Colouring large groups and monochromatic sumsets

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Supported in part by FWF Grant I1921.

D. T. Soukup (KGRC)

Monochromatic sumsets

Hamburg, June 2018

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f:\mathbb{R}\to\mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \to \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Komjáth 1994: \mathbb{R}^n can be coloured with \aleph_0 colours so that no two points of the same colour are at rational distance.

Image: 1 million of the second sec

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f:\mathbb{R}\to\mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \to \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Komjáth 1994: \mathbb{R}^n can be coloured with \aleph_0 colours so that no two points of the same colour are at rational distance.

< □ > < A >

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f:\mathbb{R}\to\mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \to \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f : \mathbb{R} \to \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \to \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f : \mathbb{R} \to \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \to \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f : \mathbb{R} \to \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R}\to\mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f : \mathbb{R} \to \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R}\to\mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

if $f: \mathbb{R} \to r$ with $r \in \omega$ then there is an **infinite** $X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an **infinite** $X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

> P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

 $X + X = \{x + y : x, y \in X\}$ i.e. repetitions are allowed.

• How does this fit into the theory (of partition relations)?

• Why allow repetitions and why only infinite?

• What goes into the proof of this result?

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

> P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

> P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

... an incomplete overview ...

If $f : \omega \to r$ then there is an infinite $X \subset \omega$ with $f \upharpoonright X$ constant.

If $f : [\omega]^k \to r$ then there is an infinite $X \subset \omega$ with $f \upharpoonright [X]^k$ constant.

D. T. Soukup (KGRC)

There is $f: [2^{\aleph_0}]^2 \to 2$ so that $f''[X]^2 = 2$ for any uncountable $X \subset 2^{\aleph_0}$.

D. T. Soukup (KGRC)

Hamburg, June 2018 4 / 19

D. T. Soukup (KGRC)

Monochromatic sumsets

Hamburg, June 2018 4 / 19

$FS(X) = \{x_0 + x_1 + \dots + x_\ell : x_0 < \dots < x_\ell \in X\}$ i.e. no repetitions.

Erdős, Rado 1956

$$\beth_{k-1}^+ o (\omega_1)_r^k$$
 for all $r < \omega$.

N. Hindman, 1974

if $f : \mathbb{N} \to r$ then there is some infinite $X \subseteq \mathbb{N}$ so that $f \upharpoonright FS(X)$ is constant.

There is $f : [\aleph_1]^2 \to \aleph_1$ so that $f''[X]^2 = \aleph_1$ for any uncountable $X \subset \aleph_1$.

D. T. Soukup (KGRC)

Monochromatic sumsets

Hamburg, June 2018 4 / 19

If $f: [2^{\aleph_0}]^2 \to 3$ then there is an uncountable $X \subset 2^{\aleph_0}$ with $|f''[X]^2| \leq 2$.

D. T. Soukup (KGRC)

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. Proof:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. Proof:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

- if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),
- if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

Monochromatic sumsets in $\ensuremath{\mathbb{N}}$ - with repetitions?

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

Monochromatic sumsets in $\ensuremath{\mathbb{N}}$ - with repetitions?

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f : \mathbb{R} \to 2$ so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

D. T. Soukup (KGRC)

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

```
There is an f: \mathbb{R} \to 2 so that
```

 $f'' X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f:\mathbb{R} o 2$ so that

 $f'' X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

D. T. Soukup (KGRC)

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f : \mathbb{R} \to 2$ so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

D. T. Soukup (KGRC)

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f : \mathbb{R} \to 2$ so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

D. T. Soukup (KGRC)

There is a colouring $f : \mathbb{R} \to \omega$ so that

 $f''X \oplus X = \omega$ for every $X \subset \mathbb{R}$ of size \mathfrak{c} .

For any uncountable, commutative, cancellative semigroup G there is a colouring $f:G\to\omega$ so that

 $f''FS(X) = \omega$ for every uncountable $X \subset G$.

Bottom line: without definabilty, infinite sumsets are best possible on ${\mathbb R}$ with repetition allowed.

D. T. Soukup (KGRC)

There is a colouring $f : \mathbb{R} \to \omega$ so that

 $f''X \oplus X = \omega$ for every $X \subset \mathbb{R}$ of size \mathfrak{c} .

