# High Davies-trees in infinite combinatorics 

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/


## Introduction

## We explore a general construction scheme based on elementary submodels, to build arbitrary large structures by piecing together small local approximations.

- paradoxical sets and decompositions of the plane, and
- Bernstein-decomnositions of arbitrary topological spaces.

Based on
""Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.

## Introduction

We explore a general construction scheme based on elementary submodels, to build arbitrary large structures by piecing together small local approximations.

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.

## Introduction

We explore a general construction scheme based on elementary submodels, to build arbitrary large structures by piecing together small local approximations.

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.


## Introduction

We explore a general construction scheme based on elementary submodels, to build arbitrary large structures by piecing together small local approximations.

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on
"infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.

## Introduction

We explore a general construction scheme based on elementary submodels, to build arbitrary large structures by piecing together small local approximations.

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.

## Motivations - paradoxical covers

CH is the statement that $\mathfrak{c}=|\mathbb{R}|=\aleph_{1}$.

```
[Sierpinski 1919]
CH holds iff }\mp@subsup{\mathbb{R}}{}{2}=\mp@subsup{S}{0}{}\cup\mp@subsup{S}{1}{}\mathrm{ so that
    - So has countable vertical segments, and
    - }\mp@subsup{S}{1}{}\mathrm{ has countable horizontal segments.
```

$A \subset \mathbb{R}^{2}$ is a cloud if there is some $a \in \mathbb{R}^{2}$ so that $\ell \cap A$ is finite for any
line $\ell$ through a. Note that two clouds cannot cover $\mathbb{R}^{2}$.
[Komjáth, Schmerl 2001/2003] CH iff $\mathbb{R}^{2}$ is covered by three clouds,
$c \leq \aleph_{n}$ iff $\mathbb{R}^{2}$ is covered by $n+2$ clouds.

## Motivations - paradoxical covers

CH is the statement that $\mathrm{c}=|\mathbb{R}|=\aleph_{1}$.
[Sierpinski 1919]
CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- $S_{0}$ has countable vertical segments, and
- $S_{1}$ has countable horizontal segments.

$A \subset \mathbb{R}^{2}$ is a cloud if there is some $a \in \mathbb{R}^{2}$ so that $\ell \cap A$ is finite for any line $\ell$ through $a$. Note that two clouds cannot cover $\mathbb{R}^{2}$.




## Motivations - paradoxical covers

CH is the statement that $\mathrm{c}=|\mathbb{R}|=\aleph_{1}$.
[Sierpinski 1919]
CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- $S_{0}$ has countable vertical segments, and
- $S_{1}$ has countable horizontal segments.

$A \subset \mathbb{R}^{2}$ is a cloud if there is some $a \in \mathbb{R}^{2}$ so that $\ell \cap A$ is finite for any line $\ell$ through $a$. Note that two clouds cannot cover $\mathbb{R}^{2}$. [Komjáth, Schmerl 2001/2003] CH iff $\mathbb{R}^{2}$ is covered by three clouds,



## Motivations - paradoxical covers

CH is the statement that $\mathfrak{c}=|\mathbb{R}|=\aleph_{1}$.
[Sierpinski 1919]
CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- $S_{0}$ has countable vertical segments, and
- $S_{1}$ has countable horizontal segments.

$A \subset \mathbb{R}^{2}$ is a cloud if there is some $a \in \mathbb{R}^{2}$ so that $\ell \cap A$ is finite for any line $\ell$ through $a$. Note that two clouds cannot cover $\mathbb{R}^{2}$.
[Komjáth, Schmerl 2001/2003] CH iff $\mathbb{R}^{2}$ is covered by three clouds,



## Motivations - paradoxical covers

CH is the statement that $\mathfrak{c}=|\mathbb{R}|=\aleph_{1}$.
[Sierpinski 1919]
CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- $S_{0}$ has countable vertical segments, and
- $S_{1}$ has countable horizontal segments.

$A \subset \mathbb{R}^{2}$ is a cloud if there is some $a \in \mathbb{R}^{2}$ so that $\ell \cap A$ is finite for any line $\ell$ through $a$. Note that two clouds cannot cover $\mathbb{R}^{2}$.
[Komjáth, Schmerl 2001/2003] CH iff $\mathbb{R}^{2}$ is covered by three clouds,



## Motivations - paradoxical covers

CH is the statement that $\mathfrak{c}=|\mathbb{R}|=\aleph_{1}$.
[Sierpinski 1919]
CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- $S_{0}$ has countable vertical segments, and
- $S_{1}$ has countable horizontal segments.

$A \subset \mathbb{R}^{2}$ is a cloud if there is some $a \in \mathbb{R}^{2}$ so that $\ell \cap A$ is finite for any line $\ell$ through $a$. Note that two clouds cannot cover $\mathbb{R}^{2}$.
[Komjáth, Schmerl 2001/2003] CH iff $\mathbb{R}^{2}$ is covered by three clouds,

$$
\mathfrak{c} \leq \aleph_{n} \quad \text { iff } \quad \mathbb{R}^{2} \text { is covered by } n+2 \text { clouds. }
$$

## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length c,
- a partial 2-point set (of size $<\mathrm{c}$ ) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length c,
- a partial 2-point set (of size <c) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length $\mathfrak{c}$,
- a partial 2-point set (of size <c) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length $\mathfrak{c}$,
- a partial 2-point set (of size $<\mathfrak{c}$ ) can be extended to meet a given line in exactly two points.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length $\mathfrak{c}$,
- a partial 2-point set (of size $<\mathfrak{c}$ ) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length $\mathfrak{c}$,
- a partial 2-point set (of size $<\mathfrak{c}$ ) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length $\mathfrak{c}$,
- a partial 2-point set (of size $<\mathfrak{c}$ ) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
to lift the countable case and piece together a full Steinhaus set a
transfinite induction using elementary submodels.


## Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in $\mathbb{R}^{2}$ that meets each line in exactly two points.

- build by an induction of length $\mathfrak{c}$,
- a partial 2-point set (of size $<\mathfrak{c}$ ) can be extended to meet a given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in $\mathbb{R}^{2}$ that meets each isometric copy of $\mathbb{Z}^{2}$ in exactly one point.
- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels


## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathrm{c}$ admits a Bernstein-decomposition.

- $X$ has $\leq$ c-many Cantor subspaces, go through them by an induction of length c,
- a partial Berstein decomposition of size $<\mathrm{c}$ can be extended so that both parts will meet a given Cantor set.
[W. Weiss 1980] If $V=L$ then any $T_{2}$ space has
a Bernstein-decomposition.
[Shelah 2004] Using a supercompact, consistently there is a 0 -dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.


## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathrm{c}$ admits a Bernstein-decomposition.

- $X$ has $<$ c-many Cantor subspaces, go through them by an induction of length c ,
- a partial Berstein decomposition of size <c can be extended so that both parts will meet a given Cantor set

$$
\begin{aligned}
& \text { [W. Weiss 1980] If } V=L \text { then any } T_{2} \text { space has } \\
& \text { a Bernstein-decomposition. }
\end{aligned}
$$

[Shelah 2004] Using a supercompact, consistently there is a 0-dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- $X$ has $\leq$ c-many Cantor subspaces, go through them by an induction of length $c$,
- a partial Berstein decomposition of size <c can be extended so that both parts will meet a given Cantor set.

$$
\begin{aligned}
& \text { [W. Weiss } 1980] \text { If } V=L \text { then any } T_{2} \text { space has } \\
& \text { a Bernstein-decomposition. }
\end{aligned}
$$

[Shelah 2004] Using a supercompact, consistently there is a 0-dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- $X$ has $\leq \mathfrak{c}$-many Cantor subspaces, go through them by an induction of length $\mathfrak{c}$,
- a partial Berstein decomposition of size $<c$ can be extended so that both parts will meet a given Cantor set.

$$
\begin{aligned}
& {[\mathrm{W} . \text { Weiss } 1980] \text { If } V=L \text { then any } T_{2} \text { space has }} \\
& \text { a Bernstein-decomposition. }
\end{aligned}
$$

[Shelah 2004] Using a supercompact, consistently there is a 0-dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- $X$ has $\leq \mathfrak{c}$-many Cantor subspaces, go through them by an induction of length $\mathfrak{c}$,
- a partial Berstein decomposition of size $<\mathfrak{c}$ can be extended so that both parts will meet a given Cantor set.

[Shelah 2004] Using a supercompact, consistently there is a 0-dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.


## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- $X$ has $\leq \mathfrak{c}$-many Cantor subspaces, go through them by an induction of length $\mathfrak{c}$,
- a partial Berstein decomposition of size $<\mathfrak{c}$ can be extended so that both parts will meet a given Cantor set.
[W. Weiss 1980] If $V=L$ then any $T_{2}$ space has
a Bernstein-decomposition.
[Shelah 2004] Using a supercompact, consistently there is a 0-dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.


## Motivations - more paradoxical covers

We say $X_{0} \sqcup X_{1}$ is a Bernstein-decomposition of a space $X$ if there are no copies of the Cantor set in either $X_{0}$ or $X_{1}$.
[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- $X$ has $\leq \mathfrak{c}$-many Cantor subspaces, go through them by an induction of length $\mathfrak{c}$,
- a partial Berstein decomposition of size $<\mathfrak{c}$ can be extended so that both parts will meet a given Cantor set.
[W. Weiss 1980] If $V=L$ then any $T_{2}$ space has
a Bernstein-decomposition.
[Shelah 2004] Using a supercompact, consistently there is a 0-dim, $T_{2}$ space $X$ of size $\aleph_{\omega+1}$ without Bernstein-decomposition.


## Elementary submodels - the basics

( $V, \in$ ) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$,
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.
(1) $M$ is closed under operations defined using parameters in $M$,
(2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

## Elementary submodels - the basics

$(V, \in)$ is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elomentary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$
(1) $M$ is closed under operations defined using parameters in $M$
(2) if $M$ is countable, $\Lambda \in M$ then either $\Lambda \subset M$ or $\mathcal{A}$ is uncountable

## Elementary submodels - the basics

( $V, \in$ ) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$,
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$

> The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$
(1) $M$ is closed under operations defined using parameters in $M$ (2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $\Delta$ is uncountable

## Elementary submodels - the basics

( $V, \in$ ) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$,
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$

> The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that
(1) $M$ is closed under operations defined using parameters in $M$ (a) if $M$ is countable, $\Lambda \in M$ then either $\Lambda \subset M$ or $\Lambda$ is uncountable

## Elementary submodels - the basics

( $V, \in$ ) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$,
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$.

