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Introdu
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We explore a general 
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heme based on elementary

submodels, to build arbitrary large stru
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Motivations - paradoxi
al 
overs

CH is the statement that c = |R| = ℵ
1

.

[Sierpinski 1919℄

CH holds i� R
2 = S

0

∪ S
1

so that

S
0

has 
ountable verti
al segments, and

S
1

has 
ountable horizontal segments.

A ⊂ R
2

is a 
loud if there is some a ∈ R
2

so that ℓ ∩ A is �nite for any

line ℓ through a. Note that two 
louds 
annot 
over R
2

.

[Komjáth, S
hmerl 2001/2003℄ CH i� R
2

is 
overed by three 
louds,

c ≤ ℵn i� R
2

is 
overed by n + 2 
louds.
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Motivations - paradoxi
al sets

[Mazurkiewi
z 1914℄ There is a set in R
2

that meets ea
h line in exa
tly

two points.

build by an indu
tion of length c,

a partial 2-point set (of size < c) 
an be extended to meet a

given line in exa
tly two points.

[Ja
kson, Mauldin 2002℄ There is a set in R
2

that meets ea
h isometri



opy of Z
2

in exa
tly one point.

there are �nite partial Steinhaus sets whi
h 
annot be extended,

the proof 
ombines elementary number theory and me
hani
s to solve

a 
ountable approximation of the problem,

to lift the 
ountable 
ase and pie
e together a full Steinhaus set a

trans�nite indu
tion using elementary submodels .
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Motivations - more paradoxi
al 
overs

We say X
0

⊔ X
1

is a Bernstein-de
omposition of a spa
e X if there are

no 
opies of the Cantor set in either X
0

or X
1

.

[Bernstein 1908℄ Any topologi
al spa
e of size ≤ c admits a

Bernstein-de
omposition.

X has ≤ c-many Cantor subspa
es, go through them by an indu
tion of length c,

a partial Berstein de
omposition of size < c 
an be extended so that both parts

will meet a given Cantor set.

[W. Weiss 1980℄ If V = L then any T
2

spa
e has

a Bernstein-de
omposition.

[Shelah 2004℄ Using a super
ompa
t, 
onsistently there is a 0-dim, T
2

spa
e X of size ℵω+1

without Bernstein-de
omposition.
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Elementary submodels - the basi
s

(V ,∈) is the set-theoreti
 universe.

H(Θ) is the family of all sets of hereditary 
ardinality < Θ,

the larger Θ is, the more (H(Θ),∈) resembles V ,

M ⊂ H(Θ) is an elementary submodel if for any �rst-order formula

φ with parameters in M, H(Θ) |= φ if and only if M |= φ .

The downward Löwenhein-Skolem theorem says that for any 
ountable

x ⊂ H(Θ), there are 
ountable elementary M ≺ H(Θ) so that x ⊂ M.

1 M is 
losed under operations de�ned using parameters in M,

2

if M is 
ountable, A ∈ M then either A ⊂ M or A is un
ountable.
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ω is an element and subset of M,

H(Θ) |= |A| ≤ ℵ
0

so H(Θ) |= ∃f : ω ։ A,

M |= ∃f : ω ։ A, so there is f ∈ M su
h that f : ω ։ A,

ω ⊂ M so for ea
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Elementary submodels - a simple appli
ation

M is 
losed under operations de�ned using parameters in M ,

if M is 
ountable, A ∈ M then either A ⊂ M or A is un
ountable.

If A is an un
ountable family of �nite sets then there is a �nite set r and

un
ountable B ⊂ A so that a 6= b ∈ B implies that r = a ∩ b.

take a 
ountable elementary M ≺ H(Θ) su
h that A ∈ M;

there is some a ∈ A \M be
ause A is un
ountable, let r = a ∩M;

take a maximal B ⊂ A, B ∈ M, r ⊆ b if b ∈ B and

{b \ r : b ∈ B} is pairwise disjoint;

B is un
ountable, otherwise B ⊂ M but then

B ∪ {a} is a stri
tly larger set with the above properties.
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Chains of 
ountable elementary submodels

A standard tri
k in in�nite 
ombinatori
s is to use �ltrations:

an in
reasing 
hain of small elementary submodels to 
over a large set.

For any set X ∈ H(Θ) of size ℵ
1

, there is a (
ontinuous) in
reasing 
hain

(Mα)α<ω
1

of 
ountable elementary submodels of H(Θ) so that

X ⊂
⋃

α<ω
1

Mα.

Serious limitation: no set of size > ℵ
1


an be 
overed by an in
reasing

sequen
e of 
ountable models.
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People always talk about the weather

CH implies that R
2

is the union of three 
louds.

Fix any three non-
ollinear points a
0

, a
1

, a
2

∈ R
2

,

let Lk
denote the lines through ak , L = ∪Lk

, L′
the three lines

determined by pairs of {ak}.

