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Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number
of colours, always admits monochromatic subsets/substructures of
relatively large size.

Szemerédi 1975: any set A ⊂ N of positive upper density contains arbitrary

long arithmetic progressions.

Shelah 1995: consistently, any function f : R → R is continuous on a

nowhere meager set.

Negative partition relations: the existence of a colouring without large
monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function R → R that is discontinuous on any

nowhere measure 0 set.

Komjáth 1994: Rn can be coloured with ℵ0 colours so that no two points

of the same colour are at rational distance.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 2 / 19



Consistently, modulo some large cardinal,

if f : R → r with r ∈ ω then there is an infinite X ⊆ R so that

f ↾ X + X is constant.

P. Komjáth, I. Leader, P. Russell, S. Shelah,
D. T. Soukup, Z. Vidnyánszky 2017

X + X = {x + y : x , y ∈ X} i.e. repetitions are allowed.

How does this fit into the theory (of partition relations)?

Why allow repetitions and why only infinite?

What goes into the proof of this result?
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Evolving partition relations

... an incomplete overview ...
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Evolving partition relations

If f : ω → r then there is an infinite X ⊂ ω with f ↾ X constant.

P. H. Principle

ω → (ω)1r
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Evolving partition relations

If f : [ω]k → r then there is an infinite X ⊂ ω with f ↾ [X ]k constant.

P. H. Principle

ω → (ω)1r

F. P. Ramsey, 1930

ω → (ω)kr
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Evolving partition relations

There is f : [2ℵ0 ]2 → 2 so that f ′′[X ]2 = 2 for any uncountable X ⊂ 2ℵ0 .

P. H. Principle

ω → (ω)1r

F. P. Ramsey, 1930

ω → (ω)kr

W. Sierpinski, 1933

2ℵ0 6→ (ℵ1)
2
2
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Evolving partition relations

If f : [i+
k−1

]k → r then f ↾ [W ]k is constant for some uncountable W ⊆ i+
k−1

.

P. H. Principle

ω → (ω)1r

F. P. Ramsey, 1930

ω → (ω)kr

W. Sierpinski, 1933

2ℵ0 6→ (ℵ1)
2
2

Erdős, Rado 1956

i+
k−1 → (ω1)

k
r for all r < ω.
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Evolving partition relations

FS(X ) = {x0 + x1 + · · ·+ xℓ : x0 < · · · < xℓ ∈ X} i.e. no repetitions.

P. H. Principle

ω → (ω)1r

F. P. Ramsey, 1930

ω → (ω)kr

W. Sierpinski, 1933

2ℵ0 6→ (ℵ1)
2
2

Erdős, Rado 1956

i+
k−1 → (ω1)

k
r for all r < ω.

N. Hindman, 1974

if f : N → r then there is some infinite X ⊆ N

so that f ↾ FS(X ) is constant.
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Evolving partition relations

There is f : [ℵ1]
2 → ℵ1 so that f ′′[X ]2 = ℵ1 for any uncountable X ⊂ ℵ1.

P. H. Principle

ω → (ω)1r

F. P. Ramsey, 1930

ω → (ω)kr

W. Sierpinski, 1933

2ℵ0 6→ (ℵ1)
2
2

Erdős, Rado 1956

i+
k−1 → (ω1)

k
r for all r < ω.

N. Hindman, 1974

if f : N → r then there is some infinite X ⊆ N

so that f ↾ FS(X ) is constant.

S. Todorcevic, 1987

ℵ1 6→ [ℵ1]
2
ℵ1
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Evolving partition relations

If f : [2ℵ0 ]2 → 3 then there is an uncountable X ⊂ 2ℵ0 with |f ′′[X ]2| ≤ 2.

P. H. Principle

ω → (ω)1r

F. P. Ramsey, 1930

ω → (ω)kr

W. Sierpinski, 1933

2ℵ0 6→ (ℵ1)
2
2

Erdős, Rado 1956

i+
k−1 → (ω1)

k
r for all r < ω.

N. Hindman, 1974

if f : N → r then there is some infinite X ⊆ N

so that f ↾ FS(X ) is constant.

S. Todorcevic, 1987

ℵ1 6→ [ℵ1]
2
ℵ1

S. Shelah, 1988

Con(2ℵ0 → [ℵ1]
2
3)
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Monochromatic sumsets in N

Easy Ramsey consequence: if f : N → r with r ∈ ω then there is an infinite
X ⊆ N so that

f ↾ X ⊕ X is constant.

Here X ⊕ X = {x + y : x 6= y ∈ X} i.e. repetitions are not allowed.

