Strongly surjective linear orders

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

 $K \hookrightarrow L$ if and only if $L \twoheadrightarrow K$.

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.

 $K \hookrightarrow L$ if and only if $L \twoheadrightarrow K$.

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.

 $K \hookrightarrow L$ if and only if $L \twoheadrightarrow K$.

[R. Camerlo, R. Carroy and A. Marcone]

disclaimer and introduction;

- various consistency results;
- is there an example in ZFC?
- open problems along the way.

 $K \hookrightarrow L$ if and only if $L \twoheadrightarrow K$.

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.

 $K \hookrightarrow L$ if and only if $L \twoheadrightarrow K$.

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.

 $K \hookrightarrow L$ if and only if $L \twoheadrightarrow K$.

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** l.o. without endpoints.
- How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- suborders of \mathbb{R} , or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** I.o. without endpoints.
- How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- suborders of \mathbb{R} , or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** I.o. without endpoints.
- How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- \bullet suborders of $\mathbb R,$ or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** I.o. without endpoints.
- How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- \bullet suborders of $\mathbb R,$ or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** I.o. without endpoints.

How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- \bullet suborders of $\mathbb R,$ or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** I.o. without endpoints.

How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- suborders of \mathbb{R} , or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** l.o. without endpoints.

How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- suborders of \mathbb{R} , or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** l.o. without endpoints.

How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- \bullet suborders of $\mathbb R,$ or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** I.o. without endpoints.

How about uncountable linear orders?

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- ullet suborders of $\mathbb R$, or
- lex. ordered Aronszajn trees.

Among countable linear orders:

- ω and -ω are the only minimal linear orders;
- Q is the **unique dense** l.o. without endpoints.

How about uncountable linear orders?

• ω_1 and $-\omega_1$ are minimal,

L is short if
$$\omega_1, -\omega_1 \not\hookrightarrow L$$

- $\bullet\,$ suborders of $\mathbb R,$ or
- lex. ordered Aronszajn trees.

If $f: L \to K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{\ell_k : k \in K\} \hookrightarrow L$.

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If $f: L \rightarrow K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{\ell_k : k \in K\} \hookrightarrow L$. [CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If $f: L \to K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{\ell_k : k \in K\} \hookrightarrow L$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and $\mathbb Q$ are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If $f: L \to K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{\ell_k : k \in K\} \hookrightarrow L$. [CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If
$$f: L \twoheadrightarrow K$$
 then $L = \sum_{k \in K} f^{-1}(k)$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If
$$f: L \twoheadrightarrow K$$
 then $L = \sum_{k \in K} f^{-1}(k)$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

• $\omega, -\omega$ and $\mathbb Q$ are strongly surjective,

• strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If
$$f: L \twoheadrightarrow K$$
 then $L = \sum_{k \in K} f^{-1}(k)$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

•
$$\omega,-\omega$$
 and ${\mathbb Q}$ are strongly surjective,

• strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

If
$$f: L \twoheadrightarrow K$$
 then $L = \sum_{k \in K} f^{-1}(k)$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

•
$$\omega,-\omega$$
 and $\mathbb Q$ are strongly surjective,

• strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.

Countable strongly surjective linear orders

We say that L is strongly surjective if $L \twoheadrightarrow K$ for any $K \hookrightarrow L$.

[CCM 2015] $\xi \in \text{ORD}$ is strongly surjective iff $\xi = \omega^{\alpha} m$ where $\alpha < \omega_1$ and $m \in \omega$.

[CCM 2016] The set of countable, strongly surjective linear orders is the union of a Π_1^1 -complete set (scattered ones) and \sum_1^1 -complete set (non-scattered ones).

Countable strongly surjective linear orders

We say that L is strongly surjective if $L \twoheadrightarrow K$ for any $K \hookrightarrow L$.

[CCM 2015] $\xi \in \text{ORD}$ is strongly surjective iff $\xi = \omega^{\alpha} m$ where $\alpha < \omega_1$ and $m \in \omega$.