For any uncountable, commutative, cancellative semigroup G there is a colouring $f:G \to \omega$ so that

 $f''FS(X) = \omega$ for every uncountable $X \subset G$.

Bottom line: without definabilty, infinite sumsets are best possible on $\mathbb R$ with repetition allowed.

D. T. Soukup (KGRC)

There is a colouring $f : \mathbb{R} \to \omega$ so that

 $f''X \oplus X = \omega$ for every $X \subset \mathbb{R}$ of size \mathfrak{c} .

For any uncountable, commutative, cancellative semigroup G there is a colouring $f: G \to \omega$ so that

 $f''FS(X) = \omega$ for every uncountable $X \subset G$.

Bottom line: without definabilty, infinite sumsets are best possible on $\mathbb R$ with repetition allowed.

There is a colouring $f : \mathbb{R} \to \omega$ so that

 $f''X \oplus X = \omega$ for every $X \subset \mathbb{R}$ of size \mathfrak{c} .

For any uncountable, commutative, cancellative semigroup G there is a colouring $f: G \to \omega$ so that

 $f''FS(X) = \omega$ for every uncountable $X \subset G$.

Bottom line: without definability, infinite sumsets are best possible on \mathbb{R} with repetition allowed.

D. T. Soukup (KGRC)

For any $f : \mathbb{R} \to \omega_1$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_0 colours.

For any $f : \mathbb{R} \to 3$ there is an uncountable $X \subset \mathbb{R}$ so that

 $f \upharpoonright X \oplus X$ has at most 2 colours.

For any $f : \mathbb{R} \to \omega_1$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_0 colours.

For any $f : \mathbb{R} \to 3$ there is an uncountable $X \subset \mathbb{R}$ so that

 $f \upharpoonright X \oplus X$ has at most 2 colours.

For any $f : \mathbb{R} \to \omega_1$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_0 colours.

For any $f : \mathbb{R} \to 3$ there is an uncountable $X \subset \mathbb{R}$ so that

 $f \upharpoonright X \oplus X$ has at most 2 colours.

For any $f : \mathbb{R} \to \omega_1$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_0 colours.

For any $f : \mathbb{R} \to 3$ there is an uncountable $X \subset \mathbb{R}$ so that $f \upharpoonright X \oplus X$ has at most 2 colours.

$$x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$$

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then $a \Delta b \subseteq supp(x+y) \subseteq a \cup b$

Suppose that $c:\bigoplus_\kappa \mathbb{Q} o 2$, and let $c_s:[\kappa]^{|s|} o 2$ by $c_s(a)=c(s*a).$

D. T. Soukup (KGRC)

$$x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$$

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then $a \Delta b \subseteq supp(x + y) \subseteq a \cup b$

Suppose that $c:\bigoplus_\kappa \mathbb{Q} o 2$, and let $c_s:[\kappa]^{|s|} o 2$ by $c_s(a)=c(s*a).$

D. T. Soukup (KGRC)

$$x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$$

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then $a\Delta b \subseteq supp(x + y) \subseteq a \cup b$

Suppose that $c:\bigoplus_\kappa \mathbb{Q} o 2$, and let $c_s:[\kappa]^{|s|} o 2$ by $c_s(a)=c(s*a).$

D. T. Soukup (KGRC)

Hamburg, June 2018

$$x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$$

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then $a\Delta b \subseteq supp(x + y) \subseteq a \cup b.$

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_s(a) = c(s * a).$

D. T. Soukup (KGRC)

$$x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$$

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then $a\Delta b \subseteq supp(x + y) \subseteq a \cup b.$

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by

 $c_s(a)=c(s*a).$

$$x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$$

by supp(x) = a and x(a(i)) = s(i).