We de�ne F on L so that F (ℓ) ⊂ ℓ is �nite and let

Ak = {ak} ∪
⋃

{F (ℓ) : ℓ ∈ Lk}.

CH (Mα)α<ω
1


overs R
2

and L, and all models 
ontain a
0

, a
1

, a
2

.

let Lα those ℓ ∈ L \ L′
that appear �rst in Mα,

list Lα as {ℓαj : j < ω}, and let

F (ℓαj) =
⋃

{ℓ ∩ ℓαj : ℓ ∈ L′ ∪ {ℓαi : i < j}}.
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Covering by three 
louds - proof 
ontinued

Lα those lines ℓ ∈ L \ L′
that appear �rst in Mα,

F (ℓαj) =
⋃

{ℓ ∩ ℓαj : ℓ ∈ L′ ∪ {ℓαi : i < j}},

Ak = {ak} ∪
⋃

{F (ℓ) : ℓ ∈ Lk}.

Why does A
0

,A
1

,A
2


over? Take some x ∈ R
2

.

there is α so that x appears in Mα �rst, x ∈ ∪L′
is the easy 
ase so

suppose x /∈ L′
,

at most one of the three lines ℓ[x , a
0

], ℓ[x , a
1

],
ℓ[x , a

2

] ∈ Mα appear in previous models

otherwise x appears as the interse
tion,

(wlog) ℓ[x , a
0

], ℓ[x , a
1

] ∈ Lα and there is i < j su
h that ℓαi = ℓ[x , a
0

]
and ℓαj = ℓ[x , a

1

],

{x} = ℓαi ∩ ℓαj ⊂ F (ℓαj ) so 
overed by A
1

(as ℓαj ∈ L1

now).
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Davies' idea - what 
an we do without CH?

[Davies, 1963℄ Take any set of size c and 
over with M∅ of size c.

write M∅ as a 
ontinuous in
reasing 〈Mα〉α<c ea
h of size < c = |M∅|;

if Mα is un
ountable, write it as a 
ontinuous in
reasing 〈Mαβ〉β<λ so

that |Mαβ| < |Mα| = λ;

repeat until all terminal models are 
ountable.

we have a tree indexed by

�nite sequen
es of ordinals,

<
lex

well orders the terminal

nodes,

⋃

{Ms : s <
lex

t terminal} =
the union of |t|-many el. subm.
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if Mα is un
ountable, write it as a 
ontinuous in
reasing 〈Mαβ〉β<λ so

that |Mαβ| < |Mα| = λ;

repeat until all terminal models are 
ountable.

we have a tree indexed by

�nite sequen
es of ordinals,

<
lex

well orders the terminal

nodes,

⋃

{Ms : s <
lex

t terminal} =
the union of |t|-many el. subm.
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Davies-trees in general

Theorem [Davies, Milovi
h℄

Suppose that κ is 
ardinal, x is a set. Then there is κ << θ and a

sequen
e 〈Mα : α < κ〉 of elementary submodels of H(θ) so that

(I) |Mα| = ω and x ∈ Mα for all α < κ,

(II) κ ⊂
⋃

α<κMα, and

(III) for every β < κ there is mβ ∈ N and models Nβ,j ≺ H(θ) su
h that

x ∈ Nβ,j for j < mβ and

M<β=
⋃

{Mα : α < β}=
⋃

{Nβ,j : j < mβ}.

We 
all 〈Mα : α < κ〉 a Davies-tree for κ over x .
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c ≤ ℵn implies there is a 
over by n + 2 
louds

Take n + 2 points a
0

, . . . , an+1 in general position, and a Davies-tree (Mα)α<c 
overing

R
2

and L, 
ontaining the points ak , and so that

M<α is the union of ≤ n elementary submodels.

Lα those lines ℓ ∈ L \ L′
that appear �rst in Mα,

F (ℓαj) =
⋃
{ℓ ∩ ℓαj : ℓ ∈ L′ ∪ {ℓαi : i < j}},

Ak = {ak} ∪
⋃
{F (ℓ) : ℓ ∈ Lk}.

Any x ∈ R
2

is 
overed by A
0

, . . . ,An+1.

there is α so that x appears in Mα �rst, we suppose x /∈ L′
,

at most n of the n + 2 lines ℓ[x , a
0

], . . . , ℓ[x , an+1] ∈ Mα


ould appear in previous models

M<α =
⋃

k<n
Nαk and if ℓ[x , ai ], ℓ[x , aj ] ∈ Nαk then

{x} = ℓ[x , ai ] ∩ ℓ[x , aj ] ⊂ Nαk ⊂ M<α

ℓ[x , a
0

], ℓ[x , a
1

] ∈ Lα and there is i < j su
h that ℓαi = ℓ[x , a
0

] and ℓαj = ℓ[x , a
1

],

{x} = ℓαi ∩ ℓαj ⊂ F (ℓαj) 
overed by A
1

(as ℓαj ∈ L1

now).
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Countably 
losed models

Countable models → enumeration in type ω,
→ deal with �nite pie
es one at a time.