Proof:

if f : N → r then let g : [N]2 → r defined by g(x , y) = f (x + y),

if X ⊂ N and g ↾ [X ]2 is constant then f ↾ X ⊕ X is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?
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Monochromatic sumsets in N - with repetitions?

X + X = X ⊕ X ∪ {2x : x ∈ X}.

There is f : N → 4 without infinite monochromatic sumsets:

f (x) = ⌊log√2(x)⌋ mod 4.

Suppose that X ⊆ N is infinite and take y << x ∈ X .

| log√2(x)− log√2(x + y)| < 1,

|f (x) − f (x + y)| ≤ 1 mod 4.

f (2x) = ⌊log√2(x) + 2⌋ = f (x) + 2 mod 4 so f (2x) 6= f (x + y).

Can we do this with 2 colours???
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Monochromatic sumsets in R

Started in [Hindman, Leader, Strauss 2015]

If f : R → r is Baire/Lebesgue measurable then there is a perfect
∅ 6= X ⊆ R so that

f ↾ X + X is constant.

Without definability?

There is an f : R → 2 so that

f ′′X ⊕ X = 2 for every uncountable X ⊂ R.

[HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently
the number of colours is best possible.
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Continued by [Fernandez-Breton, Rinot 2016]:

There is a colouring f : R → ω so that

f ′′X ⊕ X = ω for every X ⊂ R of size c.

For any uncountable, commutative, cancellative semigroup G there is a
colouring f : G → ω so that

f ′′FS(X ) = ω for every uncountable X ⊂ G .

Bottom line: without definabilty, infinite sumsets are best possible on R

with repetition allowed.
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Any sign of positive relations? Modulo some large cardinals, consistently

For any f : R → ω1 there is an uncountable subgroup H ≤ R so that

f ↾ H has at most ℵ0 colours.

For any f : R → 3 there is an uncountable X ⊂ R so that

f ↾ X ⊕ X has at most 2 colours.
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Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

Given s ∈ Q<ω and a ∈ [κ]|s|, let

x = s ∗ a ∈
⊕

κ

Q

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then

a∆b ⊆ supp(x + y) ⊆ a ∪ b.

Suppose that c :
⊕

κQ → 2, and let cs : [κ]
|s| → 2 by

cs(a) = c(s ∗ a).
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For any f : R → ω1 there is an uncountable subgroup H ≤ R so that

f ↾ H has at most ℵ0 colours.

let κ be an ω1-Erdős: for any d : [κ]<ω → θ, there is an uncountable
X ⊂ κ so that d ↾ [X ]n is constant for any n < ω.

P: adds κ many Cohen-reals, so V P |= R ≈ G (κ̌).

suppose that P ċ : G (κ̌) → ω1, and define d on [κ]<ω by

d(a) = {δ < ω1 : ∃s ∈ Q|a| ∃p ∈ P pċ(s ∗ a) = δ}.

this is a countable subset of ω1 by ccc,

find uncountable X ⊂ κ so that d ↾ [X ]n is constant In for any n < ω,

let H = {x ∈ G (κ) : supp(x) ⊂ X}, and now

P ran(ċ ↾ H) ⊆
⋃

n∈ω
In.
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P ran(ċ ↾ H) ⊆
⋃

n∈ω
In.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 11 / 19



For any f : R → ω1 there is an uncountable subgroup H ≤ R so that

f ↾ H has at most ℵ0 colours.

let κ be an ω1-Erdős: for any d : [κ]<ω → θ, there is an uncountable
X ⊂ κ so that d ↾ [X ]n is constant for any n < ω.

P: adds κ many Cohen-reals, so V P |= R ≈ G (κ̌).
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Monochromatic sumsets - with repetitions

Recall: ∃ f : N → 4 so that f ↾ X + X is not constant for an infinite X ⊂ N.

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.
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Monochromatic sumsets - with repetitions

If f : G(κ) → r then f ↾ X + X is constant for some infinite X ⊂ G(κ).

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.
Notation:

G (κ)
+→ (ℵ0)r
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Monochromatic sumsets - with repetitions

∃ f : G(κ) → r so that f ↾ X + X is not constant for an infinite X ⊂ G(κ).

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.
Notation:

G (κ)
+

6→ (ℵ0)r e.g. N
+

6→ (ℵ0)4
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Monochromatic sumsets - with repetitions

∃ f : G(κ) → r so that f ↾ X + X is not constant for an infinite X ⊂ G(κ).

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

[Hindman, Leader, Strauss]
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Monochromatic sumsets - with repetitions

∃ f : Q → 72 so that f ↾ X + X is not constant for an infinite X ⊂ Q.