If supp(x) = a and supp(y) = b then $a\Delta b \subseteq supp(x + y) \subseteq a \cup b.$

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by

 $c_s(a)=c(s*a).$

3

$f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω₁-Erdős: for any d : [κ]^{<ω} → θ, there is an uncountable X ⊂ κ so that d ↾ [X]ⁿ is constant for any n < ω.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{\delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta\}.$
- this is a countable subset of ω_1 by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \omega} I_n.$$

 $f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω_1 -Erdős: for any $d : [\kappa]^{<\omega} \to \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant for any $n < \omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{\delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta\}.$
- this is a countable subset of ω_1 by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \omega} I_n.$$

 $f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω_1 -Erdős: for any $d : [\kappa]^{<\omega} \to \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant for any $n < \omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{ \delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta \}.$
- this is a countable subset of ω_1 by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \omega} I_n.$$

 $f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω_1 -Erdős: for any $d : [\kappa]^{<\omega} \to \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant for any $n < \omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{\delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta\}.$
- this is a countable subset of ω₁ by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \omega} I_n.$$

 $f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω_1 -Erdős: for any $d : [\kappa]^{<\omega} \to \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant for any $n < \omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{\delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta\}.$
- this is a countable subset of ω_1 by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \mathcal{A}} I_n.$$

 $f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω_1 -Erdős: for any $d : [\kappa]^{<\omega} \to \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant for any $n < \omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{\delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta\}.$
- this is a countable subset of ω_1 by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \mathbb{N}} I_n.$$

 $f \upharpoonright H$ has at most \aleph_0 colours.

- let κ be an ω_1 -Erdős: for any $d : [\kappa]^{<\omega} \to \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant for any $n < \omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c} : G(\check{\kappa}) \to \omega_1$, and define d on $[\kappa]^{<\omega}$ by $d(a) = \{\delta < \omega_1 : \exists s \in \mathbb{Q}^{|a|} \ \exists p \in \mathbb{P} \ p \Vdash \dot{c}(s * a) = \delta\}.$
- this is a countable subset of ω_1 by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright [X]^n$ is constant I_n for any $n < \omega$,
- let $H = \{x \in G(\kappa) : supp(x) \subset X\}$, and now

$$\Vdash_{\mathbb{P}} ran(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \omega} I_n.$$

Recall: $\exists f : \mathbb{N} \to 4$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset \mathbb{N}$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

D. T. Soukup (KGRC)

Monochromatic sumsets

Hamburg, June 2018

Recall: $\exists f : \mathbb{N} \to 4$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset \mathbb{N}$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

D. T. Soukup (KGRC)

Monochromatic sumsets

Hamburg, June 2018

If $f : G(\kappa) \to r$ then $f \upharpoonright X + X$ is constant for some infinite $X \subset G(\kappa)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$. Notation:

 $G(\kappa) \stackrel{+}{
ightarrow} (\aleph_0)_r$

D. T. Soukup (KGRC)

Monochromatic sumsets

Hamburg, June 2018 12 / 19

 $\exists f: G(\kappa) \to r$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset G(\kappa)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$. Notation:

$$G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)_r \text{ e.g. } \mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_4$$

 $\exists f: G(\kappa) \to r$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset G(\kappa)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

 $\exists f : \mathbb{Q} \to 72$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset \mathbb{Q}$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss] • $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$.

 $\exists f: G(m) \to 72$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset G(m)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

•
$$\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}.$$

•
$$G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$$
 for $m < \omega$.

 $\exists f: G(\aleph_0) \to 144$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset G(\aleph_0)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

• $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}.$

•
$$G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$$
 for $m < \omega$.

• $G(\aleph_0) \xrightarrow{+}{\not\rightarrow} (\aleph_0)_{144}$

 $\exists f: G(\aleph_m) \to 2^m \cdot 144$ so that $f \upharpoonright X + X$ is **not constant** for an infinite X.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}.$
- $G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$ for $m < \omega$.
- $G(\aleph_0) \stackrel{+}{\not\rightarrow} (\aleph_0)_{144}$
- $G(\aleph_m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{2^m \cdot 144}$ for $m < \omega$.

Monochromatic sumsets - with repetitions

 $\exists f : \mathbb{R} \to r \text{ so that } f \upharpoonright X + X \text{ is$ **not constant**for an infinite X.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

• $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}.$

•
$$G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$$
 for $m < \omega$.

