Colouring large groups and monochromatic sumsets

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Supported in part by FWF Grant I1921.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points
of the same colour are at rational distance.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

> Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary
> long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any
nowhere measure 0 set.

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points
of the same colour are at rational distance.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any
nowhere measure 0 set

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points of the same colour are at rational distance.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any
nowhere measure 0 set

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points of the same colour are at rational distance.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any
nowhere measure 0 set

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points of the same colour are at rational distance.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points of the same colour are at rational distance.

Ramsey theory: the study of unavoidable regularity

Positive partition relations: a large object, coloured with a small number of colours, always admits monochromatic subsets/substructures of relatively large size.

Szemerédi 1975: any set $A \subset \mathbb{N}$ of positive upper density contains arbitrary long arithmetic progressions.

Shelah 1995: consistently, any function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a nowhere meager set.

Negative partition relations: the existence of a colouring without large monochromatic substructures; paradoxical decompositions.

Brown, 1977: there is a function $\mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous on any nowhere measure 0 set.

Komjáth 1994: \mathbb{R}^{n} can be coloured with \aleph_{0} colours so that no two points of the same colour are at rational distance.

Consistently, modulo some large cardinal,

if $f: \mathbb{R} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that
$f \cdot x+X$ is constant.

P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

$X+X=\{x+y: x, y \in X\}$ i.e. repetitions are allowed.

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

Consistently, modulo some large cardinal,
if $f: \mathbb{R} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that
$f \upharpoonright X+X$ is constant.
P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

Consistently, modulo some large cardinal,
if $f: \mathbb{R} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that
$f \upharpoonright X+X$ is constant.
P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017
$X+X=\{x+y: x, y \in X\}$ i.e. repetitions are allowed.

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

Consistently, modulo some large cardinal,
if $f: \mathbb{R} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that
$f \upharpoonright X+X$ is constant.
P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017
$X+X=\{x+y: x, y \in X\}$ i.e. repetitions are allowed.

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

Consistently, modulo some large cardinal,
if $f: \mathbb{R} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that
$f \upharpoonright X+X$ is constant.
P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, Z. Vidnyánszky 2017
$X+X=\{x+y: x, y \in X\}$ i.e. repetitions are allowed.

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

Consistently, modulo some large cardinal,
if $f: \mathbb{R} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that
$f \upharpoonright X+X$ is constant.
P. Komjáth, I. Leader, P. Russell, S. Shelah,
D. T. Soukup, Z. Vidnyánszky 2017
$X+X=\{x+y: x, y \in X\}$ i.e. repetitions are allowed.

- How does this fit into the theory (of partition relations)?
- Why allow repetitions and why only infinite?
- What goes into the proof of this result?

Evolving partition relations

... an incomplete overview ...

Evolving partition relations

If $f: \omega \rightarrow r$ then there is an infinite $X \subset \omega$ with $f \upharpoonright X$ constant.
P. H. Principle

$$
\omega \rightarrow(\omega)_{r}^{1}
$$

Evolving partition relations

If $f:[\omega]^{k} \rightarrow r$ then there is an infinite $X \subset \omega$ with $f \upharpoonright[X]^{k}$ constant.
P. H. Principle

$$
\omega \rightarrow(\omega)_{r}^{1}
$$

Evolving partition relations

There is $f:\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $f^{\prime \prime}[X]^{2}=2$ for any uncountable $X \subset 2^{\aleph_{0}}$.
P. H. Principle

$$
\omega \rightarrow(\omega)_{r}^{1}
$$

Evolving partition relations

If $f:\left[\beth_{k-1}^{+}\right]^{k} \rightarrow r$ then $f \upharpoonright[W]^{k}$ is constant for some uncountable $W \subseteq \beth_{k-1}^{+}$.

Erdős, Rado 1956

$$
\beth_{k-1}^{+} \rightarrow\left(\omega_{1}\right)_{r}^{k} \text { for all } r<\omega
$$

Evolving partition relations

$F S(X)=\left\{x_{0}+x_{1}+\cdots+x_{\ell}: x_{0}<\cdots<x_{\ell} \in X\right\}$ i.e. no repetitions.

Evolving partition relations

There is $f:\left[\aleph_{1}\right]^{2} \rightarrow \aleph_{1}$ so that $f^{\prime \prime}[X]^{2}=\aleph_{1}$ for any uncountable $X \subset \aleph_{1}$.
P. H. Principle

$$
\omega \rightarrow(\omega)_{r}^{1}
$$

F. P. Ramsey, 1930

$$
\omega \rightarrow(\omega)_{r}^{k}
$$

W. Sierpinski, 1933

$$
2^{\aleph_{0}} \nrightarrow\left(\aleph_{1}\right)_{2}^{2}
$$

Erdős, Rado 1956
$\beth_{k-1}^{+} \rightarrow\left(\omega_{1}\right)_{r}^{k}$ for all $r<\omega$.
N. Hindman, 1974
if $f: \mathbb{N} \rightarrow r$ then there is some infinite $X \subseteq \mathbb{N}$ so that $f \upharpoonright F S(X)$ is constant.
S. Todorcevic, 1987

$$
\aleph_{1} \nrightarrow\left[\aleph_{1}\right]_{\aleph_{1}}^{2}
$$

Evolving partition relations

If $f:\left[2^{\aleph_{0}}\right]^{2} \rightarrow 3$ then there is an uncountable $X \subset 2^{\aleph_{0}}$ with $\left|f^{\prime \prime}[X]^{2}\right| \leq 2$.
P. H. Principle

$$
\omega \rightarrow(\omega)_{r}^{1}
$$

F. P. Ramsey, 1930

$$
\omega \rightarrow(\omega)_{r}^{k}
$$

W. Sierpinski, 1933

$$
2^{\aleph_{0}} \nrightarrow\left(\aleph_{1}\right)_{2}^{2}
$$

Erdős, Rado 1956

$\beth_{k-1}^{+} \rightarrow\left(\omega_{1}\right)_{r}^{k}$ for all $r<\omega$.
N. Hindman, 1974
if $f: \mathbb{N} \rightarrow r$ then there is some infinite $X \subseteq \mathbb{N}$ so that $f \upharpoonright F S(X)$ is constant.
S. Todorcevic, 1987

$$
\aleph_{1} \nrightarrow\left[\aleph_{1}\right]_{\aleph_{1}}^{2}
$$

S. Shelah, 1988

$$
\operatorname{Con}\left(2^{\aleph_{0}} \rightarrow\left[\aleph_{1}\right]_{3}^{2}\right)
$$

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subset \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

Here $X \oplus X=\{x+y: x \neq y \in X\}$ i.e. repetitions are not allowed.