[CCM 2016] The set of countable, strongly surjective linear orders is the union of a Π_1^1 -complete set (scattered ones) and \sum_1^1 -complete set (non-scattered ones).

Countable strongly surjective linear orders

We say that L is strongly surjective if $L \twoheadrightarrow K$ for any $K \hookrightarrow L$.

[CCM 2015] $\xi \in \text{ORD}$ is strongly surjective iff $\xi = \omega^{\alpha} m$ where $\alpha < \omega_1$ and $m \in \omega$.

[CCM 2016] The set of countable, strongly surjective linear orders is the union of a Π_1^1 -complete set (scattered ones) and \sum_1^1 -complete set (non-scattered ones).

 $[Baumgartner 1970] \mathsf{PFA} \rightarrow \mathsf{BA}_{\aleph_1} [Neeman ?] \mathsf{Con}(\mathsf{BA}_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

$[\mathsf{Baumgartner} \ \mathbf{1970}] \ \mathsf{PFA} \to \mathsf{BA}_{\aleph_1} \ [\mathsf{Neeman} \ ?] \ \mathsf{Con}(\mathsf{BA}_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $Con(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $Con(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $Con(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $Con(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, $MA_{\aleph_1} + OCA + ISA$.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $Con(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1 -dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

$\mathsf{MA}_{leph_1} \stackrel{?}{ ightarrow}$ there is an uncountable, strongly surjective $L \subseteq \mathbb{R}$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is L countable?

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is *L* countable?

$$\mathsf{MA}_{\aleph_1} \xrightarrow{?} \mathsf{there} \mathsf{ is an uncountable, strongly surjective } L \subseteq \mathbb{R}$$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is L countable?

(日) (周) (日) (日)

$$\mathsf{MA}_{\aleph_1} \xrightarrow{?} \mathsf{there} \mathsf{ is an uncountable, strongly surjective } L \subseteq \mathbb{R}$$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is *L* countable?

(日) (周) (日) (日)

$$\mathsf{MA}_{leph_1} \xrightarrow{?}$$
 there is an uncountable, strongly surjective $L \subseteq \mathbb{R}$

There is no 2-entangled, strongly surjective linear order.

• 2-entangled implies no minimal suborder, and

• Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is L countable?

(日) (周) (日) (日)

$$\mathsf{MA}_{leph_1} \xrightarrow{?} \mathsf{there} \mathsf{ is an uncountable, strongly surjective } L \subseteq \mathbb{R}$$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is *L* countable?

イロト イポト イヨト イヨト

$$\mathsf{MA}_{\aleph_1} \xrightarrow{?} \mathsf{there} \mathsf{ is an uncountable, strongly surjective } L \subseteq \mathbb{R}$$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- Con(MA_{\aleph_1} + every uncountable $L \subseteq \mathbb{R}$ has a 2-entangled suborder).

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is *L* countable?

・ロト ・ 同ト ・ ヨト ・ ヨ

CH implies $\neg BA_{\aleph_1}$ and there are no minimal suborders of \mathbb{R} .

[CCM 2016] $2^{\aleph_0} < 2^{\kappa} \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ .

Every uncountable, strongly surjective linear order is Aronszajn if (a) $2^{\aleph_0} < 2^{\aleph_1}$, or

) we are in an extension by \mathbb{C}_κ for some $\kappa=cf(\kappa)>\omega_1.$

CH implies $\neg BA_{\aleph_1}$ and there are no minimal suborders of \mathbb{R} .

[CCM 2016] $2^{\aleph_0} < 2^{\kappa} \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ .

Every uncountable, strongly surjective linear order is Aronszajn if $@\ 2^{\aleph_0} < 2^{\aleph_1}, \ {\rm or}$

) we are in an extension by \mathbb{C}_κ for some $\kappa=cf(\kappa)>\omega_1.$

CH implies $\neg BA_{\aleph_1}$ and there are no minimal suborders of \mathbb{R} .

[CCM 2016] $2^{\aleph_0} < 2^{\kappa} \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ .

Every uncountable, strongly surjective linear order is Aronszajn if $\textcircled{0} 2^{\aleph_0} < 2^{\aleph_1}, \mbox{ or }$

) we are in an extension by \mathbb{C}_{κ} for some $\kappa = cf(\kappa) > \omega_1$.

Dániel Soukup (KGRC)

MFO, 2017 February 8 / 14

CH implies $\neg BA_{\aleph_1}$ and there are no minimal suborders of \mathbb{R} .

[CCM 2016] $2^{\aleph_0} < 2^{\kappa} \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ .

Every uncountable, strongly surjective linear order is Aronszajn if $\textcircled{3} 2^{\aleph_0} < 2^{\aleph_1},$ or

) we are in an extension by \mathbb{C}_{κ} for some $\kappa = cf(\kappa) > \omega_1$.

Dániel Soukup (KGRC)

MFO, 2017 February 8 / 14

CH implies $\neg BA_{\aleph_1}$ and there are no minimal suborders of \mathbb{R} .

[CCM 2016]
$$2^{\aleph_0} < 2^{\kappa} \Rightarrow$$
 no strongly surjective $L \subseteq \mathbb{R}$ of size κ .

Every uncountable, strongly surjective linear order is Aronszajn if $\ 2^{\aleph_0} < 2^{\aleph_1}, \ or$

2 we are in an extension by \mathbb{C}_{κ} for some $\kappa = cf(\kappa) > \omega_1$.

Key property [CCM 2016]:

- Baumgartner 1982] the proof is oversimplified (false lemma);
- [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).

Key property [CCM 2016]:

- Baumgartner 1982] the proof is oversimplified (false lemma);
- [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).

Key property [CCM 2016]:

- Baumgartner 1982] the proof is oversimplified (false lemma);
- [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).

Key property [CCM 2016]:

- Baumgartner 1982] the proof is oversimplified (false lemma);
- [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).

Key property [CCM 2016]:

- **1982** [Baumgartner 1982] the proof is oversimplified (false lemma);
- [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).

Key property [CCM 2016]:

- Baumgartner 1982] the proof is oversimplified (false lemma);
- [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).

Are there ZFC examples?

Dániel Soukup (KGRC)

æ

Are there ZFC examples?

Yes.

No.

< 口 > < / P

æ

∃ ⊳

Are there ZFC examples?

Dániel Soukup (KGRC)

Strongly surjective linear orders

MFO, 2017 February

Image: A matrix

10 / 14

3

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable I. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable I. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable I. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable I. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable I. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.

Consistently, are there strongly surjective linear orders of size $> leph_2$?

[ARS 1985] Is it consistent that $\neg BA_{\aleph_1}$ but $A \hookrightarrow B$ or $B \hookrightarrow A$ for any two \aleph_1 -dense $A, B \subseteq \mathbb{R}$?

Consistently, are there strongly surjective linear orders of size $> \aleph_2$?

[ARS 1985] Is it consistent that $\neg BA_{\aleph_1}$ but $A \hookrightarrow B$ or $B \hookrightarrow A$ for any two \aleph_1 -dense $A, B \subseteq \mathbb{R}$?

Consistently, are there strongly surjective linear orders of size $> \aleph_2$?

[ARS 1985] Is it consistent that $\neg BA_{\aleph_1}$ but $A \hookrightarrow B$ or $B \hookrightarrow A$ for any two \aleph_1 -dense $A, B \subseteq \mathbb{R}$?

Consistently, are there strongly surjective linear orders of size $> \aleph_2$?

[ARS 1985] Is it consistent that $\neg BA_{\aleph_1}$ but $A \hookrightarrow B$ or $B \hookrightarrow A$ for any two \aleph_1 -dense $A, B \subseteq \mathbb{R}$?

They are minimal under MA_{\aleph_1} .

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

They are minimal under MA_{\aleph_1} .

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

They are minimal under MA_{\aleph_1} .

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

They are minimal under MA_{\aleph_1} .

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

They are minimal under MA_{\aleph_1} .

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

They are minimal under MA_{\aleph_1} .

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

Thank you for your attention!

Dániel Soukup (KGRC)

MFO, 2017 February

uary 14 / 14