•
$$G(\aleph_0) \stackrel{+}{\not\rightarrow} (\aleph_0)_{144}$$

•
$$G(\aleph_m) \xrightarrow{+}{\not\rightarrow} (\aleph_0)_{2^m \cdot 144}$$
 for $m < \omega$.

Corollary If $2^{\aleph_0} < \aleph_\omega$ then $\mathbb{R} \not\rightarrow^+ (\aleph_0)_r$ for some $r < \omega$.

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i) Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i).

Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s : [\kappa]^{|s|} \to 2$ by

$$c_s(a)=c(s*a).$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

THE 1 A

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i) Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i).

Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s : [\kappa]^{|s|} \to 2$ by

$$c_s(a) = c(s * a).$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

4 2 5 4 2 5

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i).

Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s : [\kappa]^{|s|} \to 2$ by

$$c_s(a)=c(s*a).$$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Assume $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$

Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i).

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by

$$c_s(a)=c(s*a).$$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ Assume that c_{s_1} and c_{s_2} are both constant Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i).

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by

$$c_s(a)=c(s*a).$$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\iota} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

Assume that c_{s_1} and c_{s_2} are both constant 0.

Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta \gamma_0 \gamma_1 \gamma_2$ Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ 1 ·····•• by supp(x) = a and x(a(i)) = s(i). $\alpha \beta \gamma_0$ Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ 1 ····•• by supp(x) = a and x(a(i)) = s(i). γ_1 $\alpha \beta$ Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_2 Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ ₁ ····•• by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on *W* for i = 0, 1, 2.

 γ_2

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_{0} = (4,4) \qquad s_{1} = (2,2,4) \qquad s_{2} = (2,2,2,2) \qquad 2 \qquad (4,4)$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. 1 ••••• $\alpha \beta$ γ_2 Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_2 Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_s(a) = c(s * a).$ $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$ $\alpha \beta$ $\alpha \beta \gamma_i$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on *W* for i = 0, 1, 2.

 γ_i

 γ_i

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_2 Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_s(a) = c(s * a).$ $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$ If κ is large enough then there is a $\alpha \beta$ γ_i $\alpha \beta$ γ_i γ_i

If c_{s_0}, c_{s_2} have the same constant then we need $tp(W) = \omega + \omega$.

on *W* for i = 0, 1, 2.

large $W \subseteq \kappa$ so that c_{s_i} are constant

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r \text{ where } \kappa = \beth_{2r-1}(\aleph_0),$ $\Rightarrow G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r \text{ for } r < \omega \text{ under GCH.}$ • using the Erdős-Rado theorem.

[DTS, Vidnyánszky]

 $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{ o} (leph_0)_2,$

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and **[Leader, Russell]** independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

• using the Erdős-Rado theorem.

[DTS, Vidnyánszky]

 $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{ o} (leph_0)_2$,

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

• using the Erdős-Rado theorem.

[DTS, Vidnyánszky]

 $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{ o} (\aleph_0)_2$,

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \stackrel{+}{\rightarrow} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- $[\mathsf{DTS}, \mathsf{Vidnyánszky}] \\ \Rightarrow G(\mathfrak{c}^+) \xrightarrow{+} (\aleph_0)_2,$

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky] $\Rightarrow G(\mathfrak{c}^+) \xrightarrow{+} (\aleph_0)_2,$

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky]
- $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$
 - using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky]
- $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$
 - using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky]
- $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$
 - using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

۲

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

۲

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under MA_{ℵ1}(Knaster), and

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

٠

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an $\omega_1\text{-}\mathsf{Erd}\mathrm{\widetilde{o}s}$ cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and
- [S. Shelah, 2017]

"...you can suppose the coloring is continuous, right?"

