On spaces with small dense sets

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

1 / 22

- separable spaces: D_n can be chosen singleton/finite/countable.
- **d-separable spaces**: *D_n* can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

- separable spaces: D_n can be chosen singleton/finite/countable.
- **d-separable spaces**: *D_n* can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

- separable spaces: D_n can be chosen singleton/finite/countable.
- **d-separable spaces**: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

- separable spaces: D_n can be chosen singleton/finite/countable.
- d-separable spaces: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

- separable spaces: D_n can be chosen singleton/finite/countable.
- d-separable spaces: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

• disclaimer: space = regular, topological space.

2 / 22

- separable spaces: D_n can be chosen singleton/finite/countable.
- d-separable spaces: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

• disclaimer: space = regular, topological space.

2 / 22

- separable spaces: D_n can be chosen singleton/finite/countable.
- d-separable spaces: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

- separable spaces: D_n can be chosen singleton/finite/countable.
- d-separable spaces: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

- separable spaces: D_n can be chosen singleton/finite/countable.
- d-separable spaces: D_n can be chosen discrete;
- e-separable spaces: D_n can be chosen closed and discrete;
- how do products/powers behave?
- study related cardinal functions.

Joint work with Rodrigo R. Dias.

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in X^{c} .

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in X^{c} .

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in X^{c} .

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in X^{c} .

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in X^{c} .

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in X^{c} .

Recall: X is separable iff there is a countable dense subset of X i.e. $d(X) = \aleph_0$.

If X is separable then X has a basis of size $\leq \mathfrak{c} = 2^{\aleph_0}$ and $|X| \leq 2^{\mathfrak{c}}$.

- fix a countable dense D in X,
- $\mathfrak{c} = |\mathbb{R}|$, let $\mathcal{Q} \subseteq \mathcal{P}(\mathfrak{c})$ correspond to rational intervals in \mathfrak{c} ,
- let $f \in E$ iff $f \in X^{\mathfrak{c}}$ and there are $\{I_k : k < m\}$ from \mathcal{Q} and $d, d_k \in D$ so that $f \upharpoonright I_k = d_k$ and $f \upharpoonright \mathfrak{c} \setminus \bigcup_{k < m} I_k = d$;
- E is still countable and dense in $X^{\mathfrak{c}}$.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \aleph_0 < \aleph_1 \leq$ size of dense sets.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \kappa_0 < \kappa_1 \leq$ size of dense
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 size of discrete sets ≤ ℵ₀ < ℵ₁ ≤ size of dense sets
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \aleph_0 < \aleph_1 \leq$ size of dense sets.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \aleph_0 < \aleph_1 \leq$ size of dense sets.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \aleph_0 < \aleph_1 \leq$ size of dense sets.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \aleph_0 < \aleph_1 \leq$ size of dense sets.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

• introduced as property K_0 in his study of Suslin's problem .

- [K 1936] a Suslin-continuum is not d-separable.
 - size of discrete sets $\leq \aleph_0 < \aleph_1 \leq$ size of dense sets.
- [Todorcevic 1981]
 - In ZFC, there is a non d-separable continuum.
 - Consistently, any LOTS of density \aleph_1 is d-separable.

Recall: X^{c} is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] X^{κ} is d-separable if there is a discrete subset of X^{κ} of size d(X).

Note: $\{x \in 2^{\kappa} : |x^{-1}(1)| = n\} \subseteq D(2)^{\kappa}$ is discrete for any $n \in \omega$.

 $\Rightarrow D(\kappa) \hookrightarrow D(2)^{\kappa} \hookrightarrow X^{\kappa}.$

Recall: X^{c} is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] X^{κ} is d-separable if there is a discrete subset of X^{κ} of size d(X).

Note: $\{x \in 2^{\kappa} : |x^{-1}(1)| = n\} \subseteq D(2)^{\kappa}$ is discrete for any $n \in \omega$.

 $\Rightarrow D(\kappa) \hookrightarrow D(2)^{\kappa} \hookrightarrow X^{\kappa}.$

Recall: X^{c} is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] X^{κ} is d-separable if there is a discrete subset of X^{κ} of size d(X).

Note: $\{x \in 2^{\kappa} : |x^{-1}(1)| = n\} \subseteq D(2)^{\kappa}$ is discrete for any $n \in \omega$.

 $\Rightarrow D(\kappa) \hookrightarrow D(2)^{\kappa} \hookrightarrow X^{\kappa}.$

Recall: X^{c} is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] X^{κ} is d-separable if there is a discrete subset of X^{κ} of size d(X).

Note: $\{x \in 2^{\kappa} : |x^{-1}(1)| = n\} \subseteq D(2)^{\kappa}$ is discrete for any $n \in \omega$.

 $\Rightarrow D(\kappa) \hookrightarrow D(2)^{\kappa} \hookrightarrow X^{\kappa}.$

[Amirdzanov 1977, JS 2008] X^{d(X)} is d-separable for any X.

Recall: X^{c} is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] X^{κ} is d-separable if there is a discrete subset of X^{κ} of size d(X).

Note: $\{x \in 2^{\kappa} : |x^{-1}(1)| = n\} \subseteq D(2)^{\kappa}$ is discrete for any $n \in \omega$.

