High Davies-trees in infinite combinatorics

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Dániel T. Soukup (KGRC)

Davies-trees in infinite combinatorics

Paris, May 2018

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on

• paradoxical sets and decompositions of the plane, and

• Bernstein-decompositions of arbitrary topological spaces.

Based on

• paradoxical sets and decompositions of the plane, and

• Bernstein-decompositions of arbitrary topological spaces.

Based on

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]

a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.

- paradoxical sets and decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on

CH is the statement that $\mathfrak{c} = |\mathbb{R}| = \aleph_1$.

[Sierpinski 1919]

CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S_0 has countable vertical segments, and
- S_1 has countable horizontal segments.

 $A \subset \mathbb{R}^2$ is a cloud if there is some $a \in \mathbb{R}^2$ so that $\ell \cap A$ is finite for any line ℓ through a. Note that two clouds cannot cover \mathbb{R}^2 .

[Komjáth, Schmerl 2001/2003] CH iff \mathbb{R}^2 is covered by three clouds,

 $\mathfrak{c} \leq leph_n$ iff \mathbb{R}^2 is covered by n+2 clouds.

CH is the statement that $\mathfrak{c} = |\mathbb{R}| = \aleph_1$.

[Sierpinski 1919]

CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S_1 has countable horizontal segments.

 $A \subset \mathbb{R}^2$ is a cloud if there is some $a \in \mathbb{R}^2$ so that $\ell \cap A$ is finite for any line ℓ through a. Note that two clouds cannot cover \mathbb{R}^2 .

[Komjáth, Schmerl 2001/2003] CH iff \mathbb{R}^2 is covered by three clouds,

 $\mathfrak{c} \leq \aleph_n$ iff \mathbb{R}^2 is covered by n+2 clouds.

CH is the statement that $\mathfrak{c} = |\mathbb{R}| = \aleph_1$.

[Sierpinski 1919]

CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S_1 has countable horizontal segments.

 $A \subset \mathbb{R}^2$ is a cloud if there is some $a \in \mathbb{R}^2$ so that $\ell \cap A$ is finite for any line ℓ through a. Note that two clouds cannot cover \mathbb{R}^2 .

[Komjáth, Schmerl 2001/2003] CH iff \mathbb{R}^2 is covered by three clouds,

 $\mathfrak{c} \leq \aleph_n$ iff \mathbb{R}^2 is covered by n+2 clouds.

CH is the statement that $\mathfrak{c} = |\mathbb{R}| = \aleph_1$.

[Sierpinski 1919]

CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S_1 has countable horizontal segments.

 $A \subset \mathbb{R}^2$ is a cloud if there is some $a \in \mathbb{R}^2$ so that $\ell \cap A$ is finite for any line ℓ through a. Note that two clouds cannot cover \mathbb{R}^2 .

[Komjáth, Schmerl 2001/2003] CH iff \mathbb{R}^2 is covered by three clouds,

 $\mathfrak{c} \leq \aleph_n$ iff \mathbb{R}^2 is covered by n+2 clouds.

CH is the statement that $\mathfrak{c} = |\mathbb{R}| = \aleph_1$.

[Sierpinski 1919]

CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S_1 has countable horizontal segments.

 $A \subset \mathbb{R}^2$ is a cloud if there is some $a \in \mathbb{R}^2$ so that $\ell \cap A$ is finite for any line ℓ through a. Note that two clouds cannot cover \mathbb{R}^2 .

[Komjáth, Schmerl 2001/2003] CH iff \mathbb{R}^2 is covered by three clouds,

 $\mathfrak{c} \leq leph_n$ iff \mathbb{R}^2 is covered by n+2 clouds.

CH is the statement that $\mathfrak{c} = |\mathbb{R}| = \aleph_1$.

[Sierpinski 1919]

CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S_1 has countable horizontal segments.

 $A \subset \mathbb{R}^2$ is a cloud if there is some $a \in \mathbb{R}^2$ so that $\ell \cap A$ is finite for any line ℓ through a. Note that two clouds cannot cover \mathbb{R}^2 .

[Komjáth, Schmerl 2001/2003] CH iff \mathbb{R}^2 is covered by three clouds,

 $\mathfrak{c}\leq leph_n$ iff \mathbb{R}^2 is covered by n+2 clouds.