> The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$ there are countable elementary
(1) $M$ is closed under operations defined using parameters in $M$
(a) if $M$ is countable, $\Lambda \in M$ then either $\Lambda \subset M$ or $\Lambda$ is uncountable

## Elementary submodels - the basics

( $V, \in$ ) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$,
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.
(1) $M$ is closed under operations defined using parameters in $M$, (2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $\Delta$ is uncountable

## Elementary submodels - the basics

( $V, \in$ ) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $<\Theta$,
- the larger $\Theta$ is, the more $(H(\Theta), \in)$ resembles $V$,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula $\phi$ with parameters in $M, H(\Theta) \models \phi$ if and only if $M \models \phi$.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.
(1) $M$ is closed under operations defined using parameters in $M$,
(2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

## Elementary submodels - the basics

(1) $M$ is closed under operations defined using parameters in $M$, (2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

- $\omega$ is an element and subset of $M$,
- $H(\Theta) \models|A| \leq \aleph_{0}$ so $H(\Theta) \models \exists f: \omega \rightarrow A$,
- $M \models \exists f: \omega \rightarrow A$, so there is $f \in M$ such that $f: \omega \rightarrow A$,
- $\omega \subset M$ so for each $n \in \omega, f(n) \in M$ as well; so $A=\operatorname{ran}(f) \subset M$


## Elementary submodels - the basics

(1) $M$ is closed under operations defined using parameters in $M$,
(2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

- $\omega$ is an element and subset of $M$,
- $H(\Theta) \models|A| \leq \aleph_{0}$ so $H(\Theta) \models \exists f: \omega \rightarrow A$,
- $M \models \exists f: \omega \rightarrow A$, so there is $f \in M$ such that $f: \omega \rightarrow A$,
- $\omega \subset M$ so for each $n \in \omega, f(n) \in M$ as well; so $A=\operatorname{ran}(f) \subset M$


## Elementary submodels - the basics

(1) $M$ is closed under operations defined using parameters in $M$,
(2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

- $\omega$ is an element and subset of $M$,
- $H(\Theta) \models|A| \leq \aleph_{0}$ so $H(\Theta) \models \exists f: \omega \rightarrow A$,
- $M \models \exists f: \omega \rightarrow A$, so there is $f \in M$ such that $f: \omega \rightarrow A$,
- $\omega \subset M$ so for each $n \in \omega, f(n) \in M$ as well; so $A=\operatorname{ran}(f) \subset M$


## Elementary submodels - the basics

(1) $M$ is closed under operations defined using parameters in $M$,
(2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

- $\omega$ is an element and subset of $M$,
- $H(\Theta) \models|A| \leq \aleph_{0}$ so $H(\Theta) \models \exists f: \omega \rightarrow A$,
- $M \models \exists f: \omega \rightarrow A$, so there is $f \in M$ such that $f: \omega \rightarrow A$,
- $\omega \subset M$ so for each $n \in \omega, f(n) \in M$ as well; so $A=\operatorname{ran}(f) \subset M$


## Elementary submodels - the basics

(1) $M$ is closed under operations defined using parameters in $M$,
(2) if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

- $\omega$ is an element and subset of $M$,
- $H(\Theta) \models|A| \leq \aleph_{0}$ so $H(\Theta) \models \exists f: \omega \rightarrow A$,
- $M \models \exists f: \omega \rightarrow A$, so there is $f \in M$ such that $f: \omega \rightarrow A$,
- $\omega \subset M$ so for each $n \in \omega, f(n) \in M$ as well; so $A=\operatorname{ran}(f) \subset M$.


## Elementary submodels - a simple application

$M$ is closed under operations defined using parameters in $M$, if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

> If $A$ is an uncountable family of finite sets then there is a finite set $r$ and uncountable $B \subset A$ so that $a \neq b \in B$ implies that $r=a \cap b$.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \backslash M$ because $A$ is uncountable, let $r=a \cap M$;
- take a maximal $B \subset A, B \in M, r \subseteq b$ if $b \in B$ and $\{b \backslash r: b \in B\}$ is pairwise disjoint;
- $B$ is uncountable, otherwise $B \subset M$ but then $B \cup\{a\}$ is a strictly larger set with the above properties.


## Elementary submodels - a simple application

$M$ is closed under operations defined using parameters in $M$, if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

If $A$ is an uncountable family of finite sets then there is a finite set $r$ and uncountable $B \subset A$ so that $a \neq b \in B$ implies that $r=a \cap b$.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \backslash M$ because $A$ is uncountable, let $r=a \cap M$;
- take a maximal $B \subset A, B \in M, r \subseteq b$ if $b \in B$ and $\{b \backslash r: b \in B\}$ is pairwise disjoint;
- $B$ is uncountable, otherwise $B \subset M$ but then $B \cup\{a\}$ is a strictly larger set with the above properties.


## Elementary submodels - a simple application

$M$ is closed under operations defined using parameters in $M$, if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

If $A$ is an uncountable family of finite sets then there is a finite set $r$ and uncountable $B \subset A$ so that $a \neq b \in B$ implies that $r=a \cap b$.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \backslash M$ because $A$ is uncountable, let
- take a maximal $B \subset A, B \in M, r \subseteq b$ if $b \in B$ and $\{b \backslash r: b \in B\}$ is pairwise disjoint;
- $B$ is uncountable, otherwise $B \subset M$ but then $B \cup\{a\}$ is a strictly larger set with the above properties.


## Elementary submodels - a simple application

$M$ is closed under operations defined using parameters in $M$, if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

If $A$ is an uncountable family of finite sets then there is a finite set $r$ and uncountable $B \subset A$ so that $a \neq b \in B$ implies that $r=a \cap b$.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \backslash M$ because $A$ is uncountable, let $r=a \cap M$;
- take a maximal $B \subset A, B \in M, r \subseteq b$ if $b \in B$ and $b \in B\}$ is pairwise disjoint;
- $B$ is uncountable, othermise $B \subset M$ but then is a strictly larger set with the above properties.