M is 
ountably 
losed if x ⊆ M, |x | ≤ ω implies x ∈ M.

there are 
ountably 
losed M ≺ H(θ) of size c;

How are these models helpful?

they 
an 
over larger spa
es and the models 
an talk about


ountably in�nite subsets,

limitation: in
reasing 
hains of models of size c 
an only 
over c
+
.

Can we make Davies-trees from 
ountably 
losed

models of size c?
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High Davies-trees

We say that a high Davies-tree for κ over x is a sequen
e 〈Mα : α < κ〉
of elementary submodels of H(θ) for some large enough regular θ su
h that

(I)

[

Mα

]ω
⊂ Mα, |Mα| = c and x ∈ Mα for all α < κ,

(II)

[

κ
]ω

⊂
⋃

α<κMα, and

(III) for ea
h β < κ there are Nβ,j ≺ H(θ) with [Nβ,j ]
ω ⊂ Nβ,j and

x ∈ Nβ,j for j < ω su
h that

M<β=
⋃

{Mα : α < β}=
⋃

{Nβ,j : j < ω}.

Note that κω = κ if there is a high Davies-tree for κ.
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Existen
e of high Davies-trees

A high Davies-tree for κ over x

is a sequen
e 〈Mα : α < κ〉 s.t.

(I) x ∈ Mα ≺ H(θ) is 
.
. of size c,

(II)

[

κ
]ω

⊂
⋃

α<κ
Mα, and

(III) M<α =
⋃

{Nα,j : j < ω} for some


.
. x ∈ Nα,j ≺ H(θ).
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Existen
e of high Davies-trees

A high Davies-tree for κ over x

is a sequen
e 〈Mα : α < κ〉 s.t.

(I) x ∈ Mα ≺ H(θ) is 
.
. of size c,

(II)

[

κ
]ω

⊂
⋃

α<κ
Mα, and

(III) M<α =
⋃

{Nα,j : j < ω} for some


.
. x ∈ Nα,j ≺ H(θ).

[DS, LS℄ There are high Davies-tree for any un
ountable κ < c
+ω

,

e.g. for κ = ℵn if n < ω.
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,

e.g. for κ = ℵn if n < ω.

Theorem [DS, LS℄

There are high Davies-tree for any un
ountable κ if V = L.
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[DS, LS℄ There are high Davies-tree for any un
ountable κ < c
+ω

,

e.g. for κ = ℵn if n < ω.

Theorem [DS, LS℄

There are high Davies-tree for any un
ountable κ if V = L.

Remark: no high Davies-trees for κ ≥ ℵω if (ℵω+1

,ℵω) ։ (ℵ
1

,ℵ
0

).
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Bernstein-de
ompositions from high Davies-trees

Suppose that X is a Hausdor� top. spa
e of size κ.

If there is a high Davies-tree for κ over X ,

then X has a Bernstein-de
omposition.

suppose that 〈Mα〉α<κ is the high Davies-tree for κ over X ,

we de�ne fα : X<α → c where X<α = X ∩M<α,

note that if C ⊆ X is Cantor then C ∈ M<α for some α < κ,

there is a 
ountable D ⊆ X so that 
lX (D) = C ,

D ∈
[

X
]ω

⊆ M<κ so D ∈ M<α and 
lX (D) = C ∈ M<α for some α.

we make sure that

if C ⊆ X , C ∈ M<α and C is Cantor then fα[C ] = c.
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Bernstein-de
ompositions from high Davies-trees

Goal: given fα : X<α → c extend to fα+1

: X<α+1

→ c so that

fα+1

[C ] = c for all C ∈ M<α+1

.

Maybe we 
olored some

C ∈ Mα \M<α by a

ident already?

|C ∩ X<α| ≤ ω or

fα[C ∩ X<α] = c.

M<α =
⋃

{Nα,j : j < ω} so

|C ∩ Nα,j | > ω for some j ,

pi
k 
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Some open problems

[A. Miller 1989℄

(V=L) There is a 
o-analyti
 2-point set in R
2

.

[Sierpinski℄ Is there a Borel 2-point set?

It 
an never be Fσ, but how about Gδ?

[Gardner, Mauldin 1988℄ (CH) For n ≥ 3, there is a bije
tion

f : Rn → R
n
whi
h maps ea
h 
ir
le onto a 
ountable union of line

segments.

Is CH ne
essary?

How about �nite unions?

Is this possible for n = 2?
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