- build by an induction of length c,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,

• to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length c,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,

• to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length \mathfrak{c} ,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,

• to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length \mathfrak{c} ,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,

• to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length \mathfrak{c} ,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,

• to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length \mathfrak{c} ,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,

• to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length c,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

- build by an induction of length c,
- a partial 2-point set (of size < c) can be extended to meet a given line in exactly two points.

[Jackson, Mauldin 2002] There is a set in \mathbb{R}^2 that meets each isometric copy of \mathbb{Z}^2 in exactly one point.

- there are finite partial Steinhaus sets which cannot be extended,
- the proof combines elementary number theory and mechanics to solve a countable approximation of the problem,
- to lift the countable case and piece together a full Steinhaus set a transfinite induction using elementary submodels .

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- X has $\leq \mathfrak{c}$ -many Cantor subspaces, go through them by an induction of length \mathfrak{c} ,
- a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- X has $\leq \mathfrak{c}$ -many Cantor subspaces, go through them by an induction of length \mathfrak{c} ,
- a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

• X has \leq c-many Cantor subspaces, go through them by an induction of length c,

• a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

[Shelah 2004] Using a supercompact, consistently there is a 0-dim, T_2 space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- X has $\leq \mathfrak{c}$ -many Cantor subspaces, go through them by an induction of length \mathfrak{c} ,
- a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- X has $\leq \mathfrak{c}$ -many Cantor subspaces, go through them by an induction of length \mathfrak{c} ,
- a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- X has $\leq \mathfrak{c} ext{-many}$ Cantor subspaces, go through them by an induction of length \mathfrak{c} ,
- a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

[Bernstein 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

- X has $\leq \mathfrak{c}$ -many Cantor subspaces, go through them by an induction of length \mathfrak{c} ,
- a partial Berstein decomposition of size < c can be extended so that both parts will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T_2 space has a Bernstein-decomposition.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula ϕ with parameters in M, $H(\Theta) \models \phi$ if and only if $M \models \phi$.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,
- M ⊂ H(Θ) is an elementary submodel if for any first-order formula φ with parameters in M, H(Θ) ⊨ φ if and only if M ⊨ φ.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

Elementary submodels - the basics

(V,\in) is the set-theoretic universe.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,
- $M \subset H(\Theta)$ is an elementary submodel if for any first-order formula ϕ with parameters in M, $H(\Theta) \models \phi$ if and only if $M \models \phi$.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,

 M ⊂ H(Θ) is an elementary submodel if for any first-order formula φ with parameters in M, H(Θ) ⊨ φ if and only if M ⊨ φ.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,
- *M* ⊂ *H*(Θ) is an elementary submodel if for any first-order formula φ with parameters in *M*, *H*(Θ) ⊨ φ if and only if *M* ⊨ φ.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,
- *M* ⊂ *H*(Θ) is an elementary submodel if for any first-order formula φ with parameters in *M*, *H*(Θ) ⊨ φ if and only if *M* ⊨ φ.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

 ${\mathfrak P}$ if M is countable, $A\in M$ then either $A\subset M$ or A is uncountable.

- $H(\Theta)$ is the family of all sets of hereditary cardinality $< \Theta$,
- the larger Θ is, the more $(H(\Theta), \in)$ resembles V,
- *M* ⊂ *H*(Θ) is an elementary submodel if for any first-order formula φ with parameters in *M*, *H*(Θ) ⊨ φ if and only if *M* ⊨ φ.

The downward Löwenhein-Skolem theorem says that for any countable $x \subset H(\Theta)$, there are countable elementary $M \prec H(\Theta)$ so that $x \subset M$.

M is closed under operations defined using parameters in M,

M is closed under operations defined using parameters in M,

2 if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

• ω is an element and subset of M,

- $H(\Theta) \models |A| \leq \aleph_0$ so $H(\Theta) \models \exists f : \omega \twoheadrightarrow A$,
- $M \models \exists f : \omega \twoheadrightarrow A$, so there is $f \in M$ such that $f : \omega \twoheadrightarrow A$,
- $\omega \subset M$ so for each $n \in \omega$, $f(n) \in M$ as well; so $A = \operatorname{ran}(f) \subset M$.