## Elementary submodels - a simple application

$M$ is closed under operations defined using parameters in $M$, if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

If $A$ is an uncountable family of finite sets then there is a finite set $r$ and uncountable $B \subset A$ so that $a \neq b \in B$ implies that $r=a \cap b$.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \backslash M$ because $A$ is uncountable, let $r=a \cap M$;
- take a maximal $B \subset A, B \in M, r \subseteq b$ if $b \in B$ and $\{b \backslash r: b \in B\}$ is pairwise disjoint;
- $B$ is uncountable, otherwise $B \subset M$ but then $B \cup\{a\}$ is a strictly larger set with the above properties.


## Elementary submodels - a simple application

$M$ is closed under operations defined using parameters in $M$, if $M$ is countable, $A \in M$ then either $A \subset M$ or $A$ is uncountable.

If $A$ is an uncountable family of finite sets then there is a finite set $r$ and uncountable $B \subset A$ so that $a \neq b \in B$ implies that $r=a \cap b$.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \backslash M$ because $A$ is uncountable, let $r=a \cap M$;
- take a maximal $B \subset A, B \in M, r \subseteq b$ if $b \in B$ and $\{b \backslash r: b \in B\}$ is pairwise disjoint;
- $B$ is uncountable, otherwise $B \subset M$ but then $B \cup\{a\}$ is a strictly larger set with the above properties.


## Chains of countable elementary submodels

A standard trick in infinite combinatorics is to use filtrations: an increasing chain of small elementary submodels to cover a large set.

For any set $X \in H(\Theta)$ of size $\aleph_{1}$, there is a (continuous) increasing chain $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ of countable elementary submodels of $H(\Theta)$ so that

$$
X \subset \bigcup_{\alpha<\omega_{1}} M_{\alpha}
$$

Serious limitation: no set of size $>\aleph_{1}$ can be covered by an increasing sequence of countable models.

## Chains of countable elementary submodels

A standard trick in infinite combinatorics is to use filtrations: an increasing chain of small elementary submodels to cover a large set.


Serious limitation: no set of size $>\aleph_{1}$ can be covered by an increasing sequence of countable models.

## Chains of countable elementary submodels

A standard trick in infinite combinatorics is to use filtrations: an increasing chain of small elementary submodels to cover a large set.

For any set $X \in H(\Theta)$ of size $\aleph_{1}$, there is a (continuous) increasing chain $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ of countable elementary submodels of $H(\Theta)$ so that

$$
X \subset \bigcup_{\alpha<\omega_{1}} M_{\alpha}
$$

Serious limitation: no set of size $>\aleph_{1}$ can be covered by an increasing sequence of countable models.

## Chains of countable elementary submodels

A standard trick in infinite combinatorics is to use filtrations: an increasing chain of small elementary submodels to cover a large set.

For any set $X \in H(\Theta)$ of size $\aleph_{1}$, there is a (continuous) increasing chain $\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ of countable elementary submodels of $H(\Theta)$ so that

$$
X \subset \bigcup_{\alpha<\omega_{1}} M_{\alpha}
$$

Serious limitation: no set of size $>\aleph_{1}$ can be covered by an increasing sequence of countable models.

## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let

$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$.
- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let



## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let
$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$
- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let



## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let
$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$.
- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let



## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let

$$
A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}
$$

$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$.

- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let


## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let

$$
A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}
$$

$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$.

- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let


## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let

$$
A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
$$

$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$.

- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let


## People always talk about the weather

CH implies that $\mathbb{R}^{2}$ is the union of three clouds.
Fix any three non-collinear points $a_{0}, a_{1}, a_{2} \in \mathbb{R}^{2}$,

- let $\mathcal{L}^{k}$ denote the lines through $a_{k}, \mathcal{L}=\cup \mathcal{L}^{k}, \mathcal{L}^{\prime}$ the three lines determined by pairs of $\left\{a_{k}\right\}$.
We define $F$ on $\mathcal{L}$ so that $F(\ell) \subset \ell$ is finite and let

$$
A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
$$

$\mathrm{CH}\left(M_{\alpha}\right)_{\alpha<\omega_{1}}$ covers $\mathbb{R}^{2}$ and $\mathcal{L}$, and all models contain $a_{0}, a_{1}, a_{2}$.

- let $\mathcal{L}_{\alpha}$ those $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
- list $\mathcal{L}_{\alpha}$ as $\left\{\ell_{\alpha j}: j<\omega\right\}$, and let

$$
F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\} .
$$

## Covering by three clouds - proof continued

$$
\begin{aligned}
& \mathcal{L}_{\alpha} \text { those lines } \ell \in \mathcal{L} \backslash \mathcal{L}^{\prime} \text { that appear first in } M_{\alpha}, \\
& F\left(\ell_{\alpha j}\right)=\cup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\},\right. \\
& A_{k}=\left\{a_{k}\right\} \cup \cup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
\end{aligned}
$$



- otherwise $x$ appears as the intersection,
 and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## Covering by three clouds - proof continued

$$
\begin{aligned}
& \mathcal{L}_{\alpha} \text { those lines } \ell \in \mathcal{L} \backslash \mathcal{L}^{\prime} \text { that appear first in } M_{\alpha}, \\
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\} \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $\times$ appears in $M_{\alpha}$ first,


## at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models

- otherwise $x$ appears as the intersection,
- (wlog) $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## Covering by three clouds - proof continued

$$
\begin{aligned}
& \mathcal{L}_{\alpha} \text { those lines } \ell \in \mathcal{L} \backslash \mathcal{L}^{\prime} \text { that appear first in } M_{\alpha}, \\
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\},\right. \\
& A_{k}=\left\{a_{k}\right\} \cup \cup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

## at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models

- otherwise $x$ appears as the intersection,
- $(w \log ) \ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## Covering by three clouds - proof continued

$$
\begin{aligned}
& \mathcal{L}_{\alpha} \text { those lines } \ell \in \mathcal{L} \backslash \mathcal{L}^{\prime} \text { that appear first in } M_{\alpha}, \\
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\} \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, $x \in \cup \mathcal{L}^{\prime}$ is the easy case so
suppose $x \notin \mathcal{L}^{\prime}$,


## at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models

- otherwise $x$ appears as the intersection,
- $(w \log ) \ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,
so covered by $A_{1}\left(\right.$ as $\ell_{a j} \in \mathcal{L}^{1}$ now $)$.


