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Introduction

We explore a general construction scheme based on elementary

submodels, to build arbitrary large structures by piecing together small
local approximations.

o paradoxical sets and decompositions of the plane, and
@ Bernstein-decompositions of arbitrary topological spaces.
Based on
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]

a joint paper with L. Soukup, to appear in the Journal of Symb. Logic.
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Motivations - paradoxical covers

CH is the statement that ¢ = [R| = N;.

[Sierpinski 1919]
CH holds iff R2 = Sy U S; so that

@ Sy has countable vertical segments, and

@ 5; has countable horizontal segments.

A C R? is a cloud if there is some a € R? so that £ A is finite for any
line ¢ through a. Note that two clouds cannot cover R?.

[Komjath, Schmerl 2001/2003] CH iff R? is covered by three clouds,

¢ <R, iff R?is covered by n+ 2 clouds.
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Motivations - paradoxical sets

[Mazurkiewicz 1914] There is a set in R? that meets each line in exactly
two points.

@ build by an induction of length ¢,
@ a partial 2-point set (of size < ¢) can be extended to meet a
given line in exactly two points.
[Jackson, Mauldin 2002] There is a set in R? that meets each isometric
copy of Z? in exactly one point.
o there are finite partial Steinhaus sets which cannot be extended,

@ the proof combines elementary number theory and mechanics to solve
a countable approximation of the problem,

o to lift the countable case and piece together a full Steinhaus set a
‘transﬁnite induction using elementary submodels‘ :
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Motivations - more paradoxical covers

We say Xy U X is a Bernstein-decomposition of a space X if there are
no copies of the Cantor set in either Xg or Xj.

[Bernstein 1908] Any topological space of size < ¢ admits a
Bernstein-decomposition.

@ X has < c-many Cantor subspaces, go through them by an induction of length ¢,

@ a partial Berstein decomposition of size < ¢ can be extended so that both parts
will meet a given Cantor set.

[W. Weiss 1980] If V = L then any T space has
a Bernstein-decomposition.

[Shelah 2004] Using a supercompact, consistently there is a 0-dim, T,
space X of size N, 11 without Bernstein-decomposition.
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@ M C H(©) is an elementary submodel if for any first-order formula

¢ with parameters in M, H(©) = ¢ if and only if M |= ¢ .
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@ M C H(©) is an elementary submodel if for any first-order formula

¢ with parameters in M, H(©) = ¢ if and only if M |= ¢ .
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Elementary submodels - the basics

QO M is closed under operations defined using parameters in M,
© if M is countable, A € M then either A C M or A is uncountable. J

@ w is an element and subset of M,
e H(O) E|A <Npso H(O) E3f 1w — A,
@ M E3f:w— A, so thereis f € M such that f : w — A,
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Elementary submodels - the basics

QO M is closed under operations defined using parameters in M, J

© if M is countable, A € M then either A C M or A is uncountable.

@ w is an element and subset of M,
e H(O) E|A <Npso H(O) E3f 1w — A,
@ M E3f:w— A, so thereis f € M such that f : w — A,

@ w C M so for each n € w, f(n) € M as well; so A =ran(f) C M.
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if M is countable, A € M then either A C M or A is uncountable.

If Ais an uncountable family of finite sets then there is a finite set r and
uncountable B C A so that a # b € B implies that r = an b.

@ take a countable elementary M < H(©) such that A € M;
@ there is some a € A\ M because A is uncountable, let r = an M;

o takeamaximal BC A, Be M, rCbif be B and
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Elementary submodels - a simple application

M is closed under operations defined using parameters in M,
if M is countable, A € M then either A C M or A is uncountable.

If Ais an uncountable family of finite sets then there is a finite set r and
uncountable B C A so that a # b € B implies that r = an b.

@ take a countable elementary M < H(©) such that A € M;
@ there is some a € A\ M because A is uncountable, let r = an M;

o takeamaximal BC A, Be M, rCbif be B and
{b\ r: be B} is pairwise disjoint;

@ B is uncountable, otherwise B C M but then
B U {a} is a strictly larger set with the above properties.
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A standard trick in infinite combinatorics is to use filtrations:
an increasing chain of small elementary submodels to cover a large set.