Positive relations on ${\ensuremath{\mathbb R}}$ - the main result

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an $\omega_1\text{-}\mathsf{Erd}\mathrm{\widetilde{o}s}$ cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and
- [S. Shelah, 1988] Consistently, modulo an ω_1 -Erdős cardinal, if $f : [2^{\aleph_0}]^{<\omega} \to r$ then there is an uncountable X and $F : X \to 2^{\omega}$ so that $f(\bar{x})$ only depends on the type of the finite tree $F[\bar{x}]$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

 $\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

イロト イポト イヨト イヨト

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

 $\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

• $\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$ iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

イロト イポト イヨト イヨト

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

 $\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$

iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

 $\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n \leq_{\text{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$

iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

 $c: [2^{\aleph_0}]^k \to r$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x, y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4))$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$

iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow F(\alpha) <_{\mathbb{R}} F(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$

iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

$$\begin{aligned} & \Delta(\bar{t}(l_1), \bar{t}(l_2)) < \Delta(\bar{t}(l_3), \bar{t}(l_4)) \\ & \text{iff } \Delta(\bar{s}(l_1), \bar{s}(l_2)) < \Delta(\bar{s}(l_3), \bar{s}(l_4)) \end{aligned}$$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$

iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

 $\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$ $\text{iff } \Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4))$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $ar{s}(l_3) \upharpoonright m <_{\mathsf{lex}} ar{s}(l_4) \upharpoonright m$ for $m = \Delta(ar{s}(l_1), ar{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

 $\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$ $\text{iff } \Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4))$

•
$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\text{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

 $\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$ $\text{iff } \Lambda(\overline{s}(l_1), \overline{s}(l_2)) < \Lambda(\overline{s}(l_2), \overline{s}(l_3))$

$$\overline{t}(l_3) \upharpoonright n <_{\mathsf{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

• $\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$ iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4))$

•
$$\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

• $\overline{t}(l_3)(n) = 0$ for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4))$

•
$$\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$$

iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m \text{ for } m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

•
$$\overline{t}(l_3)(n) = 0$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff
$$\overline{s}(l_3)(m) = 0$$
 for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

•
$$\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$
iff

$$\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m \text{ for } m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$$

•
$$\overline{t}(l_3)(n) = 0$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff
$$\overline{s}(l_3)(m) = 0$$
 for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4))$

• $\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$ iff

 $\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m \text{ for } m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$

•
$$\overline{t}(l_3)(n) = 0$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff $\overline{s}(l_3)(m) = 0$ for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

Sierpinski colouring: $c : [2^{\aleph_0}]^2 \to 2$ so that $c(\alpha, \beta) = 0$ iff

$$\alpha < \beta \leftrightarrow \mathsf{F}(\alpha) <_{\mathbb{R}} \mathsf{F}(\beta)$$

for some fixed $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

$$c: [2^{\aleph_0}]^k \to r$$

using an $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}$$

Also: $\Delta''[X]^2$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\overline{t} \sim \overline{s}$ for $\overline{s}, \overline{t} \in \mathbb{R}^i$ iff for all $l_1, l_2, l_3, l_4 < i$:

•
$$\Delta(\overline{t}(l_1), \overline{t}(l_2)) < \Delta(\overline{t}(l_3), \overline{t}(l_4))$$

iff $\Delta(\overline{s}(l_1), \overline{s}(l_2)) < \Delta(\overline{s}(l_3), \overline{s}(l_4)),$

• $\overline{t}(l_3) \upharpoonright n <_{\text{lex}} \overline{t}(l_4) \upharpoonright n \text{ for } n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$ iff

$$\overline{s}(l_3) \upharpoonright m <_{\mathsf{lex}} \overline{s}(l_4) \upharpoonright m \text{ for } m = \Delta(\overline{s}(l_1), \overline{s}(l_2)),$$

•
$$\overline{t}(l_3)(n) = 0$$
 for $n = \Delta(\overline{t}(l_1), \overline{t}(l_2))$

iff
$$\overline{s}(l_3)(m) = 0$$
 for $m = \Delta(\overline{s}(l_1), \overline{s}(l_2))$.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \rightarrow r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

 \star

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• $MA_{\aleph_1}(Knaster)$, and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\otimes_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

$$c_i$$
 is *F*-canonical on *W*.

(日) (周) (日) (日)

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega_1}, B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \rightarrow r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

 \star

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• MA_{\aleph_1} (Knaster), and

 $\begin{array}{l} \text{if } c_i : [\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\aleph_1} \text{ and } F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

$$c_i$$
 is *F*-canonical on *W*.

< 日 > (一) > (二) > ((二) > ((二) > ((1)

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \rightarrow r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is *F*-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

● MA_{ℵ1}(Knaster), and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\aleph_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

$$c_i$$
 is *F*-canonical on *W*.