- M is closed under operations defined using parameters in M,
- 2 if M is countable, $A \in M$ then either $A \subset M$ or A is uncountable.
 - ω is an element and subset of M,
 - $H(\Theta) \models |A| \leq \aleph_0$ so $H(\Theta) \models \exists f : \omega \twoheadrightarrow A$,
 - $M \models \exists f : \omega \twoheadrightarrow A$, so there is $f \in M$ such that $f : \omega \twoheadrightarrow A$,
 - $\omega \subset M$ so for each $n \in \omega$, $f(n) \in M$ as well; so $A = \operatorname{ran}(f) \subset M$.
- M is closed under operations defined using parameters in M,
- 2 if M is countable, $A \in M$ then either $A \subset M$ or A is uncountable.
 - ω is an element and subset of M,
 - $H(\Theta) \models |A| \leq \aleph_0$ so $H(\Theta) \models \exists f : \omega \twoheadrightarrow A$,
 - $M \models \exists f : \omega \twoheadrightarrow A$, so there is $f \in M$ such that $f : \omega \twoheadrightarrow A$,
 - $\omega \subset M$ so for each $n \in \omega$, $f(n) \in M$ as well; so $A = \operatorname{ran}(f) \subset M$.

- M is closed under operations defined using parameters in M,
- 2 if M is countable, $A \in M$ then either $A \subset M$ or A is uncountable.
 - ω is an element and subset of M,
 - $H(\Theta) \models |A| \leq \aleph_0$ so $H(\Theta) \models \exists f : \omega \twoheadrightarrow A$,
 - $M \models \exists f : \omega \twoheadrightarrow A$, so there is $f \in M$ such that $f : \omega \twoheadrightarrow A$,
 - $\omega \subset M$ so for each $n \in \omega$, $f(n) \in M$ as well; so $A = \operatorname{ran}(f) \subset M$.

- M is closed under operations defined using parameters in M,
- 2 if M is countable, $A \in M$ then either $A \subset M$ or A is uncountable.
 - ω is an element and subset of M,
 - $H(\Theta) \models |A| \leq \aleph_0$ so $H(\Theta) \models \exists f : \omega \twoheadrightarrow A$,
 - $M \models \exists f : \omega \twoheadrightarrow A$, so there is $f \in M$ such that $f : \omega \twoheadrightarrow A$,
 - $\omega \subset M$ so for each $n \in \omega$, $f(n) \in M$ as well; so $A = \operatorname{ran}(f) \subset M$.

M is closed under operations defined using parameters in *M*, if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \setminus M$ because A is uncountable, let $r = a \cap M$;
- take a maximal B ⊂ A, B ∈ M, r ⊆ b if b ∈ B and {b \ r : b ∈ B} is pairwise disjoint;
- B is uncountable, otherwise B ⊂ M but then
 B ∪ {a} is a strictly larger set with the above properties.

M is closed under operations defined using parameters in *M*, if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \setminus M$ because A is uncountable, let $r = a \cap M$;
- take a maximal $B \subset A$, $B \in M$, $r \subseteq b$ if $b \in B$ and $\{b \setminus r : b \in B\}$ is pairwise disjoint;
- B is uncountable, otherwise B ⊂ M but then
 B ∪ {a} is a strictly larger set with the above properties.

M is closed under operations defined using parameters in *M*, if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \setminus M$ because A is uncountable, let $r = a \cap M$;
- take a maximal B ⊂ A, B ∈ M, r ⊆ b if b ∈ B and {b \ r : b ∈ B} is pairwise disjoint;
- B is uncountable, otherwise B ⊂ M but then
 B ∪ {a} is a strictly larger set with the above properties.

M is closed under operations defined using parameters in *M*, if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \setminus M$ because A is uncountable, let $r = a \cap M$;
- take a maximal $B \subset A$, $B \in M$, $r \subseteq b$ if $b \in B$ and $\{b \setminus r : b \in B\}$ is pairwise disjoint;
- B is uncountable, otherwise B ⊂ M but then
 B ∪ {a} is a strictly larger set with the above properties.

M is closed under operations defined using parameters in *M*, if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \setminus M$ because A is uncountable, let $r = a \cap M$;
- take a maximal $B \subset A$, $B \in M$, $r \subseteq b$ if $b \in B$ and $\{b \setminus r : b \in B\}$ is pairwise disjoint;
- B is uncountable, otherwise B ⊂ M but then
 B ∪ {a} is a strictly larger set with the above properties.

M is closed under operations defined using parameters in *M*, if *M* is countable, $A \in M$ then either $A \subset M$ or *A* is uncountable.

- take a countable elementary $M \prec H(\Theta)$ such that $A \in M$;
- there is some $a \in A \setminus M$ because A is uncountable, let $r = a \cap M$;
- take a maximal $B \subset A$, $B \in M$, $r \subseteq b$ if $b \in B$ and $\{b \setminus r : b \in B\}$ is pairwise disjoint;
- B is uncountable, otherwise B ⊂ M but then
 B ∪ {a} is a strictly larger set with the above properties.