 $\Rightarrow D(\kappa) \hookrightarrow D(2)^{\kappa} \hookrightarrow X^{\kappa}.$

Recall: X^{c} is separable if X is separable.

[Arhangelskii 1981] Any product of d-separable spaces is d-separable.

[Juhász, Szentmiklóssy 2008] X^{κ} is d-separable if there is a discrete subset of X^{κ} of size d(X).

Note: $\{x \in 2^{\kappa} : |x^{-1}(1)| = n\} \subseteq D(2)^{\kappa}$ is discrete for any $n \in \omega$.

 $\Rightarrow D(\kappa) \hookrightarrow D(2)^{\kappa} \hookrightarrow X^{\kappa}.$

Compact spaces and powers

[JS 2008] X^{ω} is d-separable for any compact X.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.
- Now take any disjoint open U_{β}, V_{β} with $(x_{\beta}, y_{\beta}) \in U_{\beta} \times V_{\beta} \subseteq H^2$.

[JS 2008] X^{ω} is d-separable for any compact X.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

Now take any disjoint open U_β, V_β with (x_β, y_β) ∈ U_β × V_β ⊆ H².

[JS 2008] X^{ω} is d-separable for any compact X.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• Now take any disjoint open U_{β}, V_{β} with $(x_{\beta}, y_{\beta}) \in U_{\beta} \times V_{\beta} \subseteq H^2$.

[JS 2008] X^{ω} is d-separable for any compact X.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• Now take any disjoint open U_{β}, V_{β} with $(x_{\beta}, y_{\beta}) \in U_{\beta} \times V_{\beta} \subseteq H^2$.
• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• $(\omega^*)^n$ is not d-separable for any $n \in \omega$.

[JS 2008] X^2 has a discrete subset of size d(X) for any compact X.

- Wlog: any non empty open subset has weight w(X) (not trivial).
- find $(x_{\alpha}, y_{\alpha}) \in U_{\alpha} \times V_{\alpha} \subseteq X^2$ so that $U_{\alpha} \cap V_{\alpha} = \emptyset$ for $\alpha < d(X)$,
- there is a open $H \neq \emptyset$ so that $K = \overline{H} \subseteq X \setminus \overline{\{x_{\alpha}, y_{\alpha} : \alpha < \beta\}}$,
- {U_α, V_α : α < β} generate a coarser topology on K than the original compact so cannot be Hausdorff.
- Let $x_{\beta}, y_{\beta} \in K$ witness this; then $(x_{\beta}, y_{\beta}) \notin U_{\alpha} \times V_{\alpha}$ for $\alpha < \beta$.

• a compact *L*-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + $\Diamond(S_{\omega_1}^{\omega_2})$ implies that X^{ω} is not d-separable for some countably compact X.

• $d(X) = \aleph_2$ but every discrete subset of X^{ω} has size $\leq \aleph_1$.

[BT 2013] Is there a **countably compact** space X in ZFC so that X^{ω} is not d-separable?

• a compact *L*-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + $\Diamond(S_{\omega_1}^{\omega_2})$ implies that X^{ω} is not d-separable for some countably compact X.

• $d(X) = \aleph_2$ but every discrete subset of X^{ω} has size $\leq \aleph_1$.

[BT 2013] Is there a **countably compact** space X in ZFC so that X^{ω} is not d-separable?

• a compact L-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + $\Diamond(S_{\omega_1}^{\omega_2})$ implies that X^{ω} is not d-separable for some countably compact X.

• $d(X) = \aleph_2$ but every discrete subset of X^{ω} has size $\leq \aleph_1$.

[BT 2013] Is there a **countably compact** space X in ZFC so that X^{ω} is not d-separable?

• a compact L-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + $\Diamond(S_{\omega_1}^{\omega_2})$ implies that X^{ω} is not d-separable for some countably compact X.

• $d(X) = \aleph_2$ but every discrete subset of X^{ω} has size $\leq \aleph_1$.

[BT 2013] Is there a **countably compact** space X in ZFC so that X^{ω} is not d-separable?

• a compact L-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + $\Diamond(S_{\omega_1}^{\omega_2})$ implies that X^{ω} is not d-separable for some countably compact X.

• $d(X) = \aleph_2$ but every discrete subset of X^{ω} has size $\leq \aleph_1$.

[BT 2013] Is there a **countably compact** space X in ZFC so that X^{ω} is not d-separable?

• a compact L-space (e.g. a Suslin-continuum) is a consistent example.

[Burke, Tkachuk 2013] CH + $\Diamond(S_{\omega_1}^{\omega_2})$ implies that X^{ω} is not d-separable for some countably compact X.

• $d(X) = \aleph_2$ but every discrete subset of X^{ω} has size $\leq \aleph_1$.

[BT 2013] Is there a **countably compact** space X in ZFC so that X^{ω} is not d-separable?

• Kurepa named these K'_0 -spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

- Kurepa named these K'_0 -spaces.
- If X is separable or metrizable then X is e-separable.
- If X is (countably) compact and e-separable then X is separable.
 - $D(2)^{c^+}$ is d-separable but not e-separable.

• Kurepa named these K'_0 -spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

• Kurepa named these K'_0 -spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

• Kurepa named these K'_0 -spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

• Kurepa named these K'_0 -spaces.