[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

Here $X \oplus X=\{x+y: x \neq y \in X\}$ i.e. repetitions are not allowed. Proof:
[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

Here $X \oplus X=\{x+y: x \neq y \in X\}$ i.e. repetitions are not allowed. Proof:

- if $f: \mathbb{N} \rightarrow r$ then let $g:[\mathbb{N}]^{2} \rightarrow r$ defined by $g(x, y)=f(x+y)$,
- if $X \subset \mathbb{N}$ and $g \upharpoonright[X]^{2}$ is constant then $f \upharpoonright X \oplus X$ is constant too.
[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

Here $X \oplus X=\{x+y: x \neq y \in X\}$ i.e. repetitions are not allowed. Proof:

- if $f: \mathbb{N} \rightarrow r$ then let $g:[\mathbb{N}]^{2} \rightarrow r$ defined by $g(x, y)=f(x+y)$, - if $X \subset \mathbb{N}$ and $g \upharpoonright[X]^{2}$ is constant then $f \upharpoonright X \oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

Here $X \oplus X=\{x+y: x \neq y \in X\}$ i.e. repetitions are not allowed.
Proof:

- if $f: \mathbb{N} \rightarrow r$ then let $g:[\mathbb{N}]^{2} \rightarrow r$ defined by $g(x, y)=f(x+y)$,
- if $X \subset \mathbb{N}$ and $g \upharpoonright[X]^{2}$ is constant then $f \upharpoonright X \oplus X$ is constant too.
[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N}

Easy Ramsey consequence: if $f: \mathbb{N} \rightarrow r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{N}$ so that

$$
f \upharpoonright X \oplus X \text { is constant. }
$$

Here $X \oplus X=\{x+y: x \neq y \in X\}$ i.e. repetitions are not allowed.
Proof:

- if $f: \mathbb{N} \rightarrow r$ then let $g:[\mathbb{N}]^{2} \rightarrow r$ defined by $g(x, y)=f(x+y)$,
- if $X \subset \mathbb{N}$ and $g \upharpoonright[X]^{2}$ is constant then $f \upharpoonright X \oplus X$ is constant too.
[Owings, Hindman 1970s] What happens if we allow repetition?

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$.
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$.
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$.
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor \bmod 4
$$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$.
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$.
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor \bmod 4
$$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$,
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor \bmod 4
$$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$,
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor \bmod 4
$$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$,
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$.
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor \bmod 4
$$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$,
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$.
\square

Monochromatic sumsets in \mathbb{N} - with repetitions?

$X+X=X \oplus X \cup\{2 x: x \in X\}$.

There is $f: \mathbb{N} \rightarrow 4$ without infinite monochromatic sumsets:

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor \bmod 4
$$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll x \in X$.
- $\left|\log _{\sqrt{2}}(x)-\log _{\sqrt{2}}(x+y)\right|<1$,
- $|f(x)-f(x+y)| \leq 1 \bmod 4$.
- $f(2 x)=\left\lfloor\log _{\sqrt{2}}(x)+2\right\rfloor=f(x)+2 \bmod 4$ so $f(2 x) \neq f(x+y)$.

Can we do this with 2 colours???

Monochromatic sumsets in \mathbb{R}

Started in [Hindman, Leader, Strauss 2015]
 If $f: \mathbb{R} \rightarrow r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

$f \upharpoonright X+X$ is constant.

Without definability?

There is an $f: \mathbb{R} \rightarrow 2$ so that

$$
f^{\prime \prime} X \oplus X=2 \text { for every uncountable } X \subset \mathbb{R} .
$$

- [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

Monochromatic sumsets in \mathbb{R}

Started in [Hindman, Leader, Strauss 2015]
 If $f: \mathbb{R} \rightarrow r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

$$
f \upharpoonright X+X \text { is constant. }
$$

Without definability?

There is an $f: \mathbb{R} \rightarrow 2$ so that

- [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

Monochromatic sumsets in \mathbb{R}

Started in [Hindman, Leader, Strauss 2015]

If $f: \mathbb{R} \rightarrow r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

$$
f \upharpoonright X+X \text { is constant. }
$$

Without definability?
There is an $f: \mathbb{R} \rightarrow 2$ so that

- [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

Monochromatic sumsets in \mathbb{R}

Started in [Hindman, Leader, Strauss 2015]
If $f: \mathbb{R} \rightarrow r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

$$
f \upharpoonright X+X \text { is constant. }
$$

Without definability?
There is an $f: \mathbb{R} \rightarrow 2$ so that

$$
f^{\prime \prime} X \oplus X=2 \text { for every uncountable } X \subset \mathbb{R}
$$

> - [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

Monochromatic sumsets in \mathbb{R}

Started in [Hindman, Leader, Strauss 2015]
If $f: \mathbb{R} \rightarrow r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

$$
f \upharpoonright X+X \text { is constant. }
$$

Without definability?
There is an $f: \mathbb{R} \rightarrow 2$ so that

$$
f^{\prime \prime} X \oplus X=2 \text { for every uncountable } X \subset \mathbb{R}
$$

- [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

Continued by [Fernandez-Breton, Rinot 2016]:

There is a colouring $f: \mathbb{R} \rightarrow \omega$ so that
$f^{\prime \prime} \times \odot X=\omega$ for every $X \subset \mathbb{R}$ of size c

For any uncountable, commutative, cancellative semigroup G there is a colouring $f: G \rightarrow \omega$ so that

Bottom line: without definabilty, infinite sumsets are best possible on \mathbb{R}

 with repetition allowed.
Continued by [Fernandez-Breton, Rinot 2016]:

There is a colouring $f: \mathbb{R} \rightarrow \omega$ so that

$$
f^{\prime \prime} X \oplus X=\omega \text { for every } X \subset \mathbb{R} \text { of size } c .
$$

For any uncountable, commutative, cancellative semigroup G there is a colouring $f: G \rightarrow \omega$ so that

Bottom line: without definabilty, infinite sumsets are best possible on \mathbb{R} with repetition allowed

Continued by [Fernandez-Breton, Rinot 2016]:

There is a colouring $f: \mathbb{R} \rightarrow \omega$ so that

$$
f^{\prime \prime} X \oplus X=\omega \text { for every } X \subset \mathbb{R} \text { of size } c
$$

For any uncountable, commutative, cancellative semigroup G there is a colouring $f: G \rightarrow \omega$ so that

$$
f^{\prime \prime} F S(X)=\omega \text { for every uncountable } X \subset G
$$

Bottom line: without definabilty, infinite sumsets are best possible on \mathbb{R} with repetition allowed

Continued by [Fernandez-Breton, Rinot 2016]:

There is a colouring $f: \mathbb{R} \rightarrow \omega$ so that

$$
f^{\prime \prime} X \oplus X=\omega \text { for every } X \subset \mathbb{R} \text { of size } c .
$$

For any uncountable, commutative, cancellative semigroup G there is a colouring $f: G \rightarrow \omega$ so that

$$
f^{\prime \prime} F S(X)=\omega \text { for every uncountable } X \subset G
$$

Bottom line: without definabilty, infinite sumsets are best possible on \mathbb{R} with repetition allowed.

Any sign of positive relations? Modulo some large cardinals, consistently

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that

f $\mathrm{H} H$ has at most ${ }^{\mathrm{N}} 0$ colours.

For any $f: \mathbb{R} \rightarrow 3$ there is an uncountable $X \subset \mathbb{R}$ so that
$f \times x-x$ has at most 2 colours.

Any sign of positive relations? Modulo some large cardinals, consistently

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that f 1 H has at most "̋o colours.

For any $f: \mathbb{R} \rightarrow 3$ there is an uncountable $X \subset \mathbb{R}$ so that $f \times x-x$ has at most 2 colours.

Any sign of positive relations? Modulo some large cardinals, consistently

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_{0} colours.

Any sign of positive relations? Modulo some large cardinals, consistently

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_{0} colours.

