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Introduction

Goal: study topological spaces X which have a dense set
⋃
{Dn : n ∈ ω}

so that Dn is small.

separable spaces: Dn can be chosen singleton/finite/countable.

d-separable spaces: Dn can be chosen discrete;

e-separable spaces: Dn can be chosen closed and discrete;

how do products/powers behave?

study related cardinal functions.

Joint work with Rodrigo R. Dias.
disclaimer: space = regular,
topological space.
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Separable spaces and products

Recall: X is separable iff there is a countable dense subset of X i.e. d(X ) = ℵ0.

If X is separable then X has a basis of size ≤ c = 2ℵ0 and |X | ≤ 2c.

[Pondiczery 1944] If X is separable then X c is separable but X c+ is not.

fix a countable dense D in X ,

c = |R|, let Q ⊆ P(c) correspond to rational intervals in c,

let f ∈ E iff f ∈ X c and there are {Ik : k < m} from Q and d , dk ∈ D
so that f � Ik = dk and f � c \ ∪k<mIk = d ;

E is still countable and dense in X c.
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d-separable spaces

[Kurepa 1936] X is d-separable iff there is a σ-discrete dense subset of X .

introduced as property K0 in his study of Suslin’s problem .

If X is separable or metrizable then X is d-separable.

[K 1936] a Suslin-continuum is not d-separable.
size of discrete sets ≤ ℵ0 < ℵ1 ≤ size of dense sets.

[Todorcevic 1981]
In ZFC, there is a non d-separable continuum.

Consistently, any LOTS of density ℵ1 is d-separable.
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Products and d-separable spaces

Recall: X c is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] Xκ is d-separable if there is a discrete
subset of Xκ of size d(X ).

Note: {x ∈ 2κ : |x−1(1)| = n} ⊆ D(2)κ is discrete for any n ∈ ω.

⇒ D(κ) ↪→ D(2)κ ↪→ Xκ.

[Amirdzanov 1977, JS 2008] X d(X ) is d-separable for any X .
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Compact spaces and powers

[JS 2008] Xω is d-separable for any compact X .

(ω∗)n is not d-separable for any n ∈ ω.

[JS 2008] X 2 has a discrete subset of size d(X ) for any compact X .

Wlog: any non empty open subset has weight w(X ) (not trivial).

find (xα, yα) ∈ Uα × Vα ⊆ X 2 so that Uα ∩ Vα = ∅ for α < d(X ),

there is a open H 6= ∅ so that K = H ⊆ X \ {xα, yα : α < β},

{Uα,Vα : α < β} generate a coarser topology on K than the
original compact so cannot be Hausdorff.

Let xβ, yβ ∈ K witness this; then (xβ, yβ) /∈ Uα × Vα for α < β.

Now take any disjoint open Uβ,Vβ with (xβ, yβ) ∈ Uβ × Vβ ⊆ H2.
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{Uα,Vα : α < β} generate a coarser topology on K than the
original compact so cannot be Hausdorff.

Let xβ, yβ ∈ K witness this; then (xβ, yβ) /∈ Uα × Vα for α < β.

Now take any disjoint open Uβ,Vβ with (xβ, yβ) ∈ Uβ × Vβ ⊆ H2.
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Some open problems

[JS 2008] Is there a compact space X in ZFC so that X has
no discrete subsets of size d(X )?

a compact L-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + ♦(Sω2
ω1

) implies that Xω is not d-separable
for some countably compact X .

d(X ) = ℵ2 but every discrete subset of Xω has size ≤ ℵ1.

[BT 2013] Is there a countably compact space X in ZFC so that
Xω is not d-separable?
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e-separable spaces

[Kurepa 1936] X is e-separable iff there is a σ-closed discrete dense
subset of X .

Kurepa named these K ′0-spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

D(2)c
+
is d-separable but not e-separable.

D. T. Soukup (KGRC) On spaces with small dense sets 51th Spring Topology 8 / 22



e-separable spaces

[Kurepa 1936] X is e-separable iff there is a σ-closed discrete dense
subset of X .