If X is separable or metrizable then X is e-separable.

If X is (countably) compact and e-separable then X is separable.

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a perfect, first countable X which is not e-separable?

- [Qiao, Tall 2003] connecting to non-Archimedean spaces.
- [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a perfect, first countable X which is not e-separable?

- [Qiao, Tall 2003] connecting to non-Archimedean spaces.
- [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a perfect, first countable X which is not e-separable?

- [Qiao, Tall 2003] connecting to non-Archimedean spaces.
- [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a perfect, first countable X which is not e-separable?

- [Qiao, Tall 2003] connecting to non-Archimedean spaces.
- [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a **perfect, first countable** *X* which is **not e-separable**?

- [Qiao, Tall 2003] connecting to non-Archimedean spaces.
- [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a **perfect**, **first countable** *X* which is **not e-separable**?

• [Qiao, Tall 2003] connecting to non-Archimedean spaces.

• [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

• for perfect spaces: e-separable \leftrightarrow d-separable.

[Maurice 1970s] Is there, in ZFC, a perfect GO-space which is not e-separable?

[Reed 1970s] Is there, in ZFC, a **perfect, first countable** *X* which is **not e-separable**?

- [Qiao, Tall 2003] connecting to non-Archimedean spaces.
- [Benett, Lutzer 2006] Answer is "No" if density is \aleph_1 .

- Products of d-separable are d-separable.
- X^{κ} is d-separable if it has a discrete subset of size d(X).

[Alas] If X is e-separable then X^{κ} is e-separable for all $\kappa \leq \mathfrak{c}$.

- Suppose that $\{d_{\xi}\}_{\xi < \delta} \subseteq X^{I}$ is dense in X^{I} and $\{e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa \setminus I}$ is closed discrete in $X^{\kappa \setminus I}$.
- $\{d_{\xi} \cup e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa}$ is closed discrete in X^{κ} .
- Write κ as increasing union $\bigcup \{I_n : n \in \omega\}$ with $|I_n| = |\kappa \setminus I_n| = \kappa$ and repeat the above.

- Products of d-separable are d-separable.
- X^{κ} is d-separable if it has a discrete subset of size d(X).

[Alas] If X is e-separable then X^{κ} is e-separable for all $\kappa \leq \mathfrak{c}$.

- Suppose that $\{d_{\xi}\}_{\xi < \delta} \subseteq X^{I}$ is dense in X^{I} and $\{e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa \setminus I}$ is closed discrete in $X^{\kappa \setminus I}$.
- $\{d_{\xi} \cup e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa}$ is closed discrete in X^{κ} .
- Write κ as increasing union $\bigcup \{I_n : n \in \omega\}$ with $|I_n| = |\kappa \setminus I_n| = \kappa$ and repeat the above.

- Products of d-separable are d-separable.
- X^{κ} is d-separable if it has a discrete subset of size d(X).

[Alas] If X is e-separable then X^{κ} is e-separable for all $\kappa \leq \mathfrak{c}$.

- Suppose that $\{d_{\xi}\}_{\xi < \delta} \subseteq X^{I}$ is dense in X^{I} and $\{e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa \setminus I}$ is closed discrete in $X^{\kappa \setminus I}$.
- $\{d_{\xi} \cup e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa}$ is closed discrete in X^{κ} .
- Write κ as increasing union $\bigcup \{I_n : n \in \omega\}$ with $|I_n| = |\kappa \setminus I_n| = \kappa$ and repeat the above.

- Products of d-separable are d-separable.
- X^{κ} is d-separable if it has a discrete subset of size d(X).

[Alas] If X is e-separable then X^{κ} is e-separable for all $\kappa \leq \mathfrak{c}$.

- Suppose that $\{d_{\xi}\}_{\xi < \delta} \subseteq X^{I}$ is dense in X^{I} and $\{e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa \setminus I}$ is closed discrete in $X^{\kappa \setminus I}$.
- $\{d_{\xi} \cup e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa}$ is closed discrete in X^{κ} .
- Write κ as increasing union $\bigcup \{I_n : n \in \omega\}$ with $|I_n| = |\kappa \setminus I_n| = \kappa$ and repeat the above.

- Products of d-separable are d-separable.
- X^{κ} is d-separable if it has a discrete subset of size d(X).

[Alas] If X is e-separable then X^{κ} is e-separable for all $\kappa \leq \mathfrak{c}$.

- X^{κ} is e-separable if there is a closed discrete subset of X^{κ} of size $d(X^{\kappa})$.
 - Suppose that $\{d_{\xi}\}_{\xi < \delta} \subseteq X^{I}$ is dense in X^{I} and $\{e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa \setminus I}$ is closed discrete in $X^{\kappa \setminus I}$.
 - $\{d_{\xi} \cup e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa}$ is closed discrete in X^{κ} .
 - Write κ as increasing union $\bigcup \{I_n : n \in \omega\}$ with $|I_n| = |\kappa \setminus I_n| = \kappa$ and repeat the above.

- Products of d-separable are d-separable.
- X^{κ} is d-separable if it has a discrete subset of size d(X).

[Alas] If X is e-separable then X^{κ} is e-separable for all $\kappa \leq \mathfrak{c}$.