For any set $X \in H(\Theta)$ of size \aleph_1 , there is a (continuous) increasing chain $(M_{\alpha})_{\alpha < \omega_1}$ of countable elementary submodels of $H(\Theta)$ so that

$$X \subset \bigcup_{\alpha < \omega_1} M_\alpha.$$

<u>Serious limitation</u>: no set of size $> \aleph_1$ can be covered by an increasing sequence of countable models.

For any set $X \in H(\Theta)$ of size \aleph_1 , there is a (continuous) increasing chain $(M_{\alpha})_{\alpha < \omega_1}$ of countable elementary submodels of $H(\Theta)$ so that

$$X \subset \bigcup_{\alpha < \omega_1} M_\alpha.$$

<u>Serious limitation</u>: no set of size $> \aleph_1$ can be covered by an increasing sequence of countable models.

For any set $X \in H(\Theta)$ of size \aleph_1 , there is a (continuous) increasing chain $(M_{\alpha})_{\alpha < \omega_1}$ of countable elementary submodels of $H(\Theta)$ so that

$$X \subset \bigcup_{\alpha < \omega_1} M_{\alpha}.$$

<u>Serious limitation</u>: no set of size $> \aleph_1$ can be covered by an increasing sequence of countable models.

For any set $X \in H(\Theta)$ of size \aleph_1 , there is a (continuous) increasing chain $(M_{\alpha})_{\alpha < \omega_1}$ of countable elementary submodels of $H(\Theta)$ so that

$$X\subset \bigcup_{\alpha<\omega_1}M_\alpha.$$

<u>Serious limitation</u>: no set of size $> \aleph_1$ can be covered by an increasing sequence of countable models.

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0,a_1,a_2\in\mathbb{R}^2,$

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define F on $\mathcal L$ so that $F(\ell)\subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 .

• let \mathcal{L}_{α} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{α} ,

• list \mathcal{L}_{α} as $\{\ell_{\alpha j} : j < \omega\}$, and let

 $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}.$

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0, a_1, a_2 \in \mathbb{R}^2$,

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define ${\mathcal F}$ on ${\mathcal L}$ so that ${\mathcal F}(\ell)\subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 .

• let \mathcal{L}_{α} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{α} ,

• list \mathcal{L}_{α} as $\{\ell_{\alpha j} : j < \omega\}$, and let

 $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}.$

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0, a_1, a_2 \in \mathbb{R}^2$,

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define ${\mathcal F}$ on ${\mathcal L}$ so that ${\mathcal F}(\ell)\subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 .

• let \mathcal{L}_{α} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{α} ,

• list \mathcal{L}_{α} as $\{\ell_{\alpha j} : j < \omega\}$, and let

 $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}.$

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0, a_1, a_2 \in \mathbb{R}^2$,

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define F on \mathcal{L} so that $F(\ell) \subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 .

• let \mathcal{L}_{α} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{α} ,

• list \mathcal{L}_{α} as $\{\ell_{\alpha j} : j < \omega\}$, and let

 $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}.$

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0, a_1, a_2 \in \mathbb{R}^2$,

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define F on \mathcal{L} so that $F(\ell) \subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 .

• let \mathcal{L}_{α} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{α} ,

• list \mathcal{L}_{α} as $\{\ell_{\alpha j} : j < \omega\}$, and let

 $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}.$

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0, a_1, a_2 \in \mathbb{R}^2$,

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define F on \mathcal{L} so that $F(\ell) \subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 . • let \mathcal{L}_{α} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{α} ,

• list \mathcal{L}_{α} as $\{\ell_{\alpha j} : j < \omega\}$, and let

 $F(\ell_{\alpha j}) = \bigcup \{ \ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{ \ell_{\alpha i} : i < j \} \}.$

CH implies that \mathbb{R}^2 is the union of three clouds.

Fix any three non-collinear points $a_0, a_1, a_2 \in \mathbb{R}^2$,

• let \mathcal{L}^k denote the lines through a_k , $\mathcal{L} = \bigcup \mathcal{L}^k$, \mathcal{L}' the three lines determined by pairs of $\{a_k\}$.

We define F on \mathcal{L} so that $F(\ell) \subset \ell$ is finite and let

 $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

CH $(M_{\alpha})_{\alpha < \omega_1}$ covers \mathbb{R}^2 and \mathcal{L} , and all models contain a_0, a_1, a_2 .