For any $f: \mathbb{R} \rightarrow 3$ there is an uncountable $X \subset \mathbb{R}$ so that $f \upharpoonright X \oplus X$ has at most 2 colours.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$, let
by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.

If $\operatorname{supp}(x)=a$ and $\operatorname{supp}(y)=b$ then

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$,
by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.

If $\operatorname{supp}(x)=a$ and $\operatorname{supp}(y)=b$ then

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.

If $\operatorname{supp}(x)=a$ and $\operatorname{supp}(y)=b$ then
$a \wedge b \subseteq \operatorname{supp}(x+y) \subseteq a \cup b$.

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.

If $\operatorname{supp}(x)=a$ and $\operatorname{supp}(y)=b$ then

$$
a \Delta b \subseteq \operatorname{supp}(x+y) \subseteq a \cup b
$$

Suppose that $\mathrm{c}: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{s \mid} \rightarrow 2$ by

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

$$
\text { by } \operatorname{supp}(x)=a \text { and } x(a(i))=s(i) .
$$

If $\operatorname{supp}(x)=a$ and $\operatorname{supp}(y)=b$ then

$$
a \Delta b \subseteq \operatorname{supp}(x+y) \subseteq a \cup b
$$

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$,

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

$$
\text { by } \operatorname{supp}(x)=a \text { and } x(a(i))=s(i) .
$$

If $\operatorname{supp}(x)=a$ and $\operatorname{supp}(y)=b$ then

$$
a \Delta b \subseteq \operatorname{supp}(x+y) \subseteq a \cup b
$$

Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a)
$$

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that $f \upharpoonright H$ has at most \aleph_{0} colours.

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that
$f \upharpoonright H$ has at most \aleph_{0} colours.

- let κ be an ω_{1}-Erdős: for any $d:[\kappa]^{<\omega} \rightarrow \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant for any $n<\omega$.
- \mathbb{P} : adds

- suppose that $\Vdash_{\mathbb{P}} \dot{c}: G(\check{\kappa}) \rightarrow \omega_{1}$, and define d on $[\kappa]^{<\omega}$ by
- this is a countable subset of ω_{1} by CCC ,
- find uncountable $X \subset \mathcal{K}$ so that $d\left\lceil[X]^{n}\right.$ is constant I_{n} for any $n<\omega$,
- let $H=\{x \in G(\kappa): \operatorname{supp}(x) \subset X\}$, and now

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that
$f \upharpoonright H$ has at most \aleph_{0} colours.

- let κ be an ω_{1}-Erdős: for any $d:[\kappa]^{<\omega} \rightarrow \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant for any $n<\omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{C}: G(\check{\kappa}) \rightarrow \omega_{1}$, and define d on $[\kappa]^{<\omega}$ by
- this is a countable subset of ω_{1} by ccc,
- find uncountable $X \subset \mathcal{K}$ so that $d\left\lceil[X]^{n}\right.$ is constant I_{n} for any $n<\omega$,
- let $H=\{x \in G(\kappa): \operatorname{supp}(x) \subset X\}$, and now

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that
$f \upharpoonright H$ has at most \aleph_{0} colours.

- let κ be an ω_{1}-Erdős: for any $d:[\kappa]^{<\omega} \rightarrow \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant for any $n<\omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c}: G(\check{\kappa}) \rightarrow \omega_{1}$, and define d on $[\kappa]^{<\omega}$ by

$$
d(a)=\left\{\delta<\omega_{1}: \exists s \in \mathbb{Q}^{|a|} \exists p \in \mathbb{P} \quad p \| \dot{c}(s * a)=\delta\right\} .
$$

- this is a countable subset of ω_{1} by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant I_{n} for any
- let $H=\{x \in G(k): \operatorname{supp}(x) \subset X\}$, and now

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that
$f \upharpoonright H$ has at most \aleph_{0} colours.

- let κ be an ω_{1}-Erdős: for any $d:[\kappa]^{<\omega} \rightarrow \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant for any $n<\omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c}: G(\check{\kappa}) \rightarrow \omega_{1}$, and define d on $[\kappa]^{<\omega}$ by

$$
d(a)=\left\{\delta<\omega_{1}: \exists s \in \mathbb{Q}^{|a|} \exists p \in \mathbb{P} \quad p \| \dot{c}(s * a)=\delta\right\} .
$$

- this is a countable subset of ω_{1} by ccc,
- find uncountable $X \subset \kappa$ so that d
- let $H=\{x \in G(\kappa)$ $\operatorname{supp}(x) \subset X\}$, and now

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that

$f \upharpoonright H$ has at most \aleph_{0} colours.

- let κ be an ω_{1}-Erdős: for any $d:[\kappa]^{<\omega} \rightarrow \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant for any $n<\omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c}: G(\check{\kappa}) \rightarrow \omega_{1}$, and define d on $[\kappa]^{<\omega}$ by

$$
d(a)=\left\{\delta<\omega_{1}: \exists s \in \mathbb{Q}^{|a|} \exists p \in \mathbb{P} \quad p \| \dot{c}(s * a)=\delta\right\} .
$$

- this is a countable subset of ω_{1} by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant I_{n} for any $n<\omega$,
- let $H=\{x \in G(\kappa): \operatorname{supp}(x) \subset X\}$, and now

For any $f: \mathbb{R} \rightarrow \omega_{1}$ there is an uncountable subgroup $H \leq \mathbb{R}$ so that

$f \upharpoonright H$ has at most \aleph_{0} colours.

- let κ be an ω_{1}-Erdős: for any $d:[\kappa]^{<\omega} \rightarrow \theta$, there is an uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant for any $n<\omega$.
- \mathbb{P} : adds κ many Cohen-reals, so $V^{\mathbb{P}} \models \mathbb{R} \approx G(\check{\kappa})$.
- suppose that $\Vdash_{\mathbb{P}} \dot{c}: G(\check{\kappa}) \rightarrow \omega_{1}$, and define d on $[\kappa]^{<\omega}$ by

$$
d(a)=\left\{\delta<\omega_{1}: \exists s \in \mathbb{Q}^{|a|} \exists p \in \mathbb{P} \quad p \| \dot{c}(s * a)=\delta\right\} .
$$

- this is a countable subset of ω_{1} by ccc,
- find uncountable $X \subset \kappa$ so that $d \upharpoonright[X]^{n}$ is constant I_{n} for any $n<\omega$,
- let $H=\{x \in G(\kappa): \operatorname{supp}(x) \subset X\}$, and now

$$
\Vdash_{\mathbb{P}} r \operatorname{ran}(\dot{c} \upharpoonright H) \subseteq \bigcup_{n \in \omega} I_{n} .
$$

Monochromatic sumsets - with repetitions

Recall: $\exists f: \mathbb{N} \rightarrow 4$ so that $f \mid X+X$ is not constant for an infinite $X \subset \mathbb{N}$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.

Monochromatic sumsets - with repetitions

Recall: $\exists f: \mathbb{N} \rightarrow 4$ so that $f \mid X+X$ is not constant for an infinite $X \subset \mathbb{N}$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.