- X^{κ} is e-separable if there is a closed discrete subset of X^{κ} of size $d(X^{\kappa})$.
 - Suppose that $\{d_{\xi}\}_{\xi < \delta} \subseteq X^{I}$ is dense in X^{I} and $\{e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa \setminus I}$ is closed discrete in $X^{\kappa \setminus I}$.
 - $\{d_{\xi} \cup e_{\xi}\}_{\xi < \delta} \subseteq X^{\kappa}$ is closed discrete in X^{κ} .
 - Write κ as increasing union $\bigcup \{I_n : n \in \omega\}$ with $|I_n| = |\kappa \setminus I_n| = \kappa$ and repeat the above.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Mycielski 1964] $D(\omega)^{\kappa}$ contains a closed discrete set of size κ for every κ less than the 1st weakly inaccessible cardinal.

This helps if X has an infinite closed discrete subset i.e. not countably compact.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Mycielski 1964] $D(\omega)^{\kappa}$ contains a closed discrete set of size κ for every κ less than the 1st weakly inaccessible cardinal.

This helps if X has an infinite closed discrete subset i.e. not countably compact.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Mycielski 1964] $D(\omega)^{\kappa}$ contains a closed discrete set of size κ for every κ less than the 1st weakly inaccessible cardinal.

This helps if X has an infinite closed discrete subset i.e. not countably compact.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Mycielski 1964] $D(\omega)^{\kappa}$ contains a closed discrete set of size κ for every κ less than the 1st weakly inaccessible cardinal.

This helps if X has an infinite closed discrete subset i.e. not countably compact.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Lós 1959] $D(\omega)^{2^{\kappa}}$ contains a closed discrete set of size κ for every κ less than the 1st measurable cardinal.

Suppose that X is not countably compact. Then $X^{2^{d(X)}}$ is e-separable if $d(X) < \text{the } 1^{st}$ measurable cardinal.

What happens at a measurable?

If $\kappa > \omega$ is measurable then $D(\omega)^{\kappa}$ has no closed discrete subsets of size κ so is not e-separable.

Note: $D(\omega)^{\kappa}$ has closed discrete sets of all sizes $< \kappa$.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Lós 1959] $D(\omega)^{2^{\kappa}}$ contains a closed discrete set of size κ for every κ less than the 1st measurable cardinal.

Suppose that X is not countably compact. Then $X^{2^{d(X)}}$ is e-separable if $d(X) < \text{the } 1^{st}$ measurable cardinal.

What happens at a measurable?

If $\kappa > \omega$ is measurable then $D(\omega)^{\kappa}$ has no closed discrete subsets of size κ so is not e-separable.

Note: $D(\omega)^{\kappa}$ has closed discrete sets of all sizes $< \kappa$.
Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Lós 1959] $D(\omega)^{2^{\kappa}}$ contains a closed discrete set of size κ for every κ less than the 1st measurable cardinal.

Suppose that X is not countably compact. Then $X^{2^{d(X)}}$ is e-separable if $d(X) < \text{the } 1^{st}$ measurable cardinal.

What happens at a measurable?

If $\kappa > \omega$ is measurable then $D(\omega)^{\kappa}$ has no closed discrete subsets of size κ so is not e-separable.

Note: $D(\omega)^{\kappa}$ has closed discrete sets of all sizes $< \kappa$.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Lós 1959] $D(\omega)^{2^{\kappa}}$ contains a closed discrete set of size κ for every κ less than the 1st measurable cardinal.

Suppose that X is not countably compact. Then $X^{2^{d(X)}}$ is e-separable if $d(X) < \text{the } 1^{st}$ measurable cardinal.

What happens at a measurable?

If $\kappa > \omega$ is measurable then $D(\omega)^{\kappa}$ has no closed discrete subsets of size κ so is not e-separable.

Note: $D(\omega)^{\kappa}$ has closed discrete sets of all sizes $< \kappa$.

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Lós 1959] $D(\omega)^{2^{\kappa}}$ contains a closed discrete set of size κ for every κ less than the 1st measurable cardinal.

Suppose that X is not countably compact. Then $X^{2^{d(X)}}$ is e-separable if $d(X) < \text{the } 1^{st}$ measurable cardinal.

What happens at a measurable?

If $\kappa > \omega$ is measurable then $D(\omega)^{\kappa}$ has no closed discrete subsets of size κ so is not e-separable.

Note: $D(\omega)^{\kappa}$ has closed discrete sets of all sizes $< \kappa$.

D. T. Soukup (KGRC)

Recall: X^{κ} is e-separable if there is a closed discrete subset of size $d(X^{\kappa})$.

[Lós 1959] $D(\omega)^{2^{\kappa}}$ contains a closed discrete set of size κ for every κ less than the 1st measurable cardinal.

Suppose that X is not countably compact. Then $X^{2^{d(X)}}$ is e-separable if $d(X) < \text{the } 1^{st}$ measurable cardinal.

What happens at a measurable?

If $\kappa > \omega$ is measurable then $D(\omega)^{\kappa}$ has no closed discrete subsets of size κ so is not e-separable.

Note: $D(\omega)^{\kappa}$ has closed discrete sets of all sizes $< \kappa$.

D. T. Soukup (KGRC)

Recall: X^{c} is e-separable if X is e-separable.