• let \mathcal{L}_{lpha} those $\ell \in \mathcal{L} \setminus \mathcal{L}'$ that appear first in M_{lpha} ,

• list \mathcal{L}_{lpha} as $\{\ell_{lpha j}: j < \omega\}$, and let

$$F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}.$$

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

there is α so that x appears in M_α first, x ∈ ∪L' is the easy case so suppose x ∉ L'.

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

- otherwise x appears as the intersection,
- (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

 $\begin{array}{l} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{array}$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

there is α so that x appears in M_α first, x ∈ ∪L' is the easy case so suppose x ∉ L'.

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

otherwise x appears as the intersection,

• (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}_1^1$ now).

Dániel T. Soukup (KGRC)

 $\begin{array}{l} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{array}$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

there is α so that x appears in M_α first, x ∈ ∪L' is the easy case so suppose x ∉ L'.

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

otherwise x appears as the intersection,

• (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Dániel T. Soukup (KGRC)

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

there is α so that x appears in M_α first, x ∈ ∪L' is the easy case so suppose x ∉ L',

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

- otherwise x appears as the intersection,
- (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

• there is α so that x appears in M_{α} first, $x \in \cup \mathcal{L}'$ is the easy case so suppose $x \notin \mathcal{L}'$,

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

otherwise x appears as the intersection,

• (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Dániel T. Soukup (KGRC)

 $\begin{array}{l} \mathcal{L}_{\alpha} \text{ those lines } \overline{\ell \in \mathcal{L} \setminus \mathcal{L}'} \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{array}$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

there is α so that x appears in M_α first, x ∈ ∪L' is the easy case so suppose x ∉ L',

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

- otherwise x appears as the intersection,
- (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Dániel T. Soukup (KGRC)

 $\begin{array}{l} \mathcal{L}_{\alpha} \text{ those lines } \overline{\ell \in \mathcal{L} \setminus \mathcal{L}'} \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{array}$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

there is α so that x appears in M_α first, x ∈ ∪L' is the easy case so suppose x ∉ L',

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

otherwise x appears as the intersection,

• (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

• there is α so that x appears in M_{α} first, $x \in \bigcup \mathcal{L}'$ is the easy case so suppose $x \notin \mathcal{L}'$,

at most one of the three lines $\ell[x, a_0], \ell[x, a_1], \ell[x, a_2] \in M_{\alpha}$ appear in previous models

- otherwise x appears as the intersection,
- (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,
- $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}_1^1$ now).

 $\begin{array}{l} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{array}$

Why does A_0, A_1, A_2 cover? Take some $x \in \mathbb{R}^2$.

• there is α so that x appears in M_{α} first, $x \in \bigcup \mathcal{L}'$ is the easy case so suppose $x \notin \mathcal{L}'$,

at most one of the three lines $\ell[x,a_0],\ell[x,a_1],$ $\ell[x,a_2]\in M_{lpha}$ appear in previous models

- otherwise x appears as the intersection,
- (wlog) $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1]$,

• $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ so covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{lpha} \rangle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_α is uncountable, write it as a continuous increasing ⟨M_{αβ}⟩_{β<λ} so that |M_{αβ}| < |M_α| = λ;

repeat until all terminal models are countable.

- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_α is uncountable, write it as a continuous increasing ⟨M_{αβ}⟩_{β<λ} so that |M_{αβ}| < |M_α| = λ;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

Paris, May 2018

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

• write M_{\emptyset} as a continuous increasing $\langle M_{lpha}
angle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;

 if M_α is uncountable, write it as a continuous increasing ⟨M_{αβ}⟩_{β<λ} so that |M_{αβ}| < |M_α| = λ;

• repeat until all terminal models are countable.

- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{lpha} \rangle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;

repeat until all terminal models are countable.

- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{lpha} \rangle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

Davies-trees in infinite combinatorics

[Davies, 1963] Take any set of size $\mathfrak c$ and cover with M_{\emptyset} of size $\mathfrak c.$

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
 <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

Paris, May 2018

12 / 21

Davies-trees in infinite combinatorics
[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{lpha} \rangle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

Davies-trees in infinite combinatorics

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{lpha} \rangle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{lpha} \rangle_{lpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size \mathfrak{c} and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

[Davies, 1963] Take any set of size c and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda;$
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

Suppose that *κ* is cardinal, *x* is a set. Then there is *κ* << *θ* and a sequence ⟨*M*_α : *α* < *κ*⟩ of elementary submodels of *H*(*θ*) so that
(1) |*M*_α| = *ω* and *x* ∈ *M*_α for all *α* < *κ*.