Monochromatic sumsets - with repetitions

If $f: G(\kappa) \rightarrow r$ then $f \upharpoonright X+X$ is constant for some infinite $X \subset G(\kappa)$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$. Notation:

$$
G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}
$$

Monochromatic sumsets - with repetitions

$\exists f: G(\kappa) \rightarrow r$ so that $f \upharpoonright X+X$ is not constant for an infinite $X \subset G(\kappa)$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$. Notation:

$$
G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r} \text { e.g. } \stackrel{\mathbb{N}}{\stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{4}}
$$

Monochromatic sumsets - with repetitions

$\exists f: G(\kappa) \rightarrow r$ so that $f \upharpoonright X+X$ is not constant for an infinite $X \subset G(\kappa)$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
[Hindman, Leader, Strauss]

Monochromatic sumsets - with repetitions

$\exists f: \mathbb{Q} \rightarrow 72$ so that $f \upharpoonright X+X$ is not constant for an infinite $X \subset \mathbb{Q}$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$.

Monochromatic sumsets - with repetitions

$\exists f: G(m) \rightarrow 72$ so that $f \upharpoonright X+X$ is not constant for an infinite $X \subset G(m)$.

$$
\text { Let } G(\kappa)=\bigoplus_{\kappa} \mathbb{Q} \text { i.e. } x: \kappa \rightarrow \mathbb{Q} \text { with }|\operatorname{supp}(x)|<\omega \text {. E.g. } G\left(2^{\aleph_{0}}\right) \approx \mathbb{R} \text {. }
$$

[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$.
- $G(m) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$ for $m<\omega$.

Monochromatic sumsets - with repetitions

$\exists f: G\left(\aleph_{0}\right) \rightarrow 144$ so that $f \upharpoonright X+X$ is not constant for an infinite $X \subset G\left(\aleph_{0}\right)$.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$.
- $G(m) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$ for $m<\omega$.
- $G\left(\aleph_{0}\right) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{144}$

Monochromatic sumsets - with repetitions

$\exists f: G\left(\aleph_{m}\right) \rightarrow 2^{m} \cdot 144$ so that $f \upharpoonright X+X$ is not constant for an infinite X.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$.
- $G(m) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$ for $m<\omega$.
- $G\left(\aleph_{0}\right) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{144}$
- $G\left(\aleph_{m}\right) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2^{m} \cdot 144}$ for $m<\omega$.

Monochromatic sumsets - with repetitions

$\exists f: \mathbb{R} \rightarrow r$ so that $f \upharpoonright X+X$ is not constant for an infinite X.

Let $G(\kappa)=\bigoplus_{\kappa} \mathbb{Q}$ i.e. $x: \kappa \rightarrow \mathbb{Q}$ with $|\operatorname{supp}(x)|<\omega$. E.g. $G\left(2^{\aleph_{0}}\right) \approx \mathbb{R}$.
[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$.
- $G(m) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{72}$ for $m<\omega$.
- $G\left(\aleph_{0}\right) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{144}$
- $G\left(\aleph_{m}\right) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2^{m} \cdot 144}$ for $m<\omega$.

Corollary

If $2^{\aleph_{0}}<\aleph_{\omega}$ then

$$
\mathbb{R} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}
$$

for some $r<\omega$.

```
Given }s\in\mp@subsup{\mathbb{Q}}{}{<\omega}\mathrm{ and }a\in[\kappa\mp@subsup{]}{}{|s|}\mathrm{ , let
by }\operatorname{supp}(x)=a\mathrm{ and }x(a(i))=s(i)
Suppose that c: (D) O) }->2\mathrm{ , and let
cs:[k] [s]}->2\mathrm{ by
cs(a) =c(s*a).
by \(\operatorname{supp}(x)=a\) and \(x(a(i))=s(i)\).
Suppose that \(c:(0) \rightarrow 2\) and let \(c_{5}:[k]^{|s|} \rightarrow 2\) by \(c_{s}(a)=c(s * a)\).
```

```
If }\kappa\mathrm{ is large enough then there is a
```

If }\kappa\mathrm{ is large enough then there is a
large W\subseteq\kappa so that }\mp@subsup{c}{\mp@subsup{s}{i}{}}{}\mathrm{ are constant
large W\subseteq\kappa so that }\mp@subsup{c}{\mp@subsup{s}{i}{}}{}\mathrm{ are constant
on W for i=0,1,2.

```
on W for i=0,1,2.
```

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .

Positive relations through 'position invariance'

```
Given }s\in\mp@subsup{\mathbb{Q}}{}{<\omega}\mathrm{ and }a\in[\kappa\mp@subsup{]}{}{|s|}\mathrm{ , let
by supp}(x)=a\mathrm{ and }x(a(i))=s(i)
Suppose that c:\oplus\mathbb{Q}->2, and let
cs:[k] [s]}->2\mathrm{ by
cs}(a)=c(s*a)
If }\kappa\mathrm{ is large enough then there is a
large W\subseteq\kappa so that }\mp@subsup{c}{\mp@subsup{s}{i}{}}{}\mathrm{ are constant
on W for }i=0,1,2
```


Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 . Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.
by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Sunpose that $c: \oplus \mathbb{Q} \rightarrow 2$, and let
$c_{s}:[k]^{s} \rightarrow 2$ by

```
cs(a) = c(s*a).
If }\kappa\mathrm{ is large enough then there is a
large W\subseteq\kappa so that c}\mp@subsup{c}{\mp@subsup{s}{i}{}}{}\mathrm{ are constant
on 'W for }i=0,1,2
```


Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[k]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.

```
Suppose that \(c: \oplus_{\kappa} \mathbb{Q} \rightarrow 2\), and let \(c_{s}:[k]^{s \mid} \rightarrow 2\) by
If \(\kappa\) is large enough then there is a large \(W \subseteq \kappa\) so that \(c_{s_{i}}\) are constant on \(1 /\) for \(i=0,1,2\)
```


Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let

If κ is large enough then there is a
large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant
on 'W for $i=0,1,2$.

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

If κ is large enough then there is a
large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant
on ${ }^{W}$ ' for $i=0,1,2$.

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a)
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.

2

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.
2

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.

$$
c\left(2 x_{i}\right)=c_{s_{1}}\left(a_{i}\right)=0=c_{s_{2}}\left(a_{i} \cup a_{j}\right)=c\left(x_{i}+x_{j}\right) .
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.

$$
c\left(2 x_{i}\right)=c_{s_{1}}\left(a_{i}\right)=0=c_{s_{2}}\left(a_{i} \cup a_{j}\right)=c\left(x_{i}+x_{j}\right) .
$$

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[k]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a) .
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.

$$
c\left(2 x_{i}\right)=c_{s_{1}}\left(a_{i}\right)=0=c_{s_{2}}\left(a_{i} \cup a_{j}\right)=c\left(x_{i}+x_{j}\right) .
$$

Positive relations through 'position invariance'

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in[\kappa]^{|s|}$, let

$$
x=s * a \in \bigoplus_{\kappa} \mathbb{Q}
$$

by $\operatorname{supp}(x)=a$ and $x(a(i))=s(i)$.
Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \rightarrow 2$, and let $c_{s}:[\kappa]^{|s|} \rightarrow 2$ by

$$
c_{s}(a)=c(s * a)
$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that $c_{s_{i}}$ are constant on W for $i=0,1,2$.

Assume that $c_{s_{1}}$ and $c_{s_{2}}$ are both constant 0 .
Let $\alpha<\beta<\gamma_{0}<\gamma_{1}<\cdots \in W$.