Focus: products of $\kappa \leq \mathfrak{c}$ terms b.c. $D(2)^{\mathfrak{c}^+}$ is not e-separable.

Suppose that $\kappa \leq \mathfrak{c}$. Then the following are equivalent:

- every product of at most κ many *e*-separable spaces is *e*-separable;
- every product of at most κ many discrete spaces is *e*-separable.
- \Rightarrow finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is e-separable.

 \Rightarrow a product of κ spaces is non e-separable because of terms of size $< \kappa$.

Recall: X^{c} is e-separable if X is e-separable.

Focus: products of $\kappa \leq \mathfrak{c}$ terms b.c. $D(2)^{\mathfrak{c}^+}$ is not e-separable.

Suppose that $\kappa \leq \mathfrak{c}$. Then the following are equivalent:

- every product of at most κ many *e*-separable spaces is *e*-separable;
- every product of at most κ many discrete spaces is *e*-separable.
- \Rightarrow finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is e-separable.

 \Rightarrow a product of κ spaces is non e-separable because of terms of size $< \kappa$.

Recall: X^{c} is e-separable if X is e-separable.

Focus: products of $\kappa \leq \mathfrak{c}$ terms b.c. $D(2)^{\mathfrak{c}^+}$ is not e-separable.

Suppose that $\kappa \leq \mathfrak{c}$. Then the following are equivalent:

- every product of at most κ many *e*-separable spaces is *e*-separable;
- every product of at most κ many discrete spaces is *e*-separable.

 \Rightarrow finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is e-separable.

 \Rightarrow a product of κ spaces is non e-separable because of terms of size $< \kappa$.

13 / 22

Recall: X^{c} is e-separable if X is e-separable.

Focus: products of $\kappa \leq \mathfrak{c}$ terms b.c. $D(2)^{\mathfrak{c}^+}$ is not e-separable.

Suppose that $\kappa \leq \mathfrak{c}$. Then the following are equivalent:

- every product of at most κ many *e*-separable spaces is *e*-separable;
- every product of at most κ many discrete spaces is *e*-separable.
- \Rightarrow finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is e-separable.

 \Rightarrow a product of κ spaces is non e-separable because of terms of size $< \kappa$.

D. T. Soukup (KGRC)

51th Spring Top<u>ology</u>

13 / 22

Recall: X^{c} is e-separable if X is e-separable.

Focus: products of $\kappa \leq \mathfrak{c}$ terms b.c. $D(2)^{\mathfrak{c}^+}$ is not e-separable.

Suppose that $\kappa \leq \mathfrak{c}$. Then the following are equivalent:

- every product of at most κ many *e*-separable spaces is *e*-separable;
- every product of at most κ many discrete spaces is *e*-separable.
- \Rightarrow finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is e-separable.

 \Rightarrow a product of κ spaces is non e-separable because of terms of size $< \kappa$.

Recall: X^{c} is e-separable if X is e-separable.

Focus: products of $\kappa \leq \mathfrak{c}$ terms b.c. $D(2)^{\mathfrak{c}^+}$ is not e-separable.

Suppose that $\kappa \leq \mathfrak{c}$. Then the following are equivalent:

- every product of at most κ many *e*-separable spaces is *e*-separable;
- every product of at most κ many discrete spaces is *e*-separable.
- \Rightarrow finite products preserve e-separability.

The product of at most κ many discrete spaces of cardinality at least κ is e-separable.

 \Rightarrow a product of κ spaces is non e-separable because of terms of size $< \kappa$.

[M 1970, Jech] If $\kappa \notin \mathcal{M}^*$ then κ is weakly inaccessible.

Suppose that $\kappa \leq \mathfrak{c}$ is minimal so that there is a family of κ e-separable spaces with non e-separable product. Then $\kappa \notin \mathcal{M}^*$.

The preservation theorem:

Suppose there are no weakly inaccessible cardinals $\leq \mathfrak{c}$. Then the product of at most \mathfrak{c} many e-separable spaces is e-separable.

[M 1970, Jech] If $\kappa \notin \mathcal{M}^*$ then κ is weakly inaccessible.

Suppose that $\kappa \leq \mathfrak{c}$ is minimal so that there is a family of κ e-separable spaces with non e-separable product. Then $\kappa \notin \mathcal{M}^*$.

The preservation theorem:

Suppose there are no weakly inaccessible cardinals $\leq \mathfrak{c}$. Then the product of at most \mathfrak{c} many e-separable spaces is e-separable.

[M 1970, Jech] If $\kappa \notin \mathcal{M}^*$ then κ is weakly inaccessible.

Suppose that $\kappa \leq \mathfrak{c}$ is minimal so that there is a family of κ e-separable spaces with non e-separable product. Then $\kappa \notin \mathcal{M}^*$.

The preservation theorem:

Suppose there are no weakly inaccessible cardinals $\leq \mathfrak{c}$. Then the product of at most \mathfrak{c} many e-separable spaces is e-separable.

[M 1970, Jech] If $\kappa \notin \mathcal{M}^*$ then κ is weakly inaccessible.

Suppose that $\kappa \leq \mathfrak{c}$ is minimal so that there is a family of κ e-separable spaces with non e-separable product. Then $\kappa \notin \mathcal{M}^*$.