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

[Hindman, Leader, Strauss]

Q
+
6→ (ℵ0)72.
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Monochromatic sumsets - with repetitions

∃ f : G(m) → 72 so that f ↾ X + X is not constant for an infinite X ⊂ G(m).

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

[Hindman, Leader, Strauss]

Q
+
6→ (ℵ0)72.

G (m)
+
6→ (ℵ0)72 for m < ω.
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Monochromatic sumsets - with repetitions

∃ f : G(ℵ0) → 144 so that f ↾ X + X is not constant for an infinite X ⊂ G(ℵ0).

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

[Hindman, Leader, Strauss]

Q
+
6→ (ℵ0)72.

G (m)
+
6→ (ℵ0)72 for m < ω.

G (ℵ0)
+
6→ (ℵ0)144
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Monochromatic sumsets - with repetitions

∃ f : G(ℵm) → 2m · 144 so that f ↾ X + X is not constant for an infinite X .

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

[Hindman, Leader, Strauss]

Q
+
6→ (ℵ0)72.

G (m)
+
6→ (ℵ0)72 for m < ω.

G (ℵ0)
+
6→ (ℵ0)144

G (ℵm)
+
6→ (ℵ0)2m ·144 for m < ω.
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Monochromatic sumsets - with repetitions

∃ f : R → r so that f ↾ X + X is not constant for an infinite X .

Let G (κ) =
⊕

κQ i.e. x : κ → Q with |supp(x)| < ω. E.g. G (2ℵ0) ≈ R.

[Hindman, Leader, Strauss]

Q
+
6→ (ℵ0)72.

G (m)
+
6→ (ℵ0)72 for m < ω.

G (ℵ0)
+
6→ (ℵ0)144

G (ℵm)
+
6→ (ℵ0)2m ·144 for m < ω.

Corollary

If 2ℵ0 < ℵω then

R
+
6→ (ℵ0)r

for some r < ω.
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Positive relations through ’position invariance’

Given s ∈ Q<ω and a ∈ [κ]|s|, let

x = s ∗ a ∈
⊕

κ

Q

by supp(x) = a and x(a(i)) = s(i).

Suppose that c :
⊕

κ
Q → 2, and let

cs : [κ]|s| → 2 by

cs(a) = c(s ∗ a).

If κ is large enough then there is a
large W ⊆ κ so that csi are constant
on W for i = 0, 1, 2.

Assume that cs1 and cs2 are both constant 0.

Let α < β < γ0 < γ1 < · · · ∈ W .
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22
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s0 = (4, 4) s1 = (2, 2, 4) s2 = (2, 2, 2, 2)

If κ is large enough then there is a
large W ⊆ κ so that csi are constant
on W for i = 0, 1, 2.

Assume that cs1 and cs2 are both constant 0.

Let α < β < γ0 < γ1 < · · · ∈ W .

α β γ0 γ1 γ2
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α β

2

1

x0

γ0

Let ai = {α, β, γi} and xi =
1
2
s1 ∗ ai .
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Let ai = {α, β, γi} and xi =
1
2
s1 ∗ ai .

c(2xi ) = cs1 (ai ) = 0 = cs2 (ai ∪ aj ) = c(xi + xj).
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2
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xi + xj

If cs0 , cs2 have the same constant then we need
tp(W ) = ω + ω.
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Corollaries

[Komjáth] and [Leader, Russell] independently

⇒ G (κ)
+→ (ℵ0)r where κ = i2r−1(ℵ0),

⇒ G (ℵω)
+→ (ℵ0)r for r < ω under GCH. In ZFC maybe???

using the Erdős-Rado theorem.

[DTS, Vidnyánszky]

⇒ G (c+)
+→ (ℵ0)2,

using polarized partition relations instead.

⇒ G (ℵω)
+→ (ℵ0)r for r < ω consistently from a measurable,

with CH and 2ℵ1 = ℵω+1,

using a version of [Todorcevic, di Prisco] polarized relation for ℵω

with σ-closed forcing.
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Positive relations on R - the main result

Recall: if 2ℵ0 < ℵω then R
+

6→ (ℵ0)r for some r < ω.

Consistently, modulo an ω1-Erdős cardinal,

R
+→ (ℵ0)r for any r < ω.

The main ingredients are

the position invariance from previous proofs, but

polarized relations under MAℵ1
(Knaster), and
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+

6→ (ℵ0)r for some r < ω.

Consistently, modulo an ω1-Erdős cardinal,

R
+→ (ℵ0)r for any r < ω.

The main ingredients are

the position invariance from previous proofs, but

polarized relations under MAℵ1
(Knaster), and

[S. Shelah, 2017]
"...you can suppose the coloring is continuous, right?"
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Positive relations on R - the main result

Recall: if 2ℵ0 < ℵω then R
+

6→ (ℵ0)r for some r < ω.

