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@ a theorem of R. Rado on path @ structural properties of
decompositions, graphs with large

chromatic number,
@ results on hypergraphs v/
_ @ classical results revisited v/
@ extensions from paths to
powers of paths v @ new results on chromatic
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Path decompositions

The origins

A path in a graph G is a 1-1 sequence of vertices vy, v1,... such that
{vi,vit1} is an edge.

Theorem (R. Rado, 1978)

If the edges of the graph Ky are coloured with
finitely many colours then

the vertices can be covered by disjoint
monochromatic paths of different colours.
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Developments on the finite case

General problem (Gyarfas): given an r-edge colouring of K, is there a cover by
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Developments on the finite case

General problem (Gyarfas): given an r-edge colouring of K, is there a cover by
(disjoint) monochromatic paths (of different colours)?

Suppose that r is small:

O ("easy") Every 2-edge coloured K|, can be partitioned into 2
monochromatic paths of different colours.

© A. Pokrovskiy, 2013: Every 3-edge coloured K, can be partitioned
into 3 monochromatic paths.

Completely open: r =4 or larger.
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ordering < on V such that any two points v, w € V are connected by a
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Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph P = (V, E), we say that P is a path iff there is a well
ordering < on V such that any two points v, w € V are connected by a
<-monotone finite path.

How to imagine paths longer than type w?

Vo Vi Ve Vi+1
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Arbitrary infinite complete graphs

A path is a graph P with w.o. < so that any two points are connected by a finite
<-monotone path.
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Arbitrary infinite complete graphs

A path is a graph P with w.o. < so that any two points are connected by a finite
<-monotone path.

Problem (Rado, 1978)

Is every 2-edge coloured infinite complete graph covered by two disjoint
monochromatic paths of different colours?
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Arbitrary infinite complete graphs

A path is a graph P with w.o. < so that any two points are connected by a finite
<-monotone path.

Problem (Rado, 1978)

Is every 2-edge coloured infinite complete graph covered by two disjoint
monochromatic paths of different colours?

@ How about more colours?
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Arbitrary infinite complete graphs
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Arbitrary infinite complete graphs

The answer to Rado's question

Theorem (D.S. 2015)
Suppose that the infinite graph G = (V, E) satisfies

HueV:{uv}¢E} <|V]|

for all v € V. Then for any finite edge colouring of G the vertices can be
partitioned into disjoint monochromatic paths of different colours.
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Vertex colouring problems

Definition

The chromatic number of a graph G, denoted by Chr(G), is the least
(cardinal) number k such that the vertices of G can be covered by k
many independent sets.
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The first results

@ Tutte, 1954: There are /\-free
graphs of arbitrary large finite
chromatic number. T

thotograph by J. A Bood

Two giants of combinatorics share a passion: Erd8s and William T. Tutte
play “Go” at Tutte’s home in Westmontrose, Ontario, 1985, Another favorite
game of Erd6s’s was Ping-Pong.
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The first results

o Tutte, 1954: There are A\ -free
graphs of arbitrary large finite
chromatic number.

@ ErdGs, 1959: There are graphs
with arbitrary large girth and
arbitrary large finite
chromatic number.

thotograph by J. A Bood

Two giants of combinatorics share a passion: Erd8s and William T. Tutte
play “Go” at Tutte’s home in Westmontrose, Ontario, 1985, Another favorite
game of Erd6s’s was Ping-Pong.
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Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

o Erdés-Rado, 1959: There are
A\-free graphs with size and
chromatic number x for each
infinite .

o Erdds-Hajnal, 1966:
If Chr(G) > w then K,
embeds into G for each n € w.

In particular, cyles of length 4 and
n-connected subgraphs appear in G.J
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Chromatic number and connectivity

A set A in graph is infinitely connected iff every two points of A are connected
by infinitely many disjoint paths in A.
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Chromatic number and connectivity

A set A in graph is infinitely connected iff every two points of A are connected

by infinitely many disjoint paths in A.

[ErdGs-Hajnal, 1966, 1985...] Does every graph G with uncountable
chromatic number contain infinitely connected subgraphs with
uncountable chromatic number?

o Komjath, 1988: It is independent
of ZFC if every graph G with
|G| = Chr(G) = w; contains an
infinitely connected uncountably
chromatic subgraph.

11 / 14
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Chromatic number and connectivity

Erdés-Hajnal, 1985: What about graphs with Chr(G) = w (no size restriction)?

Theorem (D.S. 2014)

There is a graph of chromatic number wy and size continuum
without uncountable infinitely connected subgraphs.

@ in ZFC i.e. no extra axioms/forcing used,
@ the chromatic number and cardinality are best possible,

@ sparse triangle-free graphs with uncountable chromatic number can
be produced with the same machinery.

Daniel Soukup (U of T) Thesis Defence U of T 2015 12 / 14



A few words about the proof

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

T

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

T

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

Daniel Soukup (U of T) Thesis Defence U of T 2015 13 / 14



A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.
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uncountable infinitely connected
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A few words about the proof

@ consider the comparability graph of a non-special tree without
uncountable chains.

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

@ how to make sure that the chromatic
number is still large?

s a smart diagonalization of length
continuum.
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Thank you for your attention.

The infinite we do now, the finite
will have to wait a little.

P. Erdés
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