The preservation theorem:

Suppose there are no weakly inaccessible cardinals $\leq \mathfrak{c}$. Then the product of at most \mathfrak{c} many e-separable spaces is e-separable.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

[M 1970, Jech] If $\kappa \notin \mathcal{M}^*$ then κ is weakly inaccessible.

Suppose that $\kappa \leq \mathfrak{c}$ is minimal so that there is a family of κ e-separable spaces with non e-separable product. Then $\kappa \notin \mathcal{M}^*$.

The preservation theorem:

Suppose there are no weakly inaccessible cardinals $\leq \mathfrak{c}$. Then the product of at most \mathfrak{c} many e-separable spaces is e-separable.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

 $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff every set of at most κ sentences Σ from $\mathcal{L}_{\kappa,\omega}$ has a model provided that every $S \in [\Sigma]^{<\kappa}$ has a model.

[M 1970] $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff $\kappa \notin \mathcal{M}^*$.

15 / 22

 $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff every set of at most κ sentences Σ from $\mathcal{L}_{\kappa,\omega}$ has a model provided that every $S \in [\Sigma]^{<\kappa}$ has a model.

[M 1970] $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff $\kappa \notin \mathcal{M}^*$.

 $\mathcal{L}_{\kappa,\omega}$ is *weakly compact* iff every set of at most κ sentences Σ from $\mathcal{L}_{\kappa,\omega}$ has a model provided that every $S \in [\Sigma]^{<\kappa}$ has a model.

[M 1970] $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff $\kappa \notin \mathcal{M}^*$.

 $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff every set of at most κ sentences Σ from $\mathcal{L}_{\kappa,\omega}$ has a model provided that every $S \in [\Sigma]^{<\kappa}$ has a model.

[M 1970] $\mathcal{L}_{\kappa,\omega}$ is weakly compact iff $\kappa \notin \mathcal{M}^*$.

15 / 22

[Erdős, Tarski 1961] κ is a weakly compact cardinal iff $\kappa
ightarrow (\kappa)_2^2$.

 κ is a weakly compact cardinal iff it is strongly inaccessible and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

[Cudnovskii, Boos] If $V \models \kappa$ is a weakly compact cardinal then $V^{\mathbb{C}_{\kappa^+}} \models \kappa < \mathfrak{c} = \kappa^+$ and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

[Erdős, Tarski 1961] κ is a weakly compact cardinal iff $\kappa \to (\kappa)_2^2$.

 κ is a weakly compact cardinal iff it is strongly inaccessible and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

[Cudnovskii, Boos] If $V \models \kappa$ is a weakly compact cardinal then $V^{\mathbb{C}_{\kappa^+}} \models \kappa < \mathfrak{c} = \kappa^+$ and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

[Erdős, Tarski 1961] κ is a weakly compact cardinal iff $\kappa \to (\kappa)_2^2$.

 κ is a weakly compact cardinal iff it is strongly inaccessible and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

[Cudnovskii, Boos] If $V \models \kappa$ is a weakly compact cardinal then $V^{\mathbb{C}_{\kappa^+}} \models \kappa < \mathfrak{c} = \kappa^+$ and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

16 / 22

[Erdős, Tarski 1961] κ is a weakly compact cardinal iff $\kappa \to (\kappa)_2^2$.

 κ is a weakly compact cardinal iff it is strongly inaccessible and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

[Cudnovskii, Boos] If $V \models \kappa$ is a weakly compact cardinal then $V^{\mathbb{C}_{\kappa^+}} \models \kappa < \mathfrak{c} = \kappa^+$ and $\mathcal{L}_{\kappa,\omega}$ is weakly compact.

- Use a weakly compact cardinal to find a model with $\kappa < \mathfrak{c}$ and $\mathcal{L}_{\kappa,\omega}$ weakly compact i.e. $\kappa \notin \mathcal{M}^*$.
- $X = \prod \{D(\alpha) : \alpha < \kappa\}$ has no closed discrete sets of size κ .
- κ is regular (and limit) so σ -closed discrete sets have size $< \kappa$.
- $d(X) = \kappa$ so X is not e-separable.

- Use a weakly compact cardinal to find a model with $\kappa < \mathfrak{c}$ and $\mathcal{L}_{\kappa,\omega}$ weakly compact i.e. $\kappa \notin \mathcal{M}^*$.
- $X = \prod \{D(\alpha) : \alpha < \kappa\}$ has no closed discrete sets of size κ .
- κ is regular (and limit) so σ -closed discrete sets have size $< \kappa$.
- $d(X) = \kappa$ so X is not e-separable.

- Use a weakly compact cardinal to find a model with $\kappa < \mathfrak{c}$ and $\mathcal{L}_{\kappa,\omega}$ weakly compact i.e. $\kappa \notin \mathcal{M}^*$.
- $X = \prod \{D(\alpha) : \alpha < \kappa\}$ has no closed discrete sets of size κ .
- κ is regular (and limit) so σ -closed discrete sets have size $< \kappa$.
- $d(X) = \kappa$ so X is not e-separable.