For any set X € H(©) of size Xy, there is a (continuous) increasing chain
(My)a<w, of countable elementary submodels of H(©) so that
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Chains of countable elementary submodels

A standard trick in infinite combinatorics is to use filtrations:
an increasing chain of small elementary submodels to cover a large set.

For any set X € H(©) of size Xy, there is a (continuous) increasing chain
(My)a<w, of countable elementary submodels of H(©) so that

xc |J m..

a<wi

Serious limitation: no set of size > W; can be covered by an increasing
sequence of countable models.
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@ let £¥ denote the lines through ayx, £ = ULK, £’ the three lines
determined by pairs of {a,}.
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@ let £¥ denote the lines through ayx, £ = ULK, £’ the three lines
determined by pairs of {a,}.

We define F on L so that F(¢) C £ is finite and let
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Fix any three non-collinear points ag, a1, a» € R?,

@ let £¥ denote the lines through ayx, £ = ULK, £’ the three lines
determined by pairs of {a,}.

We define F on L so that F(¢) C £ is finite and let

Ac={at U J{F(0) - 0 € £F}.

(My)a<w, covers R? and £, and all models contain ap, a1, a>.
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People always talk about the weather

CH implies that R? is the union of three clouds.

Fix any three non-collinear points ag, a1, a» € R?,

@ let £¥ denote the lines through ayx, £ = ULK, £’ the three lines
determined by pairs of {a,}.

We define F on L so that F(¢) C £ is finite and let
Ac={at U J{F(0) - 0 € £F}.

(My)a<w, covers R? and £, and all models contain ap, a1, a>.
o let £, those ¢ € £\ L' that appear first in M,,

o list Ly as {lyj:j < w}, and let

Floj) = J{€ntoj: € LU {lai i < j}}.

Daniel T. Soukup (KGRC) Davies-trees in infinite combinatorics Paris, May 2018



Covering by three clouds - proof continued

L, those lines ¢ € £\ L' that appear first in M,,
F(Eaj) = U{Eﬂfaj lel'u {Ka,- o <j}},
A ={ary UU{F(0) : £ € LY.
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Covering by three clouds - proof continued

L, those lines ¢ € £\ L' that appear first in M,,
F(Eaj) = U{Eﬂfaj lel'u {Ka,- o <j}},
A ={ary UU{F(0) : £ € LY.

Why does Ap, A1, Ay cover?
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F(Eaj) = U{Eﬂfaj lel'u {Ka,- o <j}},
A ={ary UU{F(0) : £ € LY.

Why does Ay, A;, A, cover? Take some x € R

@ there is o so that x appears in M, first, x € UL’ is the easy case so
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L, those lines ¢ € £\ L' that appear first in M,,
F(Eaj) = U{Eﬂfaj lel'u {Ka,- o <j}},
A ={ary UU{F(0) : £ € LY.

Why does Ay, A;, A, cover? Take some x € R

@ there is o so that x appears in M, first, x € UL’ is the easy case so
suppose x ¢ L/,

at most one of the three lines ¢[x, ag], ¢[x, a1],
l[x, a2] € M,, appear in previous models
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L, those lines ¢ € £\ L' that appear first in M,,
F(Eaj) = U{Eﬂfaj lel'u {Ka,- o <j}},
A ={ary UU{F(0) : £ € LY.

Why does Ay, A;, A, cover? Take some x € R

@ there is o so that x appears in M, first, x € UL’ is the easy case so
suppose x ¢ L/,

at most one of the three lines ¢[x, ag], ¢[x, a1],
l[x, a2] € M,, appear in previous models

@ otherwise x appears as the intersection,

o (wlog) ¢[x, ap), ¢[x, a1] € L, and there is i < j such that ¢,; = {[x, ao]
and loj = l[x, a1],
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Covering by three clouds - proof continued

L, those lines ¢ € £\ L' that appear first in M,,
F(Eaj) = U{Eﬂfaj lel'u {Ka,- o <j}},
A ={ary UU{F(0) : £ € LY.