Consistently, modulo an ω1-Erdős cardinal,

R
+→ (ℵ0)r for any r < ω.

The main ingredients are

the position invariance from previous proofs, but

polarized relations under MAℵ1
(Knaster), and

[S. Shelah, 1988] Consistently, modulo an ω1-Erdős cardinal, if
f : [2ℵ0 ]<ω → r then there is an uncountable X and F : X →֒ 2ω so
that f (x̄) only depends on the type of the finite tree F [x̄ ].
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Positive partition relations on κ = 2ℵ0? No way...

Sierpinski colouring: c : [2ℵ0 ]2 → 2
so that c(α, β) = 0 iff

α < β ↔ F (α) <R F (β)

for some fixed F : 2ℵ0 →֒ R ≃ 2ω .

2 colours on any uncountable set!

You can define more complicated

c : [2ℵ0 ]k → r

using an F : 2ℵ0 →֒ R ≃ 2ω and the
values of

∆(x , y) = min{n : x(n) 6= y(n)}.

Also: ∆′′[X ]2 is infinite for any infinite X ⊆ 2ω .

Say t̄ ∼ s̄ for s̄, t̄ ∈ Ri iff for all l1, l2, l3, l4 < i :

∆(t̄(l1), t̄(l2)) < ∆(t̄(l3), t̄(l4))

iff ∆(s̄(l1), s̄(l2)) < ∆(s̄(l3), s̄(l4)),

t̄(l3) ↾ n <lex t̄(l4) ↾ n for n = ∆(t̄(l1), t̄(l2))

iff

s̄(l3) ↾ m <lex s̄(l4) ↾ m for m = ∆(s̄(l1), s̄(l2)),

t̄(l3)(n) = 0 for n = ∆(t̄(l1), t̄(l2))

iff s̄(l3)(m) = 0 for m = ∆(s̄(l1), s̄(l2)).
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Shelah’s ’Was Sierpinski right?’ papers

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω1-Erdős cardinal, for

any c : [2ℵ0 ]2 → r there is an uncountable

W ⊆ 2ℵ0 with at most 2 colours.

⋆

Larger tuples can define more colours... What

was so specific about the colourings before?

if c : [2ℵ0 ]k → r and F : 2ℵ0 →֒ R ≃ 2ω

then c is F -canonical on W ⊆ 2ℵ0 iff

c(ᾱ) = c(β̄) whenever F (ᾱ) ∼ F (β̄).

[Shelah, WSR II]

Suppose that λ is an ω1-Erdős cardinal in V .

Then there is a forcing notion P so that V P

satisfies the following:

2ℵ0 = λ,

MAℵ1
(Knaster), and

if ci : [λ]
i → r for i < k < ω, r < ω,

then there is W ∈ [λ]ℵ1 and F : W →֒ R ≃ 2ω

so that

ci is F -canonical on W .

Polarized partition relation in this model: MAℵ1
(Knaster) ⇒ if g : [ω]2 × ω1 → 2 then there

is A ∈ [ω]ω,B ∈ [ω1]
ω1 so that g ↾ [A]2 × B is constant.
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[Shelah, WSR II]

Suppose that λ is an ω1-Erdős cardinal in V .

Then there is a forcing notion P so that V P

satisfies the following:

2ℵ0 = λ,

MAℵ1
(Knaster), and

if ci : [λ]
i → r for i < k < ω, r < ω,

then there is W ∈ [λ]ℵ1 and F : W →֒ R ≃ 2ω

so that

ci is F -canonical on W .

Polarized partition relation in this model: MAℵ1
(Knaster) ⇒ if g : [ω]2 × ω1 → 2 then there

is A ∈ [ω]ω,B ∈ [ω1]
ω1 so that g ↾ [A]2 × B is constant.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 17 / 19



Shelah’s ’Was Sierpinski right?’ papers

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω1-Erdős cardinal, for

any c : [2ℵ0 ]2 → r there is an uncountable

W ⊆ 2ℵ0 with at most 2 colours.

⋆

Larger tuples can define more colours... What

was so specific about the colourings before?

if c : [2ℵ0 ]k → r and F : 2ℵ0 →֒ R ≃ 2ω

then c is F -canonical on W ⊆ 2ℵ0 iff
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[Shelah, WSR II]

Suppose that λ is an ω1-Erdős cardinal in V .