- Use a weakly compact cardinal to find a model with $\kappa < \mathfrak{c}$ and $\mathcal{L}_{\kappa,\omega}$ weakly compact i.e. $\kappa \notin \mathcal{M}^*$.
- $X = \prod \{D(\alpha) : \alpha < \kappa\}$ has no closed discrete sets of size κ .
- κ is regular (and limit) so σ -closed discrete sets have size $< \kappa$.
- $d(X) = \kappa$ so X is not e-separable.

- Use a weakly compact cardinal to find a model with $\kappa < \mathfrak{c}$ and $\mathcal{L}_{\kappa,\omega}$ weakly compact i.e. $\kappa \notin \mathcal{M}^*$.
- $X = \prod \{D(\alpha) : \alpha < \kappa\}$ has no closed discrete sets of size κ .
- κ is regular (and limit) so σ -closed discrete sets have size $< \kappa$.
- $d(X) = \kappa$ so X is not e-separable.

- Use a weakly compact cardinal to find a model with $\kappa < \mathfrak{c}$ and $\mathcal{L}_{\kappa,\omega}$ weakly compact i.e. $\kappa \notin \mathcal{M}^*$.
- $X = \prod \{D(\alpha) : \alpha < \kappa\}$ has no closed discrete sets of size κ .
- κ is regular (and limit) so σ -closed discrete sets have size $< \kappa$.
- $d(X) = \kappa$ so X is not e-separable.

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread: $s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• **extent**: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}$.

If X is e-separable:

Some cardinal functions

Recall some classical cardinal functions:

• **density**: $d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$

• spread: $s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma\text{-discrete in } X\}$

• **extent**: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}$.

If X is e-separable:

• **density**: $d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$

• spread: $s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• **extent**: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$

If X is e-separable:

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread: $s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• **extent**: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$

If X is e-separable:

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread: $s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• **extent**: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$

If X is e-separable:

 $d_e(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma\text{-closed discrete in } X\}$

18 / 22

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread:
$$s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$$

If X is d-separable:

 $d_{s}(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• extent: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$

If X is e-separable:

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread:
$$s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• extent:
$$e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$$

If X is e-separable:
Recall some classical cardinal functions:

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread:
$$s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• extent: $e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$

If X is e-separable:

 $d_e(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma\text{-closed discrete in } X\}$

Recall some classical cardinal functions:

• **density**:
$$d(X) = \min\{|D| : D \subseteq X \text{ is dense in } X\};$$

• spread:
$$s(X) = \sup\{|S| : S \subseteq X \text{ is discrete in } X\}.$$

If X is d-separable:

 $d_s(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma \text{-discrete in } X\}$

• extent:
$$e(X) = \sup\{|E| : E \subseteq X \text{ is closed discrete in } X\}.$$

If X is e-separable:

 $d_e(X) = \min\{|D| : D \subseteq X \text{ is dense and } \sigma\text{-closed discrete in } X\}$

18 / 22

d(X) ≤ d_s(X) ≤ s(X) for any d-separable X;
d(X) ≤ d_e(X) ≤ e(X) for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

- |Y| = c and σ-closed discrete sets are nowhere dense,
 let |Y₀| = c dense and find Y₀ ⊆ Y countably compact, |Y| = c
- *E* is σ -closed discrete with size and density 2° ,
 - use the trick for glueing dense and closed discrete sets with $\sigma(2^2)$

d(X) ≤ d_s(X) ≤ s(X) for any d-separable X; d(X) ≤ d_e(X) ≤ e(X) for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

- |Y| = c and σ-closed discrete sets are nowhere dense,
 let |Y₀| = c dense and find Y₀ ⊆ Y countably compact, |Y| = c
- *E* is σ -closed discrete with size and density 2° ,
 - use the trick for glueing dense and closed discrete sets with $\sigma(2^{2^*})$

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

- |Y| = c and σ-closed discrete sets are nowhere dense,
 let |Y₀| = c dense and find Y₀ ⊆ Y countably compact, |Y| = c
- *E* is σ -closed discrete with size and density 2^{c} ,
 - use the trick for glueing dense and closed discrete sets with $\sigma(2^2)$

- d(X) ≤ d_s(X) ≤ s(X) for any d-separable X;
- $d(X) \le d_e(X) \le e(X)$ for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

- |Y| = c and σ-closed discrete sets are nowhere dense,
 let |Y₀| = c dense and find Y₀ ⊆ Y countably compact, |Y| = c
- *E* is σ -closed discrete with size and density 2° ,
 - use the trick for glueing dense and closed discrete sets with $\sigma(2^{2^*})$

• $d(X) \leq d_e(X) \leq e(X)$ for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

- |Y| = c and σ-closed discrete sets are nowhere dense,
 let |Y₀| = c dense and find Y₀ ⊆ Y countably compact, |Y| = c
- *E* is σ -closed discrete with size and density 2° ,
 - use the trick for glueing dense and closed discrete sets with $\sigma(2^2)$

•
$$d(X) \le d_e(X) \le e(X)$$
 for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

The plan is that $X = Y \cup E \subseteq 2^{2^{c}}$, both Y, E are dense and

- |Y| = c and σ-closed discrete sets are nowhere dense,
 let |Y₀| = c dense and find Y₀ ⊆ Y countably compact, |Y| = c.
- *E* is σ -closed discrete with size and density 2^c,

