↾ k) : k < n, x ↾ k ∈ dom(ϕ)} for r = s ∩ (εn−1 + 1)}.

It is clear that R ∈ Mn and R ∩Mn ⊆ Rξ
x↾n hence it suffices to show, by elementarity, that R 6= ∅.

However, tξ ∈ R.

This finishes the proof of the theorem.

6.5 A new triangle-free graph in ZFC

In this section, we adapt ideas of A. Hajnal and P. Komjáth [42] to our setting and construct a ladder

system C on T = T (S) (with S ⊂ ω1 stationary) so that XC is uncountably chromatic, triangle free and

contains no copies of the graph Hω,ω+2. A graph with these particular properties is constructed in [42]

but using the Continuum Hypothesis and later in ZFC in [64, Theorem 10]. Our construction is also

purely in ZFC.

Definition 6.5.1. Suppose that T is a tree. A cycle x0, x1, ....xn = x0 in G(T ) is special if it is the

union of two <T -monotone paths.

Note that every triangle is a special cycle. Our aim is to construct a graph of the form XC without

special cycles.

Definition 6.5.2. Suppose that T is a tree of the form T (S), X is a subgraph of G(T ) and γ < ω1. We

say that a vertex v ∈ T is γ-covered in X iff there exists a point w ∈ T≤γ and a monotone path from w

to v in X.

A ladder system C on T is sparse iff s is not max(r)-covered in XC for each t ∈ T and r, s ∈ Ct

with r < s.
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Note that if C is sparse then Ct is independent in XC for all t ∈ T and hence XC is triangle free.

The following was essentially proved in [42] and motivates the definitions above:

Lemma 6.5.3. Suppose that C is a ladder system on T . Then

1. if C is sparse then XC contains no special cycles,

2. if XC contains no special cycles then XC contains no triangles or copies of Hω,ω+2.

Proof. (1) Suppose that x0, x1, . . . xn = x0 is a special cycle with max(xi) = αi. Hence, there is i < n

so that αj < αi if i 6= j ≤ n. In particular, xi−1, xi+1 ∈ Cxi
and without loss of generality αi−1 <

αi+1 < αi. However, this implies that xi+1 is αi−1-covered, witnessed by the path xn, xn−1, . . . xi+1,

which contradicts that C is sparse.

(2) It is clear that every triangle is a special cycle. Now, suppose that {xi, yi, z, z
′ : i < ω} is a

subgraph of XC isomorphic to Hω,ω+2 i.e. the following pairs of points are edges

{

{xi, yj}, {xi, z}, {xi, z
′} : i ≤ j ∈ N

}

.

First, as xi and xj have infinitely many common neighbours (for i < j < ω) they must be <T -comparable;

hence we can suppose that x0 <T x1 <T .... Second, either z or z′ is <T -below infinitely many xi so

we might as well suppose that z <T xi for all i < ω. Finally, we have z <T x0 <T x1 and x0, x1 have

infinitely many common neighbours of the form yj with max(yj) > α1. In particular, we can find special

cycles of length 4 which contradicts our assumption.

Hence, we will aim at constructing sparse ladder systems C such that the corresponding graphs XC

are uncountably chromatic. Before that, we need the following

Lemma 6.5.4. Fix a stationary S ⊂ ω1 and let T = T (S). Suppose that X is a subgraph of G(T ) and

f : T → ω. Then there is δ ∈ ω1 and t ∈ Tδ so that for every n ∈ ω either:

1. for every r ≥ t and every γ ∈ ω1 there is an s ≥ r with f(s) = n which is not γ-covered in X, or

2. every r ≥ t with f(r) = n is δ-covered in X.

We will say that the vertex t decides f .

Proof. Take a countable elementary submodel M ≺ H(c+) with f,X, S ∈ M so that M ∩ ω1 = δ ∈ S.

Fix a cofinal sequence {δn : n ∈ ω} of type ω in δ.

Now, construct a sequence t0 ≤ .... ≤ tn ≤ ... in M ∩ T so that max(tn) ≥ δn and for every n ∈ ω

either

(i) for every r ≥ tn+1 and every γ ∈ ω1 there is an s ≥ r with f(s) = n which is not γ-covered in X ,

or

(ii) there is a γn ∈ δ so that every r ≥ tn+1 with f(r) = n is γn-covered in X .

We can pick t0 ∈ M ∩ T with max(t0) ≥ δ0 arbitrarily. Given tn ∈ M we select t′n+1 ∈ M above tn so

that max(t′n+1) ≥ δn+1. If the choice tn+1 = t′n+1 satisfies (i) from above then we are done; otherwise,

there is tn+1 ≥ t′n+1 and γ = γn so that every r ≥ tn+1 with f(r) = n is γn-covered. tn+1 and γn can

be chosen in M by elementarity so we are done.
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Now, let t =
⋃

{tn : n ∈ ω} ∪ {δ} and note that t ∈ Tδ; we claim that this t decides f . Indeed, as

t ≥ tn for all n ∈ ω and tn satisfies (i) or (ii), t must satisfy either 1. or 2. respectively.