(11) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(111) for every $eta < \kappa$ there is $m_eta \in \mathbb{N}$ and models $N_{eta j} \prec H(heta)$ such that $x \in N_{eta j}$ for $j < m_eta$ and

$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Suppose that κ is cardinal, x is a set. Then there is κ << θ and a sequence ⟨M_α : α < κ⟩ of elementary submodels of H(θ) so that
(1) |M_α| = ω and x ∈ M_α for all α < κ,
(11) κ ⊂ ⋃_{α<κ} M_α, and
(11) for every β < κ there is m_β ∈ N and models N_{β,j} ≺ H(θ) such that x ∈ N_{β,j} for j < m_β and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(11) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(11) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(111) for every $eta < \kappa$ there is $m_eta \in \mathbb{N}$ and models $N_{eta,j} \prec H(heta)$ such that $x \in N_{eta,j}$ for $j < m_eta$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(11) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(111) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Dániel T. Soukup (KGRC)

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ of elementary submodels of $H(\theta)$ so that

(1)
$$|M_{\alpha}| = \omega$$
 and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

[countable models with all the parameters]

(11)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and

(111) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$, **[countable models with all the parameters]** (11) $\kappa \subset \bigcup_{\alpha \ll \kappa} M_{\alpha}$, and **[cover** κ] (11) for every $\beta \ll \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j \ll m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Dániel T. Soukup (KGRC)

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

[countable models with all the parameters]

(II)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and [cover κ]

(111) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

[initial segments are finite unions of models]

We call $\langle M_lpha:lpha<\kappa
angle$ a Davies-tree for κ over x.

Dániel T. Soukup (KGRC)

Paris, May 2018 13 / 21

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

[countable models with all the parameters]

(II)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and [cover κ]

(111) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

[initial segments are finite unions of models]

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

$$\begin{split} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{split}$$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

• $M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$ and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a Davies-tree $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

$$\begin{split} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{split}$$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

• $M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$ and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

$$\begin{split} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) &= \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k &= \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{split}$$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x, a_0], \ldots, \ell[x, a_{n+1}] \in M_{\alpha}$ could appear in previous models

• $M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$ and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

• $M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$ and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_{k} = \{a_{k}\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^{k}\}.$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x **appears in** M_{α} **first**, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x, a_0], \ldots, \ell[x, a_{n+1}] \in M_{\alpha}$ could appear in previous models

• $M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$ and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

$$\begin{split} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) &= \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k &= \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{split}$$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x, a_0], \ldots, \ell[x, a_{n+1}] \in M_{lpha}$ could appear in previous models

•
$$M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$$
 and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

• $M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$ and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then

 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

$$\begin{split} \mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha}, \\ F(\ell_{\alpha j}) &= \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\}, \\ A_k &= \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}. \end{split}$$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

•
$$M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$$
 and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then
 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1],$ $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

•
$$M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$$
 and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then
 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1],$ $\{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

Take n + 2 points a_0, \ldots, a_{n+1} in general position, and a **Davies-tree** $(M_\alpha)_{\alpha < c}$ covering \mathbb{R}^2 and \mathcal{L} , containing the points a_k , and so that

 $M_{<\alpha}$ is the union of $\leq n$ elementary submodels.

 $\mathcal{L}_{\alpha} \text{ those lines } \ell \in \mathcal{L} \setminus \mathcal{L}' \text{ that appear first in } M_{\alpha},$ $F(\ell_{\alpha j}) = \bigcup \{\ell \cap \ell_{\alpha j} : \ell \in \mathcal{L}' \cup \{\ell_{\alpha i} : i < j\}\},$ $A_k = \{a_k\} \cup \bigcup \{F(\ell) : \ell \in \mathcal{L}^k\}.$

Any $x \in \mathbb{R}^2$ is covered by A_0, \ldots, A_{n+1} .