< 日 > (一) > (二) > ((二) > ((二) > ((1)

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

\star

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is *F*-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

MA_{×1} (Knaster), and

if $c_i : [\lambda]' \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\aleph_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

$$c_i$$
 is *F*-canonical on *W*.

・ロト ・ 一日 ト ・ 日 ト

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

● MA_{ℵ1}(Knaster), and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\aleph_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

```
c_i is F-canonical on W.
```

・ロト ・ 一日 ト ・ 日 ト

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before?

if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ then c is *F*-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• $MA_{\aleph_1}(Knaster)$, and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\otimes_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

```
c_i is F-canonical on W.
```

・ロト ・ 一日 ト ・ 日 ト

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

3

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• $MA_{\aleph_1}(Knaster)$, and

 $\begin{array}{l} \text{if } c_i : [\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\aleph_1} \text{ and } F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

```
c_i is F-canonical on W.
```

・ロト ・ 一日 ト ・ 日 ト

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

3

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• $MA_{\aleph_1}(Knaster)$, and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\otimes_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

```
c_i is F-canonical on W.
```

- ロ ト - 4 同 ト - 4 回 ト - 4 回 ト

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

3

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• MA_{×1} (Knaster), and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\otimes_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

```
c_i is F-canonical on W.
```

・ロト ・ 日本・ ・ 日本・

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• MA_{\aleph_1} (Knaster), and

 $\begin{array}{l} \text{if } c_i : [\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\aleph_1} \text{ and } F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

```
c_i is F-canonical on W.
```

・ロト ・ 日本・ ・ 日本・

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion $\mathbb P$ so that $V^{\mathbb P}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• $MA_{\aleph_1}(Knaster)$, and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\otimes_1}$ and $F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

```
c_i is F-canonical on W.
```

・ロト ・ 日本・ ・ 日本・

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

• MA_{×1} (Knaster), and

 $\begin{array}{l} \text{if } c_i : [\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\aleph_1} \text{ and } F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

```
c_i is F-canonical on W.
```

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

э.

イロト イポト イヨト イヨト

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion $\mathbb P$ so that $V^{\mathbb P}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

MA_{×1} (Knaster), and

 $\begin{array}{l} \text{if } c_i:[\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\aleph_1} \text{ and } F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

```
c_i is F-canonical on W.
```

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

3

イロト イポト イヨト イヨト

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \to \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion $\mathbb P$ so that $V^{\mathbb P}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

● MA_{ℵ1}(Knaster), and

 $\begin{array}{l} \text{if } c_i:[\lambda]' \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\aleph_1} \text{ and } F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

```
c_i is F-canonical on W.
```

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

3

17 / 19

イロト イポト イヨト イヨト

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

● MA_{ℵ1}(Knaster), and

 $\begin{array}{l} \text{if } c_i : [\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\otimes_1} \text{ and } F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

 c_i is *F*-canonical on *W*.

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{ if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega_1}, B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours:

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c : [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c : [2^{\aleph_0}]^k \to r$ and $F : 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

• $2^{\aleph_0} = \lambda$,

● MA_{ℵ1}(Knaster), and

 $\begin{array}{l} \text{if } c_i : [\lambda]^i \to r \text{ for } i < k < \omega, r < \omega, \\ \text{then there is } W \in [\lambda]^{\otimes_1} \text{ and } F : W \hookrightarrow \mathbb{R} \simeq 2^{\omega} \\ \text{so that} \end{array}$

```
c_i is F-canonical on W.
```

Polarized partition relation in this model: $MA_{\aleph_1}(Knaster) \Rightarrow \text{if } g : [\omega]^2 \times \omega_1 \to 2 \text{ then there}$ is $A \in [\omega]^{\omega}$, $B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

We cannot realize more colours.

[Shelah, WSR I]

Consistently, modulo an ω_1 -Erdős cardinal, for any $c: [2^{\aleph_0}]^2 \to r$ there is an uncountable $W \subseteq 2^{\aleph_0}$ with at most 2 colours.

