Colouring problems of Erdős and Rado on infinite graphs

Dániel T. Soukup

University of Toronto, March 20 2015

Dániel Soukup (U of T)

Thesis Defence

U of T 2015 1 / 14

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs ✓
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity √

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs ✓
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity ✓

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs ✓
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity √

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs ✓
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity √

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity √

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity √

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity √

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity ✓

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity ✓

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity ✓

Edge colouring problems:

- a theorem of R. Rado on path decompositions,
- results on hypergraphs \checkmark
- extensions from paths to powers of paths √
- extensions to uncountable graphs √

- structural properties of graphs with large chromatic number,
- ullet classical results revisited \checkmark
- new results on chromatic number and connectivity ✓

The origins

A **path** in a graph *G* is a 1-1 sequence of vertices v_0, v_1, \ldots such that $\{v_i, v_{i+1}\}$ is an edge.

Theorem (R. Rado, 1978)

If the edges of the graph $K_{\mathbb{N}}$ are coloured with finitely many colours then the vertices can be **covered by disjoint monochromatic paths of different colours**. The origins

A **path** in a graph G is a 1-1 sequence of vertices v_0, v_1, \ldots such that $\{v_i, v_{i+1}\}$ is an edge.

Theorem (R. Rado, 1978)

If the edges of the graph $K_{\mathbb{N}}$ are coloured with finitely many colours then the vertices can be **covered by disjoint monochromatic paths of different colours**. A path in a graph G is a 1-1 sequence of vertices v_0, v_1, \ldots such that $\{v_i, v_{i+1}\}$ is an edge.

Theorem (R. Rado, 1978)

If the edges of the graph $K_{\mathbb{N}}$ are coloured with finitely many colours then the vertices can be **covered by disjoint monochromatic paths of different colours**.

General problem (Gyárfás): given an *r*-edge colouring of K_n is there a cover by (disjoint) monochromatic paths (of different colours)?

Suppose that *r* is small:

- ("easy") Every 2-edge coloured K_n can be partitioned into 2 monochromatic paths of different colours.
- A. Pokrovskiy, 2013: Every 3-edge coloured K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge colouring of K_n is there a cover by (disjoint) monochromatic paths (of different colours)?

Suppose that *r* is small:

- ("easy") Every 2-edge coloured K_n can be partitioned into 2 monochromatic paths of different colours.
- A. Pokrovskiy, 2013: Every 3-edge coloured K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge colouring of K_n is there a cover by (disjoint) monochromatic paths (of different colours)?

Suppose that *r* is small:

- ("easy") Every 2-edge coloured K_n can be partitioned into 2 monochromatic paths of different colours.
- A. Pokrovskiy, 2013: Every 3-edge coloured K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge colouring of K_n is there a cover by (disjoint) monochromatic paths (of different colours)?

Suppose that *r* is small:

- ("easy") Every 2-edge coloured K_n can be partitioned into 2 monochromatic paths of different colours.
- A. Pokrovskiy, 2013: Every 3-edge coloured K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge colouring of K_n is there a cover by (disjoint) monochromatic paths (of different colours)?

Suppose that *r* is small:

- ("easy") Every 2-edge coloured K_n can be partitioned into 2 monochromatic paths of different colours.
- A. Pokrovskiy, 2013: Every 3-edge coloured K_n can be partitioned into 3 monochromatic paths.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a *path* iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

How to imagine paths longer than type ω ?

 V_0

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a *path* iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a *path* iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a *path* iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a *path* iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

For a graph P = (V, E), we say that P is a *path* iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

Arbitrary infinite complete graphs

A **path** is a graph *P* with w.o. \prec so that any two points are connected by a finite \prec -monotone path.

Problem (Rado, 1978)

Is every 2-edge coloured infinite complete graph covered by two disjoint monochromatic paths of different colours?

• How about more colours?

Arbitrary infinite complete graphs

A **path** is a graph *P* with w.o. \prec so that any two points are connected by a finite \prec -monotone path.