Let $a_{i}=\left\{\alpha, \beta, \gamma_{i}\right\}$ and $x_{i}=\frac{1}{2} s_{1} * a_{i}$.

$$
c\left(2 x_{i}\right)=c_{s_{1}}\left(a_{i}\right)=0=c_{s_{2}}\left(a_{i} \cup a_{j}\right)=c\left(x_{i}+x_{j}\right) .
$$

If $c_{s_{0}}, c_{s_{2}}$ have the same constant then we need $\operatorname{tp}(W)=\omega+\omega$.

Corollaries

[Komjáth] and [Leader, Russell] independently

$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,

- using the Erdós-Rado theorem.
[DTS, Vidnyánszky]
$\Rightarrow G\left(\mathfrak{c}^{+}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$,
- using nolarized partition relations instead.
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ consistently from a measurable, with CH and $2^{\aleph_{1}}=\aleph_{\omega+1}$,
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently

$$
\begin{aligned}
& \Rightarrow G(\kappa) \xrightarrow{\text { + }}\left(\aleph_{0}\right)_{r} \text { where } \kappa=\beth_{2 r-1}\left(\aleph_{0}\right), \\
& \Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{\text { + }}\left(\aleph_{0}\right)_{r} \text { for } r<\omega \text { under GCH. }
\end{aligned}
$$

- using the Erdós-Rado theorem.

[DTS, Vidnyánszky]

- using polarized partition relations instead.

\square
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently
$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ under GCH.

- using the Erdős-Rado theorem.
[DTS, Vidnyánszky]
- using polarized partition relations instead.
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ consistently from a measurable, with CH and $2^{\aleph_{1}}=\aleph \ldots+1$.
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently
$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ under GCH.

- using the Erdős-Rado theorem.
[DTS, Vidnyánszky]
- using polarized partition relations instead

with CH and $2^{\aleph_{1}}=\aleph_{\omega+1}$,
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently
$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ under GCH.

- using the Erdős-Rado theorem.
[DTS, Vidnyánszky]
$\Rightarrow G\left(\mathfrak{c}^{+}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$,
- using polarized partition relations instead.
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ consistently from a measurable,
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently
$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ under GCH.

- using the Erdős-Rado theorem.
[DTS, Vidnyánszky]
$\Rightarrow G\left(\mathfrak{c}^{+}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$,
- using polarized partition relations instead.
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ consistently from a measurable,
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently
$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ under GCH.

- using the Erdős-Rado theorem.
[DTS, Vidnyánszky]
$\Rightarrow G\left(\mathfrak{c}^{+}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$,
- using polarized partition relations instead.
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ consistently from a measurable, with CH and $2^{\aleph_{1}}=\aleph_{\omega+1}$,
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Corollaries

[Komjáth] and [Leader, Russell] independently
$\Rightarrow G(\kappa) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ where $\kappa=\beth_{2 r-1}\left(\aleph_{0}\right)$,
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ under GCH.

- using the Erdős-Rado theorem.
[DTS, Vidnyánszky]
$\Rightarrow G\left(\mathfrak{c}^{+}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$,
- using polarized partition relations instead.
$\Rightarrow G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ consistently from a measurable, with CH and $2^{\aleph_{1}}=\aleph_{\omega+1}$,
- using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ-closed forcing.

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for any $r<\omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$$
\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r} \text { for any } r<\omega .
$$

The main ingredients are

- the nosition invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$$
\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r} \text { for any } r<\omega .
$$

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\rightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$$
\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r} \text { for any } r<\omega .
$$

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\rightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$$
\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r} \text { for any } r<\omega .
$$

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$$
\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r} \text { for any } r<\omega
$$

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and
- [S. Shelah, 2017]
"...you can suppose the coloring is continuous, right?"

Positive relations on \mathbb{R} - the main result

Recall: if $2^{\aleph_{0}}<\aleph_{\omega}$ then $\mathbb{R} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for some $r<\omega$.

Consistently, modulo an ω_{1}-Erdős cardinal,

$$
\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r} \text { for any } r<\omega
$$

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $M A_{\aleph_{1}}$ (Knaster), and
- [S. Shelah, 1988] Consistently, modulo an ω_{1}-Erdős cardinal, if $f:\left[2^{\aleph_{0}}\right]^{<\omega} \rightarrow r$ then there is an uncountable X and $F: X \hookrightarrow 2^{\omega}$ so that $f(\bar{x})$ only depends on the type of the finite tree $F[\bar{x}]$.

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

```
Sierpinski colouring: c: [2 ^
so that c(\alpha,\beta)=0 iff
\alpha<\beta\leftrightarrowF(\alpha)<\mp@subsup{\mathbb{R}}{}{\prime}F(\beta)
for some fixed F: 2 }\mp@subsup{}{}{\mp@subsup{\aleph}{0}{}}\hookrightarrow\mathbb{R}\simeq\mp@subsup{2}{}{\omega
```

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, I_{2}, I_{3}, I_{4}<i$:

```
2 colours on any uncountable set!
```

You can define more complicated

```
        c:[2\mp@subsup{N}{0}{}}\mp@subsup{]}{}{k}->
using an F}:\mp@subsup{2}{}{\mp@subsup{N}{0}{}}\hookrightarrow\mathbb{R}\simeq\mp@subsup{2}{}{\omega}\mathrm{ and the
values of
\Delta(x,y)}=\operatorname{min}{n:x(n)\not=y(n)}
```


Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff
$\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)$
for some fixed $F: 2^{W_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$

> Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$
> Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, I_{2}, I_{3}, I_{4}<i$:

2 colours on any uncountable set!

You can define more complicated

```
        c:[2\mp@subsup{N}{0}{*}}\mp@subsup{]}{}{k}->
using an F: 2Noc}\hookrightarrow\mathbb{R}\simeq\mp@subsup{2}{}{\omega}\mathrm{ and the
values of
\(\Delta(x, y)=\min \{n: x(n) \neq y(n)\}\).
```


Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

```
c:[2 [20}\mp@subsup{]}{}{k}->
using an F: 2}\mp@subsup{\}{0}{\mp@subsup{N}{0}{}}\hookrightarrow\mathbb{R}\simeq\mp@subsup{2}{}{\omega}\mathrm{ and the
values of
```

```
\(\Delta(x, y)=\min \{n: x(n) \neq y(n)\}\).
```

```
\(\Delta(x, y)=\min \{n: x(n) \neq y(n)\}\).
```


Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!

You can define more complicated

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.


```
2 colours on any uncountable set!
```

You can define more complicated

```
using an F: 2Noc}\hookrightarrow\mathbb{R}\simeq\mp@subsup{2}{}{\omega}\mathrm{ and the
values of
\Delta(x,y)=min{n:x(n)\not=y(n)}.
```


Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

[^0]You can define more complicated

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c : $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the

values of

$\Delta(x, y)=\min \{n: x(n) \neq y(n)\}$.