Then there is a forcing notion P so that V P

satisfies the following:

2ℵ0 = λ,

MAℵ1
(Knaster), and

if ci : [λ]
i → r for i < k < ω, r < ω,

then there is W ∈ [λ]ℵ1 and F : W →֒ R ≃ 2ω

so that

ci is F -canonical on W .

Polarized partition relation in this model: MAℵ1
(Knaster) ⇒ if g : [ω]2 × ω1 → 2 then there

is A ∈ [ω]ω,B ∈ [ω1]
ω1 so that g ↾ [A]2 × B is constant.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 17 / 19



Shelah’s ’Was Sierpinski right?’ papers

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω1-Erdős cardinal, for

any c : [2ℵ0 ]2 → r there is an uncountable

W ⊆ 2ℵ0 with at most 2 colours.

⋆

Larger tuples can define more colours... What

was so specific about the colourings before?

if c : [2ℵ0 ]k → r and F : 2ℵ0 →֒ R ≃ 2ω

then c is F -canonical on W ⊆ 2ℵ0 iff
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c(ᾱ) = c(β̄) whenever F (ᾱ) ∼ F (β̄).
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[Shelah, WSR II]

Suppose that λ is an ω1-Erdős cardinal in V .

Then there is a forcing notion P so that V P

satisfies the following:

2ℵ0 = λ,

MAℵ1
(Knaster), and

if ci : [λ]
i → r for i < k < ω, r < ω,

then there is W ∈ [λ]ℵ1 and F : W →֒ R ≃ 2ω

so that

ci is F -canonical on W .

Polarized partition relation in this model: MAℵ1
(Knaster) ⇒ if g : [ω]2 × ω1 → 2 then there

is A ∈ [ω]ω,B ∈ [ω1]
ω1 so that g ↾ [A]2 × B is constant.

D. T. Soukup (KGRC) Monochromatic sumsets Hamburg, June 2018 17 / 19



Shelah’s ’Was Sierpinski right?’ papers

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω1-Erdős cardinal, for

any c : [2ℵ0 ]2 → r there is an uncountable

W ⊆ 2ℵ0 with at most 2 colours.

⋆

Larger tuples can define more colours... What

was so specific about the colourings before?

if c : [2ℵ0 ]k → r and F : 2ℵ0 →֒ R ≃ 2ω

then c is F -canonical on W ⊆ 2ℵ0 iff
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Proving G (2ℵ0)
+→ (ℵ0)2 in the ’WSR II’ model

Take c : G(2ℵ0 ) → 2 and consider cs0 , cs1 , cs2
with s0 = (4, 4), s1 = (2, 2, 4), s2 = (2, 2, 2, 2).

Apply WSR II: there is |W | = ℵ1 and

F : W →֒ R so that csi is F -canonical on W .

Select |A| = ℵ0, |B| = ℵ1 from W so that

A < B and F ′′A <R F ′′B.

⇒ all pairs (α, β) ∈ A× B have the same

∼-type, so cs0 is constant.

How can we fix the type of triples

(α, α′, β) ∈ A2 × B?

Let g : A2 × B → 2 by

g(α, α′, β) = F (β)(m)

with m = ∆(F (α), F (α′)). Shrink using the

polarized relation to fix the type!

⇒ cs1 is constant too on these triples.

Finally, look at 4-tuples

(α, α′, β, β′) ∈ A2 × B2.

Look at splitting levels from B, read values on

branches from A, thin both to fix the values.

This fixes the type of these 4-tuples too on

some countable A,B.

⇒ cs2 is constant on these 4-tuples.

Now, two constant values must agree of the

three; repeat the first trick to construct infinite

X so that X + X is monochromatic.
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Various open problems

[Owings, 1974]

N
+
6→ (ℵ0)2 ???

Connected to our results:

R
+→ (ℵ0)2 in ZFC??

G(ℵω)
+→ (ℵ0)r for r < ω in ZFC???

R
+→ (ℵ0)r if 2ℵ0 is real-valued

measurable?

R
+→ (ℵ0)r without large cardinals?

unbalanced sumsets X + Y (or X ⊕ Y )?

What is the smallest r so that G(κ)
+
6→ (ℵ0)r

for a particular κ (finite, or ℵm)??

Monochromatic k-sumsets: X + X + · · ·+ X?

[HLS] There is a finite colouring of G(ℵn) with

no infinite monochromatic k-sumsets (n < ω),

[DS, Vidnyánszky] There is a finite coloring of

R with no infinite monochromatic k-sumsets for

k ≥ 3.

We are far from a complete picture.

[Shelah, 1988]

Is 2ℵ0 = ℵm → [ℵ1]23 consistent

for some m < ω???

Is 2ℵ0 > λ → [ℵ1]
2
3 consistent???
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