Why does Ay, A;, A, cover? Take some x € R

@ there is o so that x appears in M, first, x € UL’ is the easy case so
suppose x ¢ L/,

at most one of the three lines ¢[x, ag], ¢[x, a1],
l[x, a2] € M,, appear in previous models

@ otherwise x appears as the intersection,

o (wlog) ¢[x, ap), ¢[x, a1] € L, and there is i < j such that ¢,; = {[x, ao]
and loj = l[x, a1],

o {x} = /(4N Ly C F(ly;) so covered by A; (as £, € L now).
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Davies' idea - what can we do without CH?

[Davies, 1963] Take any set of size ¢ and cover with My of size c.

@ write My as a continuous increasing (M,)q<. €ach of size < ¢ = |[Mp;

@ if M, is uncountable, write it as a continuous increasing (M,3)3< so
that |[Mug| < [Mo| = X;

@ repeat until all terminal models are countable.

@ we have a tree indexed by ’ R

finite sequences of ordinals, if ¢ <N, then PR ——
height < n L

@ <jex Well orders the terminal
nodes,

U{Ms : s <jex t terminal} =
the union of |t|-many el. subm.
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Suppose that « is cardinal, x is a set. Then there is Kk << 6 and a
sequence (M, : a < k) of elementary submodels of H(6) so that

() IMy| =w and x € M,, for all a < &,

() & CUyer Ma, and

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
x € Ngj for j < mg and

M<5: U{MO‘ Ta< 5}: U{N/37j j< mﬁ}.
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Suppose that « is cardinal, x is a set. Then there is Kk << 6 and a
sequence (M, : a < k) of elementary submodels of H(6) so that

() IMy| =w and x € M,, for all a < &,
[countable models with all the parameters]

() & CUyer Ma, and
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sequence (M, : a < k) of elementary submodels of H(6) so that

() IMy| =w and x € M,, for all a < &,
[countable models with all the parameters]

() & CUyer Ma, and [cover k]

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
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M<5: U{MO‘ Ta< 6}: U{Nﬁd. j< mﬁ}.

Daniel T. Soukup (KGRC) Davies-trees in infinite combinatorics Paris, May 2018 13 /21



Davies-trees in general

Theorem [Davies, Milovich]

Suppose that & is cardinal, x is a set. Then there is Kk << # and a
sequence (M, : a < k) of elementary submodels of H(6) so that

() IMy| =w and x € M,, for all a < &,
[countable models with all the parameters]

() & C Uger Ma, and [cover k]

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
x € Ngj for j < mg and

M<5: U{Ma o< ,3}: U{NBJ < mﬂ}.

[initial segments are finite unions of models]
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Davies-trees in general

Theorem [Davies, Milovich]

Suppose that & is cardinal, x is a set. Then there is Kk << # and a
sequence (M, : a < k) of elementary submodels of H(6) so that
() IMy| =w and x € M,, for all a < &,

[countable models with all the parameters]

() & C Uger Ma, and [cover k]

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
x € Ngj for j < mg and

M<5: U{Ma o< ,3}: U{NBJ < mﬂ}.

[initial segments are finite unions of models]

We call (M, : @ < k) a Davies-tree for ~ over x.
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¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that
M, is the union of < n elementary submodels.
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R? and £, containing the points ax, and so that
M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Daniel T. Soukup (KGRC) Davies-trees in infinite combinatorics Paris, May 2018 14 / 21



¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that

M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Any x € R? is covered by Ao, ..., Ani1.

Daniel T. Soukup (KGRC)

Davies-trees in infinite combinatorics

Paris, May 2018 14 / 21



¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that

M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Any x € R? is covered by Ao, ..., Ani1.
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¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that

M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Any x € R? is covered by Ao, ..., Ani1.

@ there is « so that x appears in M, first, we suppose x ¢ L,

at most n of the n + 2 lines {[x, ao], ..., £[x, an+1] € Ma
could appear in previous models
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¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that

M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Any x € R? is covered by Ao, ..., Ani1.