• there is α so that x appears in M_{α} first, we suppose $x \notin \mathcal{L}'$,

at most n of the n+2 lines $\ell[x,a_0],\ldots,\ell[x,a_{n+1}]\in M_lpha$ could appear in previous models

•
$$M_{<\alpha} = \bigcup_{k < n} N_{\alpha k}$$
 and if $\ell[x, a_i], \ell[x, a_j] \in N_{\alpha k}$ then
 $\{x\} = \ell[x, a_i] \cap \ell[x, a_j] \subset N_{\alpha k} \subset M_{<\alpha}$

• $\ell[x, a_0], \ell[x, a_1] \in \mathcal{L}_{\alpha}$ and there is i < j such that $\ell_{\alpha i} = \ell[x, a_0]$ and $\ell_{\alpha j} = \ell[x, a_1], \{x\} = \ell_{\alpha i} \cap \ell_{\alpha j} \subset F(\ell_{\alpha j})$ covered by A_1 (as $\ell_{\alpha j} \in \mathcal{L}^1$ now).

M is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.

• there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

• they can cover larger spaces and the models can talk about countably infinite subsets,

• <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

M is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.

• there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

 they can cover larger spaces and the models can talk about countably infinite subsets,

• <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

M is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.

• there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

 they can cover larger spaces and the models can talk about countably infinite subsets,

• <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

• they can cover larger spaces and the models can talk about countably infinite subsets,

• <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?
- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - there are countably closed $M \prec H(\theta)$ of size \mathfrak{c} ;

How are these models helpful?

- they can cover larger spaces and the models can talk about countably infinite subsets,
- <u>limitation</u>: increasing chains of models of size \mathfrak{c} can only cover \mathfrak{c}^+ .

Can we make Davies-trees from countably closed models of size c?

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II)
$$[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

- (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and
- (III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{ M_{\alpha} : \alpha < \beta \} = \bigcup \{ N_{\beta,j} : j < \omega \}.$$

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(111) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}, |M_{\alpha}| = \mathfrak{c}$$
 and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(111) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}, |M_{\alpha}| = \mathfrak{c}$$
 and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II)
$$[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and

(111) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

16 / 21

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t. (I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t. (I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

Dániel T. Soukup (KGRC) Davies-trees in infinite combinatorics

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t. (1) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (11) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (111) $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

17 / 21

[DS, LS] There are high Davies-tree for any uncountable $\kappa < \mathfrak{c}^{+\omega}$, e.g. for $\kappa = \aleph_n$ if $n < \omega$.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t. (I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ for some

 $\begin{array}{ll} \text{III}) & M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\} \text{ for some} \\ \text{c.c. } x \in N_{\alpha,j} \prec H(\theta). \end{array}$

17 / 21

[DS, LS] There are high Davies-tree for any uncountable $\kappa < \mathfrak{c}^{+\omega}$, e.g. for $\kappa = \aleph_n$ if $n < \omega$.

Theorem [DS, LS]

There are high Davies-tree for any uncountable κ if V = L.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t. (I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{\alpha} = \bigcup \{N_{\alpha} : i \leq \omega\}$ for some

(III) $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

[DS, LS] There are high Davies-tree for any uncountable $\kappa < \mathfrak{c}^{+\omega}$, e.g. for $\kappa = \aleph_n$ if $n < \omega$.

Theorem [DS, LS]

There are high Davies-tree for any uncountable κ if V = L.

Remark: no high Davies-trees for $\kappa \geq \aleph_{\omega}$ if $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$.

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{lpha}
angle_{lpha < \kappa}$ is the high Davies-tree for κ over X,

- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if C ⊆ X is Cantor then C ∈ M_{<α} for some α < κ,
 there is a countable D ⊆ X so that cl_X(D) = C.
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if C ⊆ X is Cantor then C ∈ M_{<α} for some α < κ,
 there is a countable D ⊆ X so that cl_X(D) = C.
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $\operatorname{cl}_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $\operatorname{cl}_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $\operatorname{cl}_X(D) = C \in M_{<\alpha}$ for some lpha.

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

• we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,

note that if C ⊆ X is Cantor then C ∈ M_{<α} for some α < κ,
 there is a countable D ⊆ X so that cl_X(D) = C.

• $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $\operatorname{cl}_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{lpha}:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if C ⊆ X is Cantor then C ∈ M_{<α} for some α < κ,
 there is a countable D ⊆ X so that cl_X(D) = C.
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $\operatorname{cl}_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{lpha}:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,

• $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_lpha:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,

• $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_lpha:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_lpha:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Goal: given $f_{lpha}: X_{<lpha} o \mathfrak{c}$ extend to $f_{lpha+1}: X_{<lpha+1} o \mathfrak{c}$ so that $f_{lpha+1}[C] = \mathfrak{c}$ for all $C \in M_{<lpha+1}$.