Kurepa named these K ′0-spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

D(2)c
+
is d-separable but not e-separable.

D. T. Soukup (KGRC) On spaces with small dense sets 51th Spring Topology 8 / 22



e-separable spaces

[Kurepa 1936] X is e-separable iff there is a σ-closed discrete dense
subset of X .

Kurepa named these K ′0-spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

D(2)c
+
is d-separable but not e-separable.

D. T. Soukup (KGRC) On spaces with small dense sets 51th Spring Topology 8 / 22



e-separable spaces

[Kurepa 1936] X is e-separable iff there is a σ-closed discrete dense
subset of X .

Kurepa named these K ′0-spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

D(2)c
+
is d-separable but not e-separable.

D. T. Soukup (KGRC) On spaces with small dense sets 51th Spring Topology 8 / 22



e-separable spaces

[Kurepa 1936] X is e-separable iff there is a σ-closed discrete dense
subset of X .

Kurepa named these K ′0-spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

D(2)c
+
is d-separable but not e-separable.

D. T. Soukup (KGRC) On spaces with small dense sets 51th Spring Topology 8 / 22



e-separable spaces

[Kurepa 1936] X is e-separable iff there is a σ-closed discrete dense
subset of X .

Kurepa named these K ′0-spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

D(2)c
+
is d-separable but not e-separable.

D. T. Soukup (KGRC) On spaces with small dense sets 51th Spring Topology 8 / 22



Prior focus in research

[Faber 1974] Any e-separable GO-space is perfect (closed sets are Gδ).

for perfect spaces: e-separable ↔ d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is
not e-separable?

[Reed 1970s] Is there, in ZFC, a perfect, first countable X which is
not e-separable?

[Qiao, Tall 2003] connecting to non-Archimedean spaces.

[Benett, Lutzer 2006] Answer is “No” if density is ℵ1.
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Powers and large closed discrete sets

Products of d-separable are d-separable.

Xκ is d-separable if it has a discrete subset of size d(X ).

[Alas] If X is e-separable then Xκ is e-separable for all κ ≤ c.

Xκ is e-separable if there is a closed discrete subset of Xκ of size d(Xκ).

Suppose that {dξ}ξ<δ ⊆ X I is dense in X I and {eξ}ξ<δ ⊆ Xκ\I is
closed discrete in Xκ\I .

{dξ ∪ eξ}ξ<δ ⊆ Xκ is closed discrete in Xκ.

Write κ as increasing union
⋃
{In : n ∈ ω} with |In| = |κ \ In| = κ and

repeat the above.
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Are there large closed discrete sets?

Recall: Xκ is e-separable if there is a closed discrete subset of size d(Xκ).

[Mycielski 1964] D(ω)κ contains a closed discrete set of size κ for every
κ less than the 1st weakly inaccessible cardinal.

This helps if X has an infinite closed discrete subset i.e. not countably
compact.

Suppose that X is not countably compact. Then X d(X ) is e-separable if
d(X ) < the 1st weakly inaccessible cardinal.
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Are there large closed discrete sets?

Recall: Xκ is e-separable if there is a closed discrete subset of size d(Xκ).

[Lós 1959] D(ω)2κ contains a closed discrete set of size κ for every κ less
than the 1st measurable cardinal.

Suppose that X is not countably compact. Then X 2d(X )
is e-separable if

d(X ) < the 1st measurable cardinal.

What happens at a measurable?

If κ > ω is measurable then D(ω)κ has no closed discrete subsets of size κ
so is not e-separable.

Note: D(ω)κ has closed discrete sets of all sizes < κ.
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Products - two reduction steps

Recall: X c is e-separable if X is e-separable.

Focus: products of κ ≤ c terms b.c. D(2)c
+
is not e-separable.

Suppose that κ ≤ c. Then the following are equivalent:

every product of at most κ many e-separable spaces is e-separable;

every product of at most κ many discrete spaces is e-separable.

⇒ finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is
e-separable.