@ there is « so that x appears in M, first, we suppose x ¢ L,

at most n of the n + 2 lines {[x, ao], ..., £[x, an+1] € Ma
could appear in previous models

@ Mco = Uy, Nak and if £[x; aj], £[x, aj] € Nox then

{x} =[x, a] N L[x, aj] C Nak C Mcq
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¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that

M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Any x € R? is covered by Ao, ..., Ani1.

@ there is « so that x appears in M, first, we suppose x ¢ L,

at most n of the n + 2 lines {[x, ao], ..., £[x, an+1] € Ma
could appear in previous models

@ Mco = Uy, Nak and if £[x; aj], £[x, aj] € Nox then
{x} =[x, a] N L[x, aj] C Nak C Mcq

@ /[x, a0], £[x, a1] € L« and there is i < j such that £; = {[x, a0] and £o; = £[x, a1],
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¢ < N, implies there is a cover by n+ 2 clouds

Take n+ 2 points ao, . . ., an+1 in general position, and a Davies-tree (M, )<, covering
R? and £, containing the points ax, and so that

M, is the union of < n elementary submodels.

L« those lines £ € £\ £’ that appear first in M,
F(loj) =U{lNlaj: L€ L U{lai:i<j}h
Ac={ay UU{F() : £ € £*}.

Any x € R? is covered by Ao, ..., Ani1.

@ there is « so that x appears in M, first, we suppose x ¢ L,

at most n of the n + 2 lines {[x, ao], ..., £[x, an+1] € Ma
could appear in previous models

@ Mco = Uy, Nak and if £[x; aj], £[x, aj] € Nox then
{x} =[x, a] N L[x, aj] C Nak C Mcq

@ /[x, a0], £[x, a1] € L« and there is i < j such that £; = {[x, a0] and £o; = £[x, a1],
{x} = lai N Lla; C F(La;) covered by Ay (as £o; € L1 now).
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Countable models — enumeration in type w,
— deal with finite pieces one at a time.
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Countable models — enumeration in type w,
— deal with finite pieces one at a time.
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@ there are countably closed M < H(#) of size c;
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Countable models — enumeration in type w,
— deal with finite pieces one at a time.

M is countably closed if x C M, |x| < w implies x € M.

@ there are countably closed M < H(#) of size c;

How are these models helpful?
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Countable models — enumeration in type w,
— deal with finite pieces one at a time.

M is countably closed if x C M, |x| < w implies x € M.

@ there are countably closed M < H(#) of size c;

How are these models helpful?

@ they can cover larger spaces and the models can talk about
countably infinite subsets,
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Countably closed models

Countable models — enumeration in type w,
— deal with finite pieces one at a time.

M is countably closed if x C M, |x| < w implies x € M.

@ there are countably closed M < H(#) of size c;

How are these models helpful?

@ they can cover larger spaces and the models can talk about
countably infinite subsets,

@ limitation: increasing chains of models of size ¢ can only cover ¢™.
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Countably closed models

Countable models — enumeration in type w,
— deal with finite pieces one at a time.

M is countably closed if x C M, |x| < w implies x € M.

@ there are countably closed M < H(#) of size c;

How are these models helpful?

@ they can cover larger spaces and the models can talk about
countably infinite subsets,

@ limitation: increasing chains of models of size ¢ can only cover ¢™.

Can we make Davies-trees from countably closed
models of size ¢?
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High Davies-trees

We say that a high Davies-tree for x over x is a sequence (M,, : a < k)
of elementary submodels of H(#) for some large enough regular 6 such that
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High Davies-trees

We say that a high Davies-tree for x over x is a sequence (M,, : a < k)
of elementary submodels of H(#) for some large enough regular 6 such that

(1) [Ma]® € Ma, [My| = ¢ and x € M, forall a < &,
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High Davies-trees
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High Davies-trees

We say that a high Davies-tree for x over x is a sequence (M,, : a < k)
of elementary submodels of H(#) for some large enough regular 6 such that

(1) [Ma]® € Ma, [My| = ¢ and x € M, forall a < &,
(1) []* € Up<), Ma, and

(1) for each 8 < k there are Ngj < H(#) with [Ng ;] C Ng; and
x € Ngj for j < w such that

M g= U{Ma fa < fl= U{NB,J' j <wh.
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High Davies-trees

We say that a high Davies-tree for x over x is a sequence (M,, : a < k)
of elementary submodels of H(#) for some large enough regular 6 such that

(1) [Ma]® € Ma, [My| = ¢ and x € M, forall a < &,

(”) [H]W C UO&</€ MU“ and

(1) for each 8 < k there are Ngj < H(#) with [Ng ;] C Ng; and
x € Ngj for j < w such that

M g= U{Ma fa < fl= U{NB,J' j <wh.