We are ready to prove the main result of this section:

Theorem 6.5.5. Fix a stationary S ⊆ ω1 and let T = T (S). Then there is subgraph X of G(T ) with

Chr(X) = ω1 such that X contains no special cycles; in particular, X contains no triangles or copies of

Hω,ω+2.

Proof. It suffices to construct a sparse ladder system C on T so that Chr(XC) = ω1; indeed, by Lemma

6.5.3, a sparse ladder system C induces a graph XC on T with no special cycles and hence no triangles

or copies of Hω,ω+2.

We define a sparse ladder system (Ct : t ∈ T<δ) by induction on δ ∈ S′ and so that Ct = ∅ if t ∈ T

is a successor. First, let Ct = ∅ for t ∈ T<minS′ . Suppose we constructed Ct for t ∈ T<δ and we now

extend this ladder system to T<δ+ where δ+ is the minimum of S′ \ (δ+1) in two steps. First, we define

Ct for t ∈ Tδ and then let Ct = ∅ for t ∈ T<δ+ \ T≤δ. We may suppose δ ∈ S, otherwise Tδ = ∅.

Let {(Aξ, fξ, t0ξ) : ξ < c} denote a 1-1 enumeration of all triples (A, f, t0) with A ∈ [T<δ]
ω, f : A→ ω

and t0 ∈ A so that

(⋆) for every t ∈ A and ε < δ there are incomparable s0, s1 ∈ A so that si ≥ t and max(si) ≥ ε for i < 2.

By induction on ξ < c we define tξ ∈ Tδ \ {tζ : ζ < ξ} and Ctξ ⊆ t↓ξ (while preserving that the ladder

system is sparse). Suppose we have {tζ : ζ < ξ} defined and consider the triple (Aξ, fξ, t0ξ). Fix a cofinal

increasing sequence {δn : n ∈ ω} of type ω in δ.

We define a map ψ : 2<ω → Aξ and a partial map ϕ : 2<ω → Aξ so that

(i) ψ and ϕ are order preserving injections and

t0ξ < ψ(x) ≤ ϕ(x) ≤ ψ(xai)

for i < 2 provided that x ∈ dom(ϕ),

(ii) ψ(xa0) and ψ(xa1) are incomparable and contained in Aξ \ T<δn ,

(iii) ϕ(x) is not max(ψ(x))-covered,

(iv) if there is an s ∈ Aξ such that

(a) s ≥ ψ(x), fξ(s) = n,

(b) s is not max(ψ(x))-covered

then x ∈ dom(ϕ) and ϕ(x) satisfies (a)-(b) as well

for all x ∈ 2n and n ∈ ω.

We define ψ(x) and ϕ(x) for x ∈ 2n by induction on n ∈ ω. We select ψ(∅) > t0ξ arbitrarily in Aξ.

Given ψ(x) for x ∈ 2n we look at the set

Rξ
x = {s ∈ Aξ : s ≥ ψ(x), fξ(s) = n and s is not max(ψ(x))-covered}.
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If Rξ
x is not empty then let x ∈ dom(ϕ) and pick any ϕ(x) ∈ Rξ

x; otherwise x /∈ dom(ϕ). Now, using

condition (⋆) of Aξ, select incomparable ψ(xa0) and ψ(xa1) so that conditions (i)-(ii) are satisfied. This

finishes the construction of ψ and ϕ.

Now extend ψ to 2ω in the obvious way:

ψ(x) =
⋃

{ψ(x ↾ k) : k < ω} ∪ {δ}

for x ∈ 2ω; note that ψ(x) is a closed subset of S by the second part of condition (ii) and hence

ψ(x) ∈ Tδ for all x ∈ 2ω. Also, ψ remains 1-1 on 2ω by the first part of condition (ii). Hence, we can

find an xξ ∈ 2ω such that ψ(xξ) ∈ Tδ \ {tζ : ζ < ξ} and we let tξ = ψ(xξ). Finally, let

Ctξ =
{

ϕ(xξ ↾ k) : k < ω, xξ ↾ k ∈ dom(ϕ)
}

.

Note that condition (iii) ensures that Ctξ is sparse. This finishes the induction on ξ < c and in turn the

induction on δ ∈ S′.

We are left to prove

Claim 6.5.6. Chr(XC) > ω.

Proof. Fix a colouring f : T → ω; we will find s, t ∈ T so that f(s) = f(t) and s ∈ Ct. Take a countable

elementary submodel M ≺ H(c+) so that S,C, f ∈ M and δ = M ∩ ω1 ∈ S. By Lemma 6.5.4, we can

find t0 ∈M ∩ T so that t0 decides f .