⇒ a product of κ spaces is non e-separable because of
terms of size < κ.
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Closed discrete sets in products

[Mrowka 1970] Define κ /∈M∗ iff any product of κ many discrete spaces
X =

∏
{Xα : α < κ} with each of size < κ has no closed discrete set of

size κ.

[M 1970, Jech] If κ /∈M∗ then κ is weakly inaccessible.

Suppose that κ ≤ c is minimal so that there is a family of κ e-separable
spaces with non e-separable product. Then κ /∈M∗.

The preservation theorem:

Suppose there are no weakly inaccessible cardinals ≤ c. Then the product
of at most c many e-separable spaces is e-separable.
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M∗ and weak compactness

Lκ,ω is the infinitary language which allows conjunctions and
disjunctions of < κ formulas and universal or existential quantification over
finitely many variables.

Lκ,ω is weakly compact iff every set of at most κ sentences Σ from Lκ,ω
has a model provided that every S ∈ [Σ]<κ has a model.

[M 1970] Lκ,ω is weakly compact iff κ /∈M∗.
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Weak compactness below c

[Erdős, Tarski 1961] κ is a weakly compact cardinal iff κ→ (κ)2
2.

κ is a weakly compact cardinal iff it is strongly inaccessible and Lκ,ω is
weakly compact.

[Cudnovskii, Boos] If V |= κ is a weakly compact cardinal then
V Cκ+ |= κ < c = κ+ and Lκ,ω is weakly compact.
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Non e-separable products of size ≤ c

Consistently, there are < c-many discrete spaces (each of size < c) with
non e-separable product.

Use a weakly compact cardinal to find a model with κ < c and Lκ,ω
weakly compact i.e. κ /∈M∗.

X =
∏
{D(α) : α < κ} has no closed discrete sets of size κ.

κ is regular (and limit) so σ-closed discrete sets have size < κ.

d(X ) = κ so X is not e-separable.
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Some cardinal functions

Recall some classical cardinal functions:

density: d(X ) = min{|D| : D ⊆ X is dense in X};

spread: s(X ) = sup{|S | : S ⊆ X is discrete in X}.

If X is d-separable:

ds(X ) = min{|D| : D ⊆ X is dense and σ-discrete in X}

extent: e(X ) = sup{|E | : E ⊆ X is closed discrete in X}.

If X is e-separable:

de(X ) = min{|D| : D ⊆ X is dense and σ-closed discrete in X}
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Inequalities

d(X ) ≤ ds(X ) ≤ s(X ) for any d-separable X ;

d(X ) ≤ de(X ) ≤ e(X ) for any e-separable X .

There is a 0-dimensional e-separable space X such that

c = d(X ) < de(X ) = e(X ) = w(X ) = 2c.

The plan is that X = Y ∪ E ⊆ 22c , both Y ,E are dense and

|Y | = c and σ-closed discrete sets are nowhere dense,
let |Y0| = c dense and find Y0 ⊆ Y countably compact, |Y | = c.

E is σ-closed discrete with size and density 2c,
use the trick for glueing dense and closed discrete sets with σ(22c

).
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Inequalities

How to get d(X ) < ds(X ) for a d-separable X?

[Moore 2006] there is a dense Y ⊆ ωω1 such that any σ-discrete is
nowhere dense.

if ω2 ≤ c then there is a countable dense D ⊆ 2ω2 ,

so Y ↪→ Dω1 ⊆ (2ω2)ω1 ' 2ω2 densely.

X = Y ∪ σ(2ω2) is d-separable but there are no σ-discrete dense
sets of size ℵ1.

Is there, in ZFC, a dense Y ⊆ 2ω2 of size ℵ1 such that any σ-discrete
subset is nowhere dense?
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Last questions

Does d(X ) = ds(X ) for compact, d-separable X?

[Moore 2008] There is an L-space X such that X 2 is d-separable.

[Peng 2015] There is an L-space X such that X 2 is e-separable.

Note: ℵ0 = s(X ) = e(X ) < d(X ) = ℵ1 so X is not d-separable.

Is there a non-separable, countably compact X so that X 2 is
e-separable?
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Thank you for your attention!
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