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$
so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c : $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

$$
F(\beta) \quad F(\alpha)
$$

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c : $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$
Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, l_{2}, I_{3}, I_{4}<i$:
2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c : $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$
Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, l_{2}, I_{3}, I_{4}<i$:
2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, I_{2}, I_{3}, I_{4}<i$:

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: c: $\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph 0} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$. Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, I_{2}, I_{3}, I_{4}<i$:

- $\Delta\left(\bar{t}\left(I_{1}\right), \bar{t}\left(I_{2}\right)\right)<\Delta\left(\bar{t}\left(I_{3}\right), \bar{t}\left(I_{4}\right)\right)$ iff $\Delta\left(\bar{s}\left(I_{1}\right), \bar{s}\left(I_{2}\right)\right)<\Delta\left(\bar{s}\left(I_{3}\right), \bar{s}\left(I_{4}\right)\right)$,
- $\bar{z}\left(I_{3}\right) \upharpoonright n<\operatorname{lex} \bar{t}\left(I_{4}\right) \upharpoonright n$ for $n=\Delta\left(\bar{t}\left(I_{1}\right), \bar{t}\left(I_{2}\right)\right)$
- $\bar{t}\left(I_{3}\right)(n)=0$ for $n=\Delta\left(\bar{t}\left(I_{1}\right), \bar{t}\left(I_{2}\right)\right)$

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\} .
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: $c:\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\}
$$

Positive partition relations on $\kappa=2^{\aleph_{0}}$? No way...

Sierpinski colouring: $c:\left[2^{\aleph_{0}}\right]^{2} \rightarrow 2$ so that $c(\alpha, \beta)=0$ iff

$$
\alpha<\beta \leftrightarrow F(\alpha)<_{\mathbb{R}} F(\beta)
$$

for some fixed $F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$.

2 colours on any uncountable set!
You can define more complicated

$$
c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r
$$

using an $F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}$ and the values of

$$
\Delta(x, y)=\min \{n: x(n) \neq y(n)\}
$$

Also: $\Delta^{\prime \prime}[X]^{2}$ is infinite for any infinite $X \subseteq 2^{\omega}$.
Say $\bar{t} \sim \bar{s}$ for $\bar{s}, \bar{t} \in \mathbb{R}^{i}$ iff for all $I_{1}, l_{2}, l_{3}, I_{4}<i$:

- $\Delta\left(\bar{t}\left(I_{1}\right), \bar{t}\left(I_{2}\right)\right)<\Delta\left(\bar{t}\left(I_{3}\right), \bar{t}\left(I_{4}\right)\right)$ iff $\Delta\left(\bar{s}\left(I_{1}\right), \bar{s}\left(I_{2}\right)\right)<\Delta\left(\bar{s}\left(I_{3}\right), \bar{s}\left(I_{4}\right)\right)$,
- $\bar{t}\left(I_{3}\right) \upharpoonright n<_{\text {lex }} \bar{t}\left(I_{4}\right) \upharpoonright n$ for $n=\Delta\left(\bar{t}\left(I_{1}\right), \bar{t}\left(I_{2}\right)\right)$
iff
$\bar{s}\left(I_{3}\right) \upharpoonright m<_{\text {lex }} \bar{s}\left(I_{4}\right) \upharpoonright m$ for $m=\Delta\left(\bar{s}\left(I_{1}\right), \bar{s}\left(I_{2}\right)\right)$,
- $\bar{t}\left(l_{3}\right)(n)=0$ for $n=\Delta\left(\bar{t}\left(I_{1}\right), \bar{t}\left(I_{2}\right)\right)$
iff $\bar{s}\left(I_{3}\right)(m)=0$ for $m=\Delta\left(\bar{s}\left(I_{1}\right), \bar{s}\left(I_{2}\right)\right)$.

Shelah's 'Was Sierpinski right?' papers

```
We cannot realize more colours:
[Shclah, M/SR 1]
Consistently, modulo an }\mp@subsup{\omega}{1}{}\mathrm{ -Erdós cardinal, for
any c:[ [2No}\mp@subsup{]}{}{2}->r\mathrm{ there is an uncountable
W \subset 2 ^ { N 0 } \text { with at most } 2 \text { colours.}
Larger tuples can define more colours... What
was so specific about the colourings before?
if c:[2N0}\mp@subsup{]}{}{k}->r\mathrm{ and }F:\mp@subsup{2}{}{\mp@subsup{N}{0}{}}\hookrightarrow\mathbb{R}\simeq\mp@subsup{2}{}{\omega
c(\overline{\alpha})=c(\overline{\beta})\mathrm{ whenever F(晾) }~F(\overline{\beta}).
```


[Shelah, WSR II]

Suppose that λ is an ω_{1}-Erdós cardinal in V
Then there is a forcing notion \mathbb{P} so that $V^{\mathbb{P}}$
satisfies the following:

- $2^{\aleph_{0}}=\lambda$
- $\mathrm{MA}_{\aleph_{1}}$ (Knaster), and
then there is $W \in[\lambda]^{\aleph_{1}}$ and $F: W \hookrightarrow \mathbb{R} \simeq 2^{W}$
so that

```
    ci}\mathrm{ is F-canonical on W.
then c}\mathrm{ is F-canonical on W}\subseteq\mp@subsup{2}{}{\mp@subsup{\aleph}{0}{}}\mathrm{ iff
```

then c}\mathrm{ is F-canonical on W}\subseteq\mp@subsup{2}{}{\mp@subsup{\aleph}{0}{}}\mathrm{ iff

```
Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there
is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:
[Shelah, WSR I]
Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph_{0}}\right]^{2} \rightarrow r\) there is an uncountable \(W \subset 2^{\text {No }}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?

\section*{[Shelah, WSR II]}

Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- MA \({ }_{\aleph_{1}}\) (Knaster), and
```