Now, consider the construction of {Ct : t ∈ Tδ}; note that there is a ξ < c so that (Aξ, fξ, t0ξ) =

(A, f ↾ A, t0) where A = T ∩M . We will show that there is s ∈ Ctξ with f(s) = f(tξ).

Let f(tξ) = n.

Observation 6.5.7. For every r ≥ t0 and every γ ∈ ω1 there is an s ≥ r with f(s) = n which is not

γ-covered .

Proof. Recall that t0 = t0ξ decides f , so if the above statement fails then every r ≥ t0 with f(r) = n is

max(t0)-covered. In particular, tξ is max(t0)-covered. However, this implies that Ctξ is not empty and

there is s ∈ Ctξ which is max(t0)-covered (note that s > t0 for all s ∈ Ctξ). However, every s ∈ Ctξ is

not max(t0ξ)-covered by conditions (i) and (iii) above; this contradiction finishes the proof.

Recall that there is an x ∈ 2ω such that tξ = ψ(x) and Ctξ = {ϕ(x ↾ k) : k < ω, x ↾ k ∈ dom(ϕ)}.

Our aim is to show that x ↾ n ∈ dom(ϕ) and hence f(s) = f(tξ) for s = ϕ(x ↾ n) ∈ Ctξ . Thus we need

to prove that

Rξ
x↾n = {s ∈ Aξ : s ≥ ψ(x ↾ n), fξ(s) = n and s is not max(ψ(x ↾ n))-covered}

is not empty.

Let

R = {s ∈ T : s ≥ ψ(x ↾ n), f(s) = n and s is not max(ψ(x ↾ n))-covered}

and note that Rξ
x↾n = R ∩M and R ∈ M . Hence, by elementarity, it suffices to show that R 6= ∅. This

clearly follows from Observation 6.5.7 applied to r = ψ(x ↾ n) and γ = max(ψ(x ↾ n)).
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This finishes the proof of the theorem.

Let us remark that sparse and transitive ladder systems represent two extremes in the spectrum of

subgraphs of G(T ); if C is sparse then Ct is an independent set while if C is transitive then Ct is a

complete subgraph.

6.6 More on trees and ladders

We would like to point out that some of the graphs defined in our paper satisfy strong partition properties.

If T is a tree and X is a subgraph of G(T ) then we write

X → (Kω+1)
1
ω

iff for every colouring f : T → ω there is an n ∈ ω and a set A ⊆ T ∩ f−1(n) of <T -order type ω + 1

such that A spans a complete graph (i.e. A is a monochromatic copy of Kω+1). Clearly, X → (Kω+1)
1
ω

implies that Chr(X) > ω but not necessarily the other way; indeed, as seen in Theorem 6.5.5, there are

even triangle free subgraphs of G(T ) (for some T ) which are uncountably chromatic.

Let us first show that satisfying the above partition property or having large chromatic number are

equivalent for transitive ladder systems.

Proposition 6.6.1. Suppose that T is a tree and C is a ladder system on T . If C is transitive and

Chr(XC) > ω then

XC → (Kω+1)
1
ω.

Proof. Fix an f : T → ω; we will show that there is an n ∈ ω and t ∈ f−1(n) so that A = Ct ∩ f−1(n)

is infinite hence, by transitivity, A ∪ {t} gives a monochromatic copy of Kω+1 in XC .

Suppose otherwise i.e. Ct ∩ f−1(n) is finite for every t ∈ T with f(t) = n. We can define a new

colouring g : T → ω × ω using induction on the height so that g(t) = (f(t), g1(t)) where g1(t) =

max{g1(s) : s ∈ Ct ∩ f−1(n)} + 1 with n = f(t). It is easy to see that g witnesses Chr(XC) ≤ ω which

is a contradiction.

The above proposition is nicely complemented by

Observation 6.6.2. If T is a tree of height ω1 and C is a ladder system on T then there is no complete

subgraph in XC of <T -order type ω + 2.

Recall that in the proof of Theorem 6.4.3, we used a ladder system on ω1 (denoted by ν there) to

define another ladder system (denoted by η) on T = T (S) for S ⊆ ω1 in a very natural way. We did not

consider the subgraph of G(T ) corresponding to η at that point so let us present a result here.

Proposition 6.6.3. Suppose that S ⊆ ω1 is stationary and let T = T (S). Fix a true ladder system

ν = {νδ : δ ∈ Lim(ω1)} on ω1. Let

Ct = {t ∩ (ε+ 1) : ε ∈ νδ}

for any limit t ∈ Tδ and δ ∈ S and let Ct = ∅ otherwise. Then

XC → (Kω+1)
1
ω.
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Proof. Let f : T → ω. We say that D ⊆ T is dense above t ∈ T iff for every s ≥ t there is r ∈ D such

that r ≥ s. D is empty above t iff s /∈ D for every s ≥ t.