## Covering by three clouds - proof continued

$$
\begin{aligned}
& \mathcal{L}_{\alpha} \text { those lines } \ell \in \mathcal{L} \backslash \mathcal{L}^{\prime} \text { that appear first in } M_{\alpha}, \\
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\} \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, $x \in \cup \mathcal{L}^{\prime}$ is the easy case so suppose $x \notin \mathcal{L}^{\prime}$,


## at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models

- otherwise $x$ appears as the intersection,
- (wlog) $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ so covered by $A_{1}$


## Covering by three clouds - proof continued

$$
\begin{aligned}
& \mathcal{L}_{\alpha} \text { those lines } \ell \in \mathcal{L} \backslash \mathcal{L}^{\prime} \text { that appear first in } M_{\alpha}, \\
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\} \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, $x \in \cup \mathcal{L}^{\prime}$ is the easy case so suppose $x \notin \mathcal{L}^{\prime}$,
at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models
- otherwise $x$ appears as the intersection,
- $(w \log ) \ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$


## Covering by three clouds - proof continued

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,

$$
\begin{aligned}
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}, \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, $x \in \cup \mathcal{L}^{\prime}$ is the easy case so suppose $x \notin \mathcal{L}^{\prime}$,
at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models
- otherwise $x$ appears as the intersection,



## Covering by three clouds - proof continued

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,

$$
\begin{aligned}
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}, \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, $x \in \cup \mathcal{L}^{\prime}$ is the easy case so suppose $x \notin \mathcal{L}^{\prime}$,
at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models
- otherwise $x$ appears as the intersection,
- (wlog) $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## Covering by three clouds - proof continued

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,

$$
\begin{aligned}
& F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}, \\
& A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\} .
\end{aligned}
$$

Why does $A_{0}, A_{1}, A_{2}$ cover? Take some $x \in \mathbb{R}^{2}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, $x \in \cup \mathcal{L}^{\prime}$ is the easy case so suppose $x \notin \mathcal{L}^{\prime}$,
at most one of the three lines $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right]$, $\ell\left[x, a_{2}\right] \in M_{\alpha}$ appear in previous models
- otherwise $x$ appears as the intersection,
- (wlog) $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,
- $\{x\}=\ell_{\alpha i} \cap \ell_{\alpha j} \subset F\left(\ell_{\alpha j}\right)$ so covered by $A_{1}$ (as $\ell_{\alpha j} \in \mathcal{L}^{1}$ now).


## Davies' idea - what can we do without CH?

## [Davies, 1963] Take any set of size $c$ and cover with $M_{\emptyset}$ of size $c$.

- we have a tree indexed by finite sequences of ordinals,
- lex $_{\text {lex }}$ well orders the terminal nodes,
> $\bigcup\left\{M_{S}: S<_{l e x} t\right.$ terminal $\}=$
> the union of $|t|$-many el. subm.


## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ each of size $<c=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by
finite sequences of ordinals,
- <lex well orders the terminal
nodes,



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all termina' models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <lex well orders the terminal
nodes,



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <lex well orders the terminal
nodes,



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by
finite sequences of ordinals,
- <lex well orders the terminal



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals, - <lex well orders the terminal nodes,



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size $\mathfrak{c}$ and cover with $M_{\emptyset}$ of size $\mathfrak{c}$.

- write $M_{\emptyset}$ as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if $M_{\alpha}$ is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.



## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that

```
and }x\in\mp@subsup{M}{\alpha}{}\mathrm{ for all }\alpha<\kappa\mathrm{ ,
(II) }\kappa\subset\mp@subsup{\bigcup}{\alpha<\kappa}{M}\mp@subsup{M}{\alpha}{}\mathrm{ , and
for cvery }\beta<\pi\mathrm{ there is m}\mp@subsup{m}{\beta}{}\in\mathbb{N}\mathrm{ and models N N,j}\precH(0)\mathrm{ such that
x\in N
```

$M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over x

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, andfor every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{B, j} \prec H(\theta)$ such that
$x \in N_{B, j}$ for $j<m_{\beta}$ and $M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over x .

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and

> for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and


We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over $x$.

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over x .

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

## [countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over x .

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

## [countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and [cover $\kappa$ ]
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over x .

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

## [countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and [cover $\kappa$ ]
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\} .
$$

[initial segments are finite unions of models]
We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over $x$.

## Davies-trees in general

## Theorem [Davies, Milovich]

Suppose that $\kappa$ is cardinal, $x$ is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

## [countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and [cover $\kappa$ ]
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

## [initial segments are finite unions of models]

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for $\kappa$ over $x$.

## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{a}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that

```
M<\alpha
```

```
\mathcal{L}}\alpha\mathrm{ those lines }\ell\in\mathcal{L}\\mp@subsup{\mathcal{L}}{}{\prime}\mathrm{ that appear first in M}\mp@subsup{M}{\alpha}{
F(\ell (京)}=\{{\cap\cap\mp@subsup{\ell}{~j}{}:\ell\in\mp@subsup{\mathcal{L}}{}{\prime}\cup{\mp@subsup{\ell}{~i}{}:i<j}}
A
```

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ annears in $M$ first, we suppose $x \notin \mathcal{L}^{\prime}$,
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then

$$
\{x\}=\rho\left[x, a_{i}\right] \cap \rho\left[x, a_{j}\right] \subset N_{a k} \subset M_{<\alpha}
$$

- $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position，
and $\mathcal{L}$ ，containing the points $a_{k}$ ，and so that

## $M_{<\alpha}$ is the union of $\leq n$ elementary submodels．

```
\mathcal{L}}
F(\ell (立)=\bigcup{\ell\cap\ell生立:\ell\in\mathcal{L}
A
```

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$ ．
－there is $\alpha$ so that $x$ annears in $M$ first，we suppose $x \notin \mathcal{L}^{\prime}$ ，
－$M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then

$$
\{x\}=\rho\left[x, a_{i}\right] \cap \rho\left[x, a_{j}\right] \subset N_{a k} \subset M_{<\alpha}
$$

－$\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,

## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that
$M_{<\alpha}$ is the union of $\leq n$ elementary submodels.


Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ annears in $M_{\sim}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then

$$
\{x\}=\rho\left[x, a_{i}\right] \cap \rho\left[x, a_{j}\right] \subset N_{\alpha k} \subset M_{<\alpha}
$$

- $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that
$M_{<\alpha}$ is the union of $\leq n$ elementary submodels.
$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$, $F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$, $A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$.

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then
$\square$


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that

$$
M_{<\alpha} \text { is the union of } \leq n \text { elementary submodels. }
$$

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
$F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$,
$A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$.

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $\times$ appears in $M_{\alpha}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then
$\square$
- $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that

$$
M_{<\alpha} \text { is the union of } \leq n \text { elementary submodels. }
$$

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
$F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$,
$A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$.

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, we suppose $x \notin \mathcal{L}^{\prime}$,
$\square$
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then
$\square$


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that

$$
M_{<\alpha} \text { is the union of } \leq n \text { elementary submodels. }
$$

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
$F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$,
$A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$.

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,

$$
\begin{aligned}
& \text { at most } n \text { of the } n+2 \text { lines } \ell\left[x, a_{0}\right], \ldots, \ell\left[x, a_{n+1}\right] \in M_{\alpha} \\
& \text { could appear in previous models }
\end{aligned}
$$

- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then
$\square$


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that

$$
M_{<\alpha} \text { is the union of } \leq n \text { elementary submodels. }
$$

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
$F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$,
$A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$.

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,
at most $n$ of the $n+2$ lines $\ell\left[x, a_{0}\right], \ldots, \ell\left[x, a_{n+1}\right] \in M_{\alpha}$ could appear in previous models
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then

$$
\{x\}=\ell\left[x, a_{i}\right] \cap \ell\left[x, a_{j}\right] \subset N_{\alpha k} \subset M_{<\alpha}
$$

- $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## $\mathrm{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that
$M_{<\alpha}$ is the union of $\leq n$ elementary submodels.
$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
$F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$
$A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,
at most $n$ of the $n+2$ lines $\ell\left[x, a_{0}\right], \ldots, \ell\left[x, a_{n+1}\right] \in M_{\alpha}$ could appear in previous models
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then

$$
\{x\}=\ell\left[x, a_{i}\right] \cap \ell\left[x, a_{j}\right] \subset N_{\alpha k} \subset M_{<\alpha}
$$

- $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$,


## $\mathfrak{c} \leq \aleph_{n}$ implies there is a cover by $n+2$ clouds

Take $n+2$ points $a_{0}, \ldots, a_{n+1}$ in general position, and a Davies-tree $\left(M_{\alpha}\right)_{\alpha<c}$ covering $\mathbb{R}^{2}$ and $\mathcal{L}$, containing the points $a_{k}$, and so that

$$
M_{<\alpha} \text { is the union of } \leq n \text { elementary submodels. }
$$

$\mathcal{L}_{\alpha}$ those lines $\ell \in \mathcal{L} \backslash \mathcal{L}^{\prime}$ that appear first in $M_{\alpha}$,
$F\left(\ell_{\alpha j}\right)=\bigcup\left\{\ell \cap \ell_{\alpha j}: \ell \in \mathcal{L}^{\prime} \cup\left\{\ell_{\alpha i}: i<j\right\}\right\}$,
$A_{k}=\left\{a_{k}\right\} \cup \bigcup\left\{F(\ell): \ell \in \mathcal{L}^{k}\right\}$.

Any $x \in \mathbb{R}^{2}$ is covered by $A_{0}, \ldots, A_{n+1}$.

- there is $\alpha$ so that $x$ appears in $M_{\alpha}$ first, we suppose $\times \notin \mathcal{L}^{\prime}$,
at most $n$ of the $n+2$ lines $\ell\left[x, a_{0}\right], \ldots, \ell\left[x, a_{n+1}\right] \in M_{\alpha}$ could appear in previous models
- $M_{<\alpha}=\bigcup_{k<n} N_{\alpha k}$ and if $\ell\left[x, a_{i}\right], \ell\left[x, a_{j}\right] \in N_{\alpha k}$ then

$$
\{x\}=\ell\left[x, a_{i}\right] \cap \ell\left[x, a_{j}\right] \subset N_{\alpha k} \subset M_{<\alpha}
$$

- $\ell\left[x, a_{0}\right], \ell\left[x, a_{1}\right] \in \mathcal{L}_{\alpha}$ and there is $i<j$ such that $\ell_{\alpha i}=\ell\left[x, a_{0}\right]$ and $\ell_{\alpha j}=\ell\left[x, a_{1}\right]$, $\{x\}=\ell_{\alpha i} \cap \ell_{\alpha j} \subset F\left(\ell_{\alpha j}\right)$ covered by $A_{1}$ (as $\ell_{\alpha j} \in \mathcal{L}^{1}$ now).