Note that k“ = & if there is a high Davies-tree for .
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Existence of high Davies-trees

A high Davies-tree for x over x
is a sequence (M, : a < k) s.t.
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Existence of high Davies-trees

() x € M, < H() is c.c. of size c,
A high Davies-tree for x over x w
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[DS, LS] There are high Davies-tree for any uncountable k < ¢t*,
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() x € M, < H() is c.c. of size c,
(1) [£]” € Uger Ma, and

(M) Meq =U{Na,:j < w} for some
c.c. x € Ny j < H(0).

A high Davies-tree for x over x
is a sequence (M, : a < k) s.t.

[DS, LS] There are high Davies-tree for any uncountable k < ¢t*,
e.g. for vk =N, if n < w.

Theorem [DS, LS]
There are high Davies-tree for any uncountable « if V = L.

Remark: no high Davies-trees for k > N, if (R,41,R,) — (R, Ro).
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Suppose that X is a Hausdorff top. space of size k.

If there is a high Davies-tree for x over X, J

then X has a Bernstein-decomposition.

@ suppose that (M, )< is the high Davies-tree for x over X,

o we define f, : X — ¢ where X, = XN M.,

@ note that if C C X is Cantor then C € M., for some a < &,
@ there is a countable D C X so that clx(D) = C,
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size k.

If there is a high Davies-tree for x over X, J

then X has a Bernstein-decomposition.

@ suppose that (M, )< is the high Davies-tree for x over X,

o we define f, : X — ¢ where X, = XN M.,

@ note that if C C X is Cantor then C € M., for some a < &,
@ there is a countable D C X so that clx(D) = C,

o De [X]¥ C My, s0oD e M, and clx(D) = C € M, for some a.

@ we make sure that
‘if CC X, Ce M., and Cis Cantor then f,[C] = c.‘
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xcq — ¢ extend to fuy1 @ Xcqi1 — € so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Mco =U{Noj:j<w} so
|C N Ny j| > w for some j,

@ pick ctble dense D C C N N, j,
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xcq — ¢ extend to fuy1 @ Xcqi1 — € so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Mco =U{Noj:j<w} so
|C N Ny j| > w for some j,

@ pick ctble dense D C C N N, j, .
so D € N, too. o (" =clx(D) € Noj € Mcq
and so

¢ = £,[C*] C £[C N Xeal.
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Goal: given f, : X.o, — ¢ extend to fo41 1 Xcot+1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some
C € M, \ M., by accident already?

|C N Xeq| <w or
fa[C N Xen] = c.

Let {Ce: & <} list Ce My \ Mg
s.t. |CN Xyl <w, each ¢ times.

Pick ye € Ce \ (X<a U {yc : ¢ < &}).
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Bernstein-decompositions from high Davies-trees

Goal: given f, : X.o, — ¢ extend to fo41 1 Xcot+1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? X N M,
X<oz =XN M<oz

|C N Xeq| <w or
fa[C N Xen] = c.

Let {Ce: & <} list Ce My \ Mg
s.t. |CN Xyl <w, each ¢ times.

Pick ye € Ce \ (Xca U{yc: ¢ < &}).
Ye € Ce \ (Xca U {ye ) Let fop1(ye) = v if Ce is the vth-time

we see C¢. O
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Some open problems

[A. Miller 1989]
(V=L) There is a co-analytic 2-point set in R2.

o [Sierpinski] Is there a Borel 2-point set?

@ |t can never be F,, but how about Gs?

[Gardner, Mauldin 1988] (CH) For n > 3, there is a bijection
f :R" — R"” which maps each circle onto a countable union of line
segments.

@ Is CH necessary?

@ How about finite unions?

@ Is this possible for n = 27
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