*

Larger tuples can define more colours... What was so specific about the colourings before? if $c: [2^{\aleph_0}]^k \to r$ and $F: 2^{\aleph_0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ then c is F-canonical on $W \subseteq 2^{\aleph_0}$ iff $c(\bar{\alpha}) = c(\bar{\beta})$ whenever $F(\bar{\alpha}) \sim F(\bar{\beta})$.

[Shelah, WSR II]

Suppose that λ is an ω_1 -Erdős cardinal in V.

Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$ satisfies the following:

 $\bigcirc 2^{\aleph 0} = \lambda$

MA₈₁ (Knaster), and

if $c_i : [\lambda]^i \to r$ for $i < k < \omega, r < \omega$, then there is $W \in [\lambda]^{\aleph_1}$ and $F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ so that

```
c_i is F-canonical on W.
```

Polarized partition relation in this model: MA_{\aleph_1} (Knaster) \Rightarrow if $g : [\omega]^2 \times \omega_1 \rightarrow 2$ then there is $A \in [\omega]^{\omega}, B \in [\omega_1]^{\omega_1}$ so that $g \upharpoonright [A]^2 \times B$ is constant.

3

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant. How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

(日) (同) (日) (日) (日)

э.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2).$

Apply WSR II: there is $|W| = \aleph_1$ and $F: W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant. How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

(日) (同) (日) (日) (日)

э.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant. How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

(日) (同) (日) (日) (日)

э.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant. How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples. Finally, look at 4-tuples $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2$. Look at splitting levels from *B*, read values on

This fixes the type of these 4-tuples too on some countable A, B.

 \Rightarrow c_{s_2} is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

∃ 990

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

 \Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim -type, so c_{so} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 \Rightarrow c_{s_2} is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 \Rightarrow c_{s_2} is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 \Rightarrow c_{s_2} is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples. Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

(日) (同) (日) (日) (日)

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type!

 $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant. How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

・ロト ・ 一日 ト ・ 日 ト

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples. Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

・ロト ・ 一日 ト ・ 日 ト

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values.

This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

・ロト ・ 一日 ト ・ 日 ト

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

・ロト ・ 一日 ト ・ 日 ト

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

・ロト ・ 一日 ト ・ 日 ト

э

Take $c : G(2^{\aleph_0}) \to 2$ and consider $c_{s_0}, c_{s_1}, c_{s_2}$ with $s_0 = (4, 4), s_1 = (2, 2, 4), s_2 = (2, 2, 2, 2)$. Apply WSR II: there is $|W| = \aleph_1$ and $F : W \hookrightarrow \mathbb{R}$ so that c_{s_i} is *F*-canonical on *W*.

Select $|A| = \aleph_0, |B| = \aleph_1$ from W so that A < B and $F''A <_{\mathbb{R}} F''B$.

⇒ all pairs $(\alpha, \beta) \in A \times B$ have the same ~-type, so c_{s_0} is constant.

How can we fix the type of triples $(\alpha,\alpha',\beta)\in A^2\times B?$ Let $g:A^2\times B\to 2$ by

 $g(\alpha, \alpha', \beta) = F(\beta)(m)$

with $m = \Delta(F(\alpha), F(\alpha'))$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_1}$ is constant too on these triples.

Finally, look at 4-tuples

 $(\alpha, \alpha', \beta, \beta') \in A^2 \times B^2.$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.

 $\Rightarrow c_{s_2}$ is constant on these 4-tuples.

Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that X + X is monochromatic.

イロト イポト イヨト イヨト

э

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

• $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??

• $G(\aleph_{\omega}) \stackrel{1}{\rightarrow} (\aleph_0)_r$ for $r < \omega$ in ZFC??

• $\mathbb{R} \stackrel{+}{\rightarrow} (\aleph_0)_r$ without large cardinals?

• unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2$???

Connected to our results:

• $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??

- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \stackrel{+}{\rightarrow} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda o [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda
ightarrow [leph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{\aleph_0} > \lambda o [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda o [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest *r* so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)$, for a particular κ (finite, or \aleph_m)??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not
ightarrow} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

- Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

• $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??

- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

• $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??

- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

э

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???

Various open problems - Thank you for your attention!

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic *k*-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???