• use the trick for glueing dense and closed discrete sets with $\sigma(2^2)$

•
$$d(X) \le d_e(X) \le e(X)$$
 for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

The plan is that $X = Y \cup E \subseteq 2^{2^{c}}$, both Y, E are dense and

- $|Y| = \mathfrak{c}$ and σ -closed discrete sets are nowhere dense,
 - let $|Y_0| = \mathfrak{c}$ dense and find $Y_0 \subseteq Y$ countably compact, $|Y| = \mathfrak{c}$.
- *E* is σ -closed discrete with size and density 2^{c} ,

• use the trick for glueing dense and closed discrete sets with $\sigma(2^{2^*})$

• $d(X) \le d_e(X) \le e(X)$ for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

The plan is that $X = Y \cup E \subseteq 2^{2^{c}}$, both Y, E are dense and

- $|Y| = \mathfrak{c}$ and σ -closed discrete sets are nowhere dense,
 - let $|Y_0| = \mathfrak{c}$ dense and find $Y_0 \subseteq Y$ countably compact, $|Y| = \mathfrak{c}$.
- *E* is σ -closed discrete with size and density 2^{c} ,

• use the trick for glueing dense and closed discrete sets with $\sigma(2^{2^{\circ}})$.

• $d(X) \leq d_e(X) \leq e(X)$ for any e-separable X.

There is a 0-dimensional e-separable space X such that

$$\mathfrak{c} = d(X) < d_e(X) = e(X) = w(X) = 2^{\mathfrak{c}}.$$

- $|Y| = \mathfrak{c}$ and σ -closed discrete sets are nowhere dense,
 - let $|Y_0| = \mathfrak{c}$ dense and find $Y_0 \subseteq Y$ countably compact, $|Y| = \mathfrak{c}$.
- E is σ -closed discrete with size and density 2^{c} ,
 - use the trick for glueing dense and closed discrete sets with $\sigma(2^{2^{\circ}})$.

- [Moore 2006] there is a dense $Y \subseteq \omega^{\omega_1}$ such that any σ -discrete is nowhere dense.
- if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,
- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

- [Moore 2006] there is a dense Y ⊆ ω^{ω1} such that any σ-discrete is nowhere dense.
- if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,
- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

• [Moore 2006] there is a dense $Y \subseteq \omega^{\omega_1}$ such that any σ -discrete is nowhere dense.

• if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,

- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

- [Moore 2006] there is a dense $Y \subseteq \omega^{\omega_1}$ such that any σ -discrete is nowhere dense.
- if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,
- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

- [Moore 2006] there is a dense Y ⊆ ω^{ω1} such that any σ-discrete is nowhere dense.
- if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,
- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

Is there, in ZFC, a dense $Y \subseteq 2^{\omega_2}$ of size \aleph_1 such that any σ -discrete subset is nowhere dense?

• • • • • • • • • • • •

3

- [Moore 2006] there is a dense Y ⊆ ω^{ω1} such that any σ-discrete is nowhere dense.
- if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,
- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

- [Moore 2006] there is a dense $Y \subseteq \omega^{\omega_1}$ such that any σ -discrete is nowhere dense.
- if $\omega_2 \leq \mathfrak{c}$ then there is a countable dense $D \subseteq 2^{\omega_2}$,
- so $Y \hookrightarrow D^{\omega_1} \subseteq (2^{\omega_2})^{\omega_1} \simeq 2^{\omega_2}$ densely.
- X = Y ∪ σ(2^{ω2}) is d-separable but there are no σ-discrete dense sets of size ℵ₁.

[Moore 2008] There is an L-space X such that X² is d-separable.

[Peng 2015] There is an *L*-space X such that X^2 is e-separable.

Note: $\aleph_0 = s(X) = e(X) < d(X) = \aleph_1$ so X is not d-separable.

[Moore 2008] There is an L-space X such that X^2 is d-separable.

[Peng 2015] There is an *L*-space X such that X² is e-separable.

Note: $\aleph_0 = s(X) = e(X) < d(X) = \aleph_1$ so X is not d-separable.

[Moore 2008] There is an L-space X such that X^2 is d-separable.

[Peng 2015] There is an L-space X such that X² is e-separable.

Note: $leph_0 = s(X) = e(X) < d(X) = leph_1$ so X is not d-separable.

[Moore 2008] There is an L-space X such that X^2 is d-separable.

[Peng 2015] There is an *L*-space X such that X^2 is e-separable.

Note: $leph_0 = s(X) = e(X) < d(X) = leph_1$ so X is not d-separable.

Is there a non-separable, countably compact X so that X² is e-separable?

• • • • • • • • • • • •

[Moore 2008] There is an L-space X such that X^2 is d-separable.

[Peng 2015] There is an L-space X such that X^2 is e-separable.

Note: $\aleph_0 = s(X) = e(X) < d(X) = \aleph_1$ so X is not d-separable.

[Moore 2008] There is an L-space X such that X^2 is d-separable.

[Peng 2015] There is an L-space X such that X^2 is e-separable.

Note: $\aleph_0 = s(X) = e(X) < d(X) = \aleph_1$ so X is not d-separable.

Is there a non-separable, countably compact X so that X^2 is e-separable?

Thank you for your attention!

D. T. Soukup (KGRC)

51th Spring Topology

22 / 22

э