## Countably closed models

## Countable models $\rightarrow$ enumeration in type $\omega$, $\rightarrow$ deal with finite pieces on $\epsilon$ at a time.

$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M, H(\theta)$ of size $c$;


## How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size $\mathfrak{c}$ can only cover $\mathfrak{c}^{+}$.

```
Can we make Davies-trees from countably closed
models of size c?
```


## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$, $\rightarrow$ deal with finite pieces one at a time.

- there are countably closed $M \prec H(\theta)$ of size $\mathfrak{c}$;


## How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size c can only cover ct.

> Can we make Davies-trees from countably closed models of size $c$ ?

## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$, $\rightarrow$ deal with finite pieces one at a time.
$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M \prec H(\theta)$ of size c;


## How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size $\mathfrak{c}$ can only cover $\mathfrak{c}^{+}$.

> Can we make Davies-trees from countably closed models of size $\mathbf{c}$ ?

## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$, $\rightarrow$ deal with finite pieces one at a time.
$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M \prec H(\theta)$ of size $\mathfrak{c}$;


## How are these models helpful? <br> - they can cover larger spaces and the models can talk about countably infinite subsets, <br> - limitation: increasing chains of models of size c can only cover $\mathrm{c}^{-}$ <br> $\square$ <br> Can we make Davies-trees from countably closed models of size $\mathbf{c}$ ?

## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$, $\rightarrow$ deal with finite pieces one at a time.
$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M \prec H(\theta)$ of size $\mathfrak{c}$;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size c can only cover c
$\square$
Can we make Davies-trees from countably closed models of size $c$ ?


## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$, $\rightarrow$ deal with finite pieces one at a time.
$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M \prec H(\theta)$ of size $\mathfrak{c}$;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size c can only cover c-
$\square$
Can we make Davies-trees from countably closed models of size $c$ ?


## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$,
$\rightarrow$ deal with finite pieces one at a time.
$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M \prec H(\theta)$ of size $\mathfrak{c}$;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size $\mathfrak{c}$ can only cover $\mathfrak{c}^{+}$.



## Countably closed models

Countable models $\rightarrow$ enumeration in type $\omega$,
$\rightarrow$ deal with finite pieces one at a time.
$M$ is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- there are countably closed $M \prec H(\theta)$ of size $\mathfrak{c}$;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- limitation: increasing chains of models of size $\mathfrak{c}$ can only cover $\mathfrak{c}^{+}$.

Can we make Davies-trees from countably closed models of size $\mathfrak{c}$ ?

## High Davies-trees

We say that a high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular $\theta$ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=c$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{B, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<\omega\right\} .
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for $\kappa$.

## High Davies-trees

We say that a high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular $\theta$ such that (I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=c$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$, (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(II') for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that


Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for $\kappa$.

## High Davies-trees

We say that a high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular $\theta$ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that


Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for $\kappa$

## High Davies-trees

We say that a high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular $\theta$ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}\right.
$$



Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for $\kappa$.

## High Davies-trees

We say that a high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular $\theta$ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<\omega\right\} .
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for $\kappa$.

## High Davies-trees

We say that a high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular $\theta$ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<\omega\right\} .
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for $\kappa$.

## Existence of high Davies-trees

## A high Davies-tree for $\kappa$ over $x$

is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ st.

## Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size $c$,

A high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.

## Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size $c$,

A high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.
[DS, LS] There are high Davies-tree for any uncountable $\kappa<\mathfrak{c}^{+\omega}$, e.g. for $\kappa=\aleph_{n}$ if $n<\omega$.

## Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size $c$,

A high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.
[DS, LS] There are high Davies-tree for any uncountable $\kappa<\mathfrak{c}^{+\omega}$, e.g. for $\kappa=\aleph_{n}$ if $n<\omega$.

## Theorem [DS, LS]

There are high Davies-tree for any uncountable $\kappa$ if $V=L$.

## Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size $c$,

A high Davies-tree for $\kappa$ over $x$ is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.
[DS, LS] There are high Davies-tree for any uncountable $\kappa<\mathfrak{c}^{+\omega}$, e.g. for $\kappa=\aleph_{n}$ if $n<\omega$.

## Theorem [DS, LS]

There are high Davies-tree for any uncountable $\kappa$ if $V=L$.

Remark: no high Davies-trees for $\kappa \geq \aleph_{\omega}$ if $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.

## Bernstein-decompositions from high Davies-trees

## Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

## If there is a high Davies-tree for $\kappa$ over $X$,

## then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X<{ }_{\alpha} \rightarrow$ where $X<X_{\alpha}=X \mathcal{M}_{\alpha}$
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that

$$
\text { if } C \subseteq X, C \in M_{<\alpha} \text { and } C \text { is Cantor then } f_{\alpha}[C]=c \text {. }
$$

## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

## If there is a high Davies-tree for $\kappa$ over $X$,

## then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X X_{\alpha} \rightarrow$ where $X<\alpha=X \cap M<\alpha$
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that



## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X<{ }_{\alpha} \rightarrow$ where $X<\alpha \cap M_{\alpha}$
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that
if $C \subset X, C \in M_{<\alpha}$ and $C$ is Cantor then $f_{\alpha}[C]=c$.


## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathrm{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that



## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that
if $C \subset X, C \in M_{<\alpha}$ and $C$ is Cantor then $f_{a}[C]=c$.


## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,

- we make sure that
if $C \subseteq X, C \in M_{<\alpha}$ and $C$ is Cantor then $f_{a}[C]=c$.


## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- there is a countable $D \subseteq X$ so that $\mathrm{cl}_{X}(D)=C$,

- we make sure that
if $C \subseteq X, C \in M_{<\alpha}$ and $C$ is Cantor then $f_{a}[C]=c$.


## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- there is a countable $D \subseteq X$ so that $\mathrm{cl}_{X}(D)=C$,
- $D \in[X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $c l_{X}(D)=C \in M_{<\alpha}$ for some $\alpha$.
- we make sure that
if $C \subseteq X, C \in M_{<\alpha}$ and $C$ is Cantor then $f_{\alpha}[C]=c$.


## Bernstein-decompositions from high Davies-trees

Suppose that $X$ is a Hausdorff top. space of size $\kappa$.

If there is a high Davies-tree for $\kappa$ over $X$, then $X$ has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for $\kappa$ over $X$,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- there is a countable $D \subseteq X$ so that $\mathrm{cl}_{X}(D)=C$,
- $D \in[X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $c l_{X}(D)=C \in M_{<\alpha}$ for some $\alpha$.
- we make sure that

$$
\text { if } C \subseteq X, C \in M_{<\alpha} \text { and } C \text { is Cantor then } f_{\alpha}[C]=\mathfrak{c} .
$$

## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=c \text { for all } C \in M_{\alpha a+1} \text {. }
$$

## Maybe we colored some

$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$C \cap X_{<\alpha} \mid \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

$$
\text { - } C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}
$$

## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow c$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{<\alpha+1} .
$$



- pick ctble dense $D \subset C \cap N_{\alpha, j}$,



## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{<\alpha+1} .
$$



- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{<\alpha+1}
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?


- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some $C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?


- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?


- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$



- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<c}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

$$
\begin{aligned}
\left|C \cap X_{<\alpha}\right| \leq & \omega \text { or } \\
& f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
\end{aligned}
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some $j$,



## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

- $C^{*}=\mathrm{cl}_{X}(D)$


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c}
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some $j$,

- pick ctble dense $D \subset C \cap N_{\alpha, j}$, so $D \in N_{\alpha, j}$ too.


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c}
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some $j$,
- pick ctble dense $D \subset C \cap N_{\alpha, j}$, so $D \in N_{\alpha, j}$ too.

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$
and so


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

$$
\begin{aligned}
\left|C \cap X_{<\alpha}\right| \leq & \omega \text { or } \\
& f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
\end{aligned}
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some $j$,
- pick ctble dense $D \subset C \cap N_{\alpha, j}$, so $D \in N_{\alpha, j}$ too.

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$
and so
$\mathfrak{c}=f_{\alpha}\left[C^{*}\right] \subseteq f_{\alpha}\left[C \cap X_{<\alpha}\right]$.


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$



## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

$$
\begin{aligned}
\left|C \cap X_{<\alpha}\right| \leq & \omega \text { or } \\
& f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
\end{aligned}
$$

Let $\left\{C_{\xi}: \xi<\mathfrak{c}\right\}$ list $C \in M_{\alpha} \backslash M_{<\alpha}$ s.t. $\left|C \cap X_{<\alpha}\right| \leq \omega$, each $\mathfrak{c}$ times.


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

$$
\begin{aligned}
\left|C \cap X_{<\alpha}\right| \leq & \omega \text { or } \\
& f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
\end{aligned}
$$

Let $\left\{C_{\xi}: \xi<\mathfrak{c}\right\}$ list $C \in M_{\alpha} \backslash M_{<\alpha}$ s.t. $\left|C \cap X_{<\alpha}\right| \leq \omega$, each $\mathfrak{c}$ times.

Pick $y_{\xi} \in C_{\xi} \backslash\left(X_{<\alpha} \cup\left\{y_{\zeta}: \zeta<\xi\right\}\right)$.


## Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

$$
\begin{aligned}
\left|C \cap X_{<\alpha}\right| \leq & \omega \text { or } \\
& f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
\end{aligned}
$$

Let $\left\{C_{\xi}: \xi<\mathfrak{c}\right\}$ list $C \in M_{\alpha} \backslash M_{<\alpha}$ s.t. $\left|C \cap X_{<\alpha}\right| \leq \omega$, each $\mathfrak{c}$ times.


Pick $y_{\xi} \in C_{\xi} \backslash\left(X_{<\alpha} \cup\left\{y_{\zeta}: \zeta<\xi\right\}\right)$.
Let $f_{\alpha+1}\left(y_{\xi}\right)=\nu$ if $C_{\xi}$ is the $\nu^{\text {th }}$-time we see $C_{\xi}$.

## Some open problems

## [A. Miller 1989]

$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?
[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?


## Some open problems

[A. Miller 1989]
$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?


## Some open problems

[A. Miller 1989]
$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?


## Some open problems

## [A. Miller 1989]

$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

> [Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?


## Some open problems

[A. Miller 1989]
$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?



## Some open problems

[A. Miller 1989]
$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?



## Some open problems

[A. Miller 1989]
$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?



## Some open problems

[A. Miller 1989]
$(\mathrm{V}=\mathrm{L})$ There is a co-analytic 2-point set in $\mathbb{R}^{2}$.

- [Sierpinski] Is there a Borel 2-point set?
- It can never be $F_{\sigma}$, but how about $G_{\delta}$ ?

[Gardner, Mauldin 1988] (CH) For $n \geq 3$, there is a bijection $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which maps each circle onto a countable union of line segments.
- Is CH necessary?
- How about finite unions?
- Is this possible for $n=2$ ?