then there is $W \in[\lambda]^{\aleph_{1}}$ and $F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}$

``` so that
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
\(c_{i}\) is \(F\)-canonical on \(W\).
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:
[Shelah, WSR I]
Consistently, modulo an \(\omega_{1}\)-Erdős cardinal,
\(W \subseteq 2^{N_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdós cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{W}\) so that

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.
\(\star\)

Larger tuples can define more colours... What was so specific about the colourings before?
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- MA (Knaster), and then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
\(\qquad\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(\left.c^{\prime} \bar{a}\right)=c^{\prime}(\bar{\rho})\) whenever \(\Gamma^{\prime}(\bar{a}) \sim \Gamma^{\prime}(\bar{\rho})\)

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.
\(\star\)
Larger tuples can define more colours...
was so specific about the colourings before?
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- MA (Knaster), and if \(c_{i}:[\lambda]^{i} \rightarrow r\) for \(i<k<\omega, r<\omega\), then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is F-canonical on \(M \subset 2^{K_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:

- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and if \(c_{i}:[\lambda]^{i} \rightarrow r\) for \(i<k<\omega, r<\omega\), then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{W}\) so that
if \(c:\left[2^{N_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \rightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
\[
\begin{aligned}
& \text { then } c \text { is } F \text {-canonical on } W \subseteq 2^{\aleph_{0}} \text { iff } \\
& c(\bar{\alpha})=c(\bar{\beta}) \text { whenever } F(\bar{\alpha}) \sim F(\bar{\beta}) .
\end{aligned}
\]

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).

Polarized partition relation in this model: \(M A_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in\lceil\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdós cardinal in \(V\)
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{W}\) so that

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff \(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdös cardinal in \(V\) Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:
[Shelah, WSR I]
Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{\aleph_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff \(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\).
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
\(\qquad\)
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\). Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\).
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\).
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and
then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff \(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\).
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and
if \(c_{i}:[\lambda]^{i} \rightarrow r\) for \(i<k<\omega, r<\omega\), then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
\[
c_{i} \text { is } F \text {-canonical on } W \text {. }
\]

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff \(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\).
Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and
if \(c_{i}:[\lambda]^{i} \rightarrow r\) for \(i<k<\omega, r<\omega\), then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
\(c_{i}\) is \(F\)-canonical on \(W\).

Polarized partition relation in this model:
is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Shelah's 'Was Sierpinski right?' papers}

We cannot realize more colours:

\section*{[Shelah, WSR I]}

Consistently, modulo an \(\omega_{1}\)-Erdős cardinal, for any \(c:\left[2^{\aleph 0}\right]^{2} \rightarrow r\) there is an uncountable \(W \subseteq 2^{\aleph_{0}}\) with at most 2 colours.

Larger tuples can define more colours... What was so specific about the colourings before?
if \(c:\left[2^{\aleph_{0}}\right]^{k} \rightarrow r\) and \(F: 2^{N_{0}} \hookrightarrow \mathbb{R} \simeq 2^{\omega}\)
then \(c\) is \(F\)-canonical on \(W \subseteq 2^{\aleph_{0}}\) iff
\(c(\bar{\alpha})=c(\bar{\beta})\) whenever \(F(\bar{\alpha}) \sim F(\bar{\beta})\).
[Shelah, WSR II]
Suppose that \(\lambda\) is an \(\omega_{1}\)-Erdős cardinal in \(V\). Then there is a forcing notion \(\mathbb{P}\) so that \(V^{\mathbb{P}}\) satisfies the following:
- \(2^{N_{0}}=\lambda\),
- \(\mathrm{MA}_{\aleph_{1}}\) (Knaster), and
if \(c_{i}:[\lambda]^{i} \rightarrow r\) for \(i<k<\omega, r<\omega\), then there is \(W \in[\lambda]^{\aleph_{1}}\) and \(F: W \hookrightarrow \mathbb{R} \simeq 2^{\omega}\) so that
\(c_{i}\) is \(F\)-canonical on \(W\).

Polarized partition relation in this model: \(\mathrm{MA}_{\aleph_{1}}\) (Knaster) \(\Rightarrow\) if \(g:[\omega]^{2} \times \omega_{1} \rightarrow 2\) then there is \(A \in[\omega]^{\omega}, B \in\left[\omega_{1}\right]^{\omega_{1}}\) so that \(g \upharpoonright[A]^{2} \times B\) is constant.

\section*{Proving \(G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}\) in the 'WSR II' model}

Take \(c: G\left(2^{\aleph_{0}}\right) \rightarrow 2\) and consider \(c_{s_{0}}, c_{s_{1}}, c_{s_{2}}\)
with \(s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)\).
Apply M/SR II. there is \(|M /|=\aleph_{1}\) and \(F: W \hookrightarrow \mathbb{R}\) so that \(c_{s_{i}}\) is \(F\)-canonical on \(W\). Select \(|A|=\aleph_{0},|B|=\aleph_{1}\) from \(W\) so that \(A<B\) and \(F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B\).
```

How can we fix the type of triples

```
How can we fix the type of triples
(\alpha,\mp@subsup{\alpha}{}{\prime},\beta)\in\mp@subsup{A}{}{2}\timesB?
(\alpha,\mp@subsup{\alpha}{}{\prime},\beta)\in\mp@subsup{A}{}{2}\timesB?
Let g: A
Let g: A
g(\alpha,\mp@subsup{\alpha}{}{\prime},\beta)=F(\beta)(m)
g(\alpha,\mp@subsup{\alpha}{}{\prime},\beta)=F(\beta)(m)
with m=\Delta(F(\alpha),F(\mp@subsup{\alpha}{}{\prime})). Shrink using the
with m=\Delta(F(\alpha),F(\mp@subsup{\alpha}{}{\prime})). Shrink using the
polarized relation to fix the type!
polarized relation to fix the type!
=>C}\mp@subsup{C}{\mp@subsup{S}{1}{}}{}\mathrm{ is constant too on these triples.
=>C}\mp@subsup{C}{\mp@subsup{S}{1}{}}{}\mathrm{ is constant too on these triples.
Finally, look at 4-tuples
Finally, look at 4-tuples
    (\alpha,\mp@subsup{\alpha}{}{\prime},\beta,\mp@subsup{\beta}{}{\prime})\in\mp@subsup{A}{}{2}\times\mp@subsup{B}{}{2}.
    (\alpha,\mp@subsup{\alpha}{}{\prime},\beta,\mp@subsup{\beta}{}{\prime})\in\mp@subsup{A}{}{2}\times\mp@subsup{B}{}{2}.
Look at splitting levels from B, read values on
Look at splitting levels from B, read values on
branches from }A\mathrm{ , thin both to fix the values.
branches from }A\mathrm{ , thin both to fix the values.
This fixes the type of these 4-tuples too on
This fixes the type of these 4-tuples too on
some countable A, B.
some countable A, B.
C}\mp@subsup{c}{\mp@subsup{s}{2}{}}{}\mathrm{ is constant on these 4-tuples.
C}\mp@subsup{c}{\mp@subsup{s}{2}{}}{}\mathrm{ is constant on these 4-tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite \(X\) so that \(X+X\) is monochromatic.
Now, two constant values must agree of the
```

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same
\sim-type, so $C_{S_{n}}$ is constant.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and
$F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that

$A<B$ and $F^{\prime \prime} A<\infty F^{\prime \prime} B$.

```
How can we fix the type of triples
```

Let $g: A^{2} \times B \rightarrow 2$ by

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using thepolarized relation to fix the type!
$\Rightarrow C_{S_{7}}$ is constant too on these triples.
Finally, look at 4-tuples
$\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \in A^{2} \times B^{2}$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that

$A<B$ and $F^{\prime \prime} A<\infty F^{\prime \prime} B$

How can we fix the type of triples

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type!
$\Rightarrow C_{s_{1}}$ is constant too on these triples.
Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values.

This fixes the type of these 4-tuples too on
some countable A, B
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite
X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

How can we fix the type of triples

Let $g: A^{2} \times B \rightarrow 2$ by
\qquad
with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the
polarized relation to fix the type!
$\Rightarrow c_{S_{7}}$ is constant too on these triples.

Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values.

This fixes the type of these 4-tuples too on
some countable A, B
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

How can we fix the type of triples

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the

polarized relation to fix the type!

$\Rightarrow C_{S_{1}}$ is constant too on these triples.
Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the

polarized relation to fix the type!

$\Rightarrow c_{s_{1}}$ is constant too on these triples.
Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite
X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
\text { with } m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right) \text {. Shrink using the }
$$

polarized relation to fix the type!

$\Rightarrow c_{s \rightarrow}$ is constant too on these triples. Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values This fixes the type of these 4-tuples too on some countable A, B
$\Rightarrow c_{s_{n}}$ is constant on these 4 -tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the

polarized relation to fix the type!
 $\Rightarrow c_{S_{1}}$ is constant too on these triples. Finally, look at a tuples
 Look at splitting levels from B, read values on branches from A thin both to fix the values This fixes the type of these 4-tuples too on some countable A, B

$\Rightarrow c_{s_{n}}$ is constant on these 4 -tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type!
$\Rightarrow c_{S_{1}}$ is constant too on these triples Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values This fixes the type of these 4-tuples too on some countable A, B
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_{1}}$ is constant too on these triples.

Finally, look at 4-tuples

Look at splitting levels from B, read values on branches from A, thin both to fix the values This fixes the type of these 4 -tuples too on some countable A, B
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_{1}}$ is constant too on these triples.