Problem (Rado, 1978)

Is every **2-edge coloured** *infinite complete graph covered by* **two** *disjoint monochromatic paths of different colours?*

• How about more colours?
Arbitrary infinite complete graphs

A **path** is a graph *P* with w.o. \prec so that any two points are connected by a finite \prec -monotone path.

Problem (Rado, 1978)

Is every 2-edge coloured infinite complete graph covered by two disjoint monochromatic paths of different colours?

How about more colours?

Arbitrary infinite complete graphs

The answer to Rado's question

Theorem (D.S. 2015)

Suppose that the infinite graph G = (V, E) satisfies

 $|\{u \in V : \{u, v\} \notin E\}| < |V|$

for all $v \in V$. Then for any finite edge colouring of G the vertices can be partitioned into disjoint monochromatic paths of different colours.

Theorem (D.S. 2015)

Suppose that the infinite graph G = (V, E) satisfies

 $|\{u \in V : \{u, v\} \notin E\}| < |V|$

for all $v \in V$. Then for any finite edge colouring of G the vertices can be partitioned into disjoint monochromatic paths of different colours.

The **chromatic number** of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are
 Δ-free graphs with size and
 chromatic number κ for each
 infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, **cyles of length 4** and *n*-**connected** subgraphs appear in *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

 Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.

• Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, **cyles of length 4** and *n*-**connected** subgraphs appear in *G*.

U of T 2015 10 / 14

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, **cyles of length 4** and *n*-**connected** subgraphs appear in *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, cyles of length 4 and *n*-connected subgraphs appear in *G*.

A set A in graph is **infinitely connected** iff every two points of A are connected by infinitely many disjoint paths in A.

[Erdős-Hajnal, 1966, 1985...] Does every graph *G* with uncountable chromatic number contain infinitely connected subgraphs with uncountable chromatic number?

 Komjáth, 1988: It is independent of ZFC if every graph G with |G| = Chr(G) = ω₁ contains an infinitely connected uncountably chromatic subgraph.

A set A in graph is **infinitely connected** iff every two points of A are connected by infinitely many disjoint paths in A.

[Erdős-Hajnal, 1966, 1985...] Does every graph *G* with uncountable chromatic number contain infinitely connected subgraphs with uncountable chromatic number?

 Komjáth, 1988: It is independent of ZFC if every graph G with |G| = Chr(G) = ω₁ contains an infinitely connected uncountably chromatic subgraph.

A set A in graph is **infinitely connected** iff every two points of A are connected by infinitely many disjoint paths in A.

[Erdős-Hajnal, 1966, 1985...] Does every graph *G* with uncountable chromatic number contain infinitely connected subgraphs with uncountable chromatic number?

• Komjáth, 1988: It is independent of ZFC if every graph G with $|G| = Chr(G) = \omega_1$ contains an infinitely connected uncountably chromatic subgraph.

U of T 2015

11 / 14

Thesis Defence

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- in ZFC i.e. no extra axioms/forcing used,
- the chromatic number and cardinality are best possible,
- **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- in ZFC i.e. no extra axioms/forcing used,
- the chromatic number and cardinality are best possible,
- **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

• in ZFC i.e. no extra axioms/forcing used,

- the chromatic number and cardinality are best possible,
- **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- in ZFC i.e. no extra axioms/forcing used,
- the chromatic number and cardinality are best possible,
- **sparse triangle-free graphs** with uncountable chromatic number can be produced with the same machinery.

Erdős-Hajnal, **1985**: What about graphs with $Chr(G) = \omega_1$ (no size restriction)?

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

- in ZFC i.e. no extra axioms/forcing used,
- the chromatic number and cardinality are best possible,
- sparse triangle-free graphs with uncountable chromatic number can be produced with the same machinery.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- consider the comparability graph of a non-special tree without uncountable chains.
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- consider the comparability graph of a non-special tree without uncountable chains.
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- consider the comparability graph of a non-special tree without uncountable chains.
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

The infinite we do now, the finite will have to wait a little.

P. Erdős

Dániel Soukup (U of T)

Thesis Defence

U of T 2015 14 / 14