Maybe we colored some $C\in M_lpha\setminus M_{<lpha}$ by accident already?

 $|C \cap X_{\leq \alpha}| \leq \omega$ or $f_{\alpha}[C \cap X_{\leq \alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_{\alpha}: X_{\leq \alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{\leq \alpha+1} \to \mathfrak{c}$ so that $X_{\leq \alpha} = X \cap M_{\leq \alpha}$ • $M_{<\alpha} = \bigcup \{ N_{\alpha,i} : j < \omega \}$ so • pick ctble dense $D \subset C \cap N_{\alpha,i_1}$ • $C^* = \operatorname{cl}_X(D) \in N_{\alpha,i} \subseteq M_{\leq \alpha}$

 $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}]$

Paris, May 2018

Х

Goal: given $f_{lpha}:X_{<lpha} ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1} ightarrow\mathfrak{c}$ so that

$f_{lpha+1}[\mathcal{C}]=\mathfrak{c}$ for all $\mathcal{C}\in M_{<lpha+1}.$

Maybe we colored some $C\in M_lpha\setminus M_{<lpha}$ by accident already?

 $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given
$$f_{\alpha} : X_{<\alpha} \to \mathfrak{c}$$
 extend to $f_{\alpha+1} : X_{<\alpha+1} \to \mathfrak{c}$ so that
 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{<\alpha+1}$.
Maybe we colored some
 $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already?
 $|C \cap X_{<\alpha}| \le \omega$ or
 $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}$.
• $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ so
 $|C \cap N_{\alpha,j}| > \omega$ for some j ,
• pick ctble dense $D \subset C \cap N_{\alpha,j}$,
so $D \in N_{\alpha,j}$ too.
• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$
and so
 $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}]$.

Paris, May 2018 19 / 21

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{\leq \alpha}$. Х $X \cap M_{\alpha}$ $X_{<\alpha} = X \cap M_{<\alpha}$ • $M_{<\alpha} = \bigcup \{ N_{\alpha,i} : j < \omega \}$ so • pick ctble dense $D \subset C \cap N_{\alpha,i_1}$ • $C^* = \operatorname{cl}_X(D) \in N_{\alpha,i} \subseteq M_{\leq \alpha}$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $\mathcal{C} \in \mathcal{M}_{lpha} \setminus \mathcal{M}_{<lpha}$ by accident already?

 $|C \cap X_{<lpha}| \le \omega$ or $f_{lpha}[C \cap X_{<lpha}] = \mathfrak{c}.$

• $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,

pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_{lpha}:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

• $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,

pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Paris, May 2018
Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

•
$$C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$$

and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}]$

Paris, May 2018

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

•
$$C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$$

and so
 $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Goal: given $f_{lpha}:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick $y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

Paris, May 2018

Goal: given $f_{lpha}:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick $y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

$$f_{\alpha+1}[C] = \mathfrak{c}$$
 for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick
$$y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

Goal: given $f_lpha:X_{<lpha}
ightarrow\mathfrak{c}$ extend to $f_{lpha+1}:X_{<lpha+1}
ightarrow\mathfrak{c}$ so that

$$f_{\alpha+1}[C] = \mathfrak{c}$$
 for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick
$$y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$$

Х

20 / 21

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

(V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

[A. Miller 1989] (V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

[A. Miller 1989] (V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

- (V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .
 - [Sierpinski] Is there a Borel 2-point set?
 - It can never be F_{σ} , but how about G_{δ} ?

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

(V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

[Gardner, Mauldin 1988] (CH) For $n \ge 3$, there is a bijection $f : \mathbb{R}^n \to \mathbb{R}^n$ which maps each circle onto a countable union of line segments.

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

(V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

[Gardner, Mauldin 1988] (CH) For $n \ge 3$, there is a bijection $f : \mathbb{R}^n \to \mathbb{R}^n$ which maps each circle onto a countable union of line segments.

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

(V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

(V=L) There is a co-analytic 2-point set in \mathbb{R}^2 .

- [Sierpinski] Is there a Borel 2-point set?
- It can never be F_{σ} , but how about G_{δ} ?

[Gardner, Mauldin 1988] (CH) For $n \ge 3$, there is a bijection $f : \mathbb{R}^n \to \mathbb{R}^n$ which maps each circle onto a countable union of line segments.

- Is CH necessary?
- How about finite unions?
- Is this possible for n = 2?

