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Path de
ompositionsThe originsA path in a graph G is a 1-1 sequen
e of verti
es v0, v1, . . . su
h that
{vi , vi+1} is an edge.Theorem (R. Rado, 1978)If the edges of the graph KN are 
oloured with�nitely many 
olours thenthe verti
es 
an be 
overed by disjointmono
hromati
 paths of di�erent 
olours.
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Developments on the �nite 
aseGeneral problem (Gyárfás): given an r -edge 
olouring of Kn is there a 
over by(disjoint) mono
hromati
 paths (of di�erent 
olours)?
Suppose that r is small:1 ("easy") Every 2-edge 
oloured Kn 
an be partitioned into 2mono
hromati
 paths of di�erent 
olours.2 A. Pokrovskiy, 2013: Every 3-edge 
oloured Kn 
an be partitionedinto 3 mono
hromati
 paths.Completely open: r = 4 or larger.
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In�nite paths of arbitrary lengthDe�nition (Rado, 1978)For a graph P = (V ,E ), we say that P is a path i� there is a wellordering ≺ on V su
h that any two points v ,w ∈ V are 
onne
ted by a
≺-monotone �nite path.How to imagine paths longer than type ω?
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Arbitrary in�nite 
omplete graphsA path is a graph P with w.o. ≺ so that any two points are 
onne
ted by a �nite
≺-monotone path.
Problem (Rado, 1978)Is every 2-edge 
oloured in�nite 
omplete graph 
overed by two disjointmono
hromati
 paths of di�erent 
olours?How about more 
olours?
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Arbitrary in�nite 
omplete graphsThe answer to Rado's question
Theorem (D.S. 2015)Suppose that the in�nite graph G = (V ,E ) satis�es

|{u ∈ V : {u, v} /∈ E}| < |V |for all v ∈ V . Then for any �nite edge 
olouring of G the verti
es 
an bepartitioned into disjoint mono
hromati
 paths of di�erent 
olours.
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Vertex 
olouring problemsDe�nitionThe 
hromati
 number of a graph G, denoted by Chr(G ), is the least(
ardinal) number κ su
h that the verti
es of G 
an be 
overed by κmany independent sets. How does large 
hromati
 numbera�e
t the subgraph stru
ture?
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The �rst results
Tutte, 1954: There are △-freegraphs of arbitrary large �nite
hromati
 number.Erd®s, 1959: There are graphswith arbitrary large girth andarbitrary large �nite
hromati
 number.
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Un
ountable 
hromati
 numberWhat graphs must o

ur as subgraphs of un
ountably 
hromati
 graphs?Erd®s-Rado, 1959: There are
△-free graphs with size and
hromati
 number κ for ea
hin�nite κ.Erd®s-Hajnal, 1966:If Chr(G ) > ω then Kn,ω1embeds into G for ea
h n ∈ ω.In parti
ular, 
yles of length 4 andn-
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Chromati
 number and 
onne
tivityA set A in graph is in�nitely 
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ted i� every two points of A are 
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tedby in�nitely many disjoint paths in A.[Erd®s-Hajnal, 1966, 1985. . . ℄ Does every graph G with un
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 number 
ontain in�nitely 
onne
ted subgraphs withun
ountable 
hromati
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Thank you for your attention.
The in�nite we do now, the �nitewill have to wait a little.P. Erd®s
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