Finally, look at 4-tuples

$$
\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \in A^{2} \times B^{2} .
$$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.

Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_{1}}$ is constant too on these triples.

Finally, look at 4-tuples

$$
\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \in A^{2} \times B^{2} .
$$

Look at splitting levels from B, read values on branches from A, thin both to fix the values.
This fixes the type of these 4-tuples too on some countable A, B.
$\Rightarrow c_{s n}$ is constant on these 4 -tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.
Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_{1}}$ is constant too on these triples.

Finally, look at 4-tuples

$$
\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \in A^{2} \times B^{2} .
$$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.
$\Rightarrow C_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite
X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.
Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_{1}}$ is constant too on these triples.

Finally, look at 4-tuples

$$
\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \in A^{2} \times B^{2} .
$$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the
three; repeat the first trick to construct infinite
X so that $X+X$ is monochromatic.

Proving $G\left(2^{\aleph_{0}}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in the 'WSR II' model

Take $c: G\left(2^{\aleph_{0}}\right) \rightarrow 2$ and consider $c_{s_{0}}, c_{s_{1}}, c_{s_{2}}$ with $s_{0}=(4,4), s_{1}=(2,2,4), s_{2}=(2,2,2,2)$.
Apply WSR II: there is $|W|=\aleph_{1}$ and $F: W \hookrightarrow \mathbb{R}$ so that $c_{s_{i}}$ is F-canonical on W.

Select $|A|=\aleph_{0},|B|=\aleph_{1}$ from W so that $A<B$ and $F^{\prime \prime} A<\mathbb{R} F^{\prime \prime} B$.

\Rightarrow all pairs $(\alpha, \beta) \in A \times B$ have the same \sim-type, so $c_{s_{0}}$ is constant.

How can we fix the type of triples

$$
\left(\alpha, \alpha^{\prime}, \beta\right) \in A^{2} \times B ?
$$

Let $g: A^{2} \times B \rightarrow 2$ by

$$
g\left(\alpha, \alpha^{\prime}, \beta\right)=F(\beta)(m)
$$

with $m=\Delta\left(F(\alpha), F\left(\alpha^{\prime}\right)\right)$. Shrink using the polarized relation to fix the type! $\Rightarrow c_{s_{1}}$ is constant too on these triples.

Finally, look at 4-tuples

$$
\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \in A^{2} \times B^{2}
$$

Look at splitting levels from B, read values on branches from A, thin both to fix the values. This fixes the type of these 4-tuples too on some countable A, B.
$\Rightarrow c_{s_{2}}$ is constant on these 4-tuples.
Now, two constant values must agree of the three; repeat the first trick to construct infinite X so that $X+X$ is monochromatic.

Various open problems

[Owings, 1974]

- $\mathbb{N} / \mathrm{A}\left(\mathrm{N}_{0}\right)_{2}$???

Connected to our results:

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2 \mathcal{N}_{n}-N \rightarrow\left[N_{1}\right]_{3}^{2}$ consistent

$$
\text { for some } m<\omega ? ? ?
$$

- Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k>3$.

We are far from a complete picture.
[Shelah, 1988]

$$
\text { for some } m<\omega ? ? ?
$$

- Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
$0 \mathbb{Z}+\left(\mathrm{N}_{0}\right)_{r}$ if $2^{N_{0}}$ is real-valued measurable?
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y$)?

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of
\mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]
e Is $2 K_{n}-\mathrm{N} \rightarrow\left[\mathrm{N}_{1}\right]_{3}$ consistent
for some $m<\omega$???

- Is $2^{\mathrm{K}_{0}}>\lambda \rightarrow\left[\mathrm{N}_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \nrightarrow\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??

- $G\left(\aleph_{\omega}\right) \rightarrow\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$\bigcirc \mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y$ (or $X \oplus Y$)?

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2^{N_{0}}=\mathrm{Nm} \rightarrow\left[\mathrm{N}_{1}\right]_{3}^{2}$ consistent
for some $m<\omega$???
- Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \nrightarrow\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??

- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$0 \mathbb{T}+\stackrel{+}{\leftrightarrows}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y$ (or $X \oplus Y$)?

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2^{K_{n}}-\mathrm{N} m \rightarrow\left[\mathrm{~N}_{1}\right]_{3}$ consistent
for some $m<\omega$???

What is the smallest r so that $G(\kappa) \nrightarrow\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??

- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$\bigcirc \mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y$ (or $X \oplus Y$)?

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$, [DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]
0 Is $2^{N_{0}}=\mathrm{Nm} \rightarrow\left[\mathrm{N}_{1}\right]_{3}^{2}$ consistent
for some $m<\omega$???

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??

- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$, [DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k>3$

We are far from a complete picture.
[Shelah, 1988]
0 is $2^{N}=\cdots m \rightarrow\left[\mathrm{~N}_{1}\right]_{3}^{2}$ consistent
for some $m<\omega$???

Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???
What is the smallest r so that $G(\kappa) \nrightarrow\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??

- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?

[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$, [DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$, [DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]
for some $m<\omega$???

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$, [DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular $\kappa\left(\right.$ finite, or $\left.\aleph_{m}\right)$??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$, [DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$

We are far from a complete picture.
[Shelah, 1988]

- Is $2^{K_{n}}-N m \rightarrow\left[N_{1}\right]_{3}^{2}$ consistent
for some $m<\omega$???
- Is $2^{\mathrm{K}_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
$-\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2 \mathrm{~N}_{0}-N \rightarrow\left[\mathrm{~N}_{1}\right]_{3}^{2}$ consistent
for some $m<\omega$???
- $1 \mathrm{~s} 2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular $\kappa\left(\right.$ finite, or $\left.\aleph_{m}\right)$??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2 \mathfrak{N}_{0}-\mathrm{N} \rightarrow\left[\mathrm{N}_{1}\right]_{3}^{2}$ consistent
for some $m<\omega$???
- Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y($ or $X \oplus Y)$?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2^{\aleph_{0}}=\aleph_{m} \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent for some $m<\omega$???
- Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

Various open problems - Thank you for your attention!

[Owings, 1974]

- $\mathbb{N} \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{2}$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{2}$ in ZFC??
- $G\left(\aleph_{\omega}\right) \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ for $r<\omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ if $2^{\aleph_{0}}$ is real-valued measurable?
- $\mathbb{R} \xrightarrow{+}\left(\aleph_{0}\right)_{r}$ without large cardinals?
- unbalanced sumsets $X+Y$ (or $X \oplus Y$)?

Monochromatic k-sumsets: $X+X+\cdots+X$?
[HLS] There is a finite colouring of $G\left(\aleph_{n}\right)$ with no infinite monochromatic k-sumsets $(n<\omega)$,
[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic k-sumsets for $k \geq 3$.

We are far from a complete picture.
[Shelah, 1988]

- Is $2^{\aleph_{0}}=\aleph_{m} \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent for some $m<\omega$???
- Is $2^{\aleph_{0}}>\lambda \rightarrow\left[\aleph_{1}\right]_{3}^{2}$ consistent???

What is the smallest r so that $G(\kappa) \stackrel{+}{\nrightarrow}\left(\aleph_{0}\right)_{r}$ for a particular κ (finite, or \aleph_{m})??

[^0]: 2 colours on any uncountable set!