Claim 6.6.4. There is t0 in T so that f−1(k) is either empty or dense above t0 for every k ∈ ω.

Proof. The proof is very similar to the argument seen in Lemma 6.5.4 so we will be brief here. Take a

countable elementary submodel M ≺ H(c+) with f, S ∈ M so that δ = M ∩ ω1 ∈ S. Build a sequence

s0 ≤ s1 ≤ . . . in T ∩M so that (max(sk) : k ∈ ω) is a cofinal ω-type sequence in δ and f−1(k) is either

empty or dense above sk. It is easy to see that

t0 =
⋃

{sk : k ∈ ω} ∪ {δ}

is in T and satisfies the claim.

Take a countable elementary submodel M ≺ H(c+) with t0, f, S, ν ∈ M and δ = M ∩ ω1 ∈ S. Let

{kn : n ∈ ω} enumerate those k ∈ ω so that f−1(k) is dense above t0 (or equivalently, not empty above

t0), each ω times. Let (δn : n ∈ ω) be an arbitrary cofinal ω-type sequence in δ.

We construct t0 ≤ t1 ≤ .... ≤ tn ≤ ... in T ∩M so that

1. max(tn+1) ≥ δn,

2. tn+1 ∩ (εn + 1) = tn for εn = min νδ \ (max(tn) + 1),

3. if there is t ≥ tn in T ∩M such that

(a) max(t) ≥ δn, t ∩ (εn + 1) = tn,

(b) {ti : i ≤ n} ⊆ Ct and

(c) f(t) = kn

then t = tn+1 satisfies (a)-(c) as well.

Let t =
⋃

{tn : n ∈ ω} ∪ {δ}; note that t ∈ Tδ and t ≥ tn for all n ∈ ω. Also, (2) ensures that tn ∈ Ct

for n ∈ ω as tn = t ∩ (εn + 1) and εn ∈ νδ.

Let k = f(t); as t ≥ t0 we know that f−1(k) is dense above t0. We claim that

A = {tn+1 : k = kn, n ∈ ω} ∪ {t}

is a complete subgraph XC and A is coloured with k which finishes the proof. It suffice to show that

whenever kn = k and tn+1 is constructed then condition (3) is satisfied. Fix an n ∈ ω such that kn = k.

Consider the set

Rn = {t ∈ T ∩M : max(t) ≥ δn, t ∩ (εn + 1) = tn, {ti : i ≤ n} ⊆ Ct and f(t) = kn}

and we wish to show that Rn 6= ∅.

It suffices to show that

R = {t ∈ T : max(t) ≥ δn, t ∩ (εn + 1) = tn, {ti : i ≤ n} ⊆ Ct and f(t) = kn}

is not empty as Rn = R ∩M and R ∈M . However t ∈ R which finishes the proof.
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6.7 Open Problems

First, we mention that the following most general form of the Erdős-Hajnal problem is still open:

Problem 6.7.1. Does every uncountably chromatic graph contain an ω-connected subset?

We know, by Theorem 6.3.5, that this ω-connected set can only be countable in some cases however

excluding countable ω-connected subsets seems to be a very hard problem. Certainly, our construction

in Theorem 6.3.5 contains several countably infinite complete subgraphs (as shown in Proposition 6.6.1).

We don’t know how essential it is to consider trees of the form T (S) in finding uncountably chromatic

ladder subgraphs. In particular:

Problem 6.7.2. Suppose that T is a non special tree without uncountable chains. Is there a ladder

system C on T such that the subgraph XC of G(T ) is uncountably chromatic?

One might start by looking at σQ and Souslin trees first. In general about Hajnal-Máté graphs on

ω1, we make the following conjecture:

Conjecture 6.7.3. It is consistent that ♣ holds while there are no Hajnal-Máté graphs on ω1.

A recent (and long awaited) result of S. Shelah and H. Mildenberger [91] is the consistency of ♣ with

”every Aronszajn tree is special”. We believe that their method can provide a positive solution to our

conjecture.

We know that the trees T (S) are quite rigid (see Theorem 1.5.5). Is this true for uncountably

chromatic subgraphs? In particular:

Problem 6.7.4. Are there disjoint stationary sets S0, S1 ⊆ ω1 such that G(T (S0))and G(T (S1)) has

a common uncountably chromatic subgraph? If yes, can this subgraph be defined by ladder systems on

T (Si)?

Also, there are several natural directions in which research can be continued on trees and ladder

systems. In particular:

• finding applications in general topology using our framework,

• investigating minimal walks on trees along ladder systems.
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1935.
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