Orientations of graphs with uncountable chromatic number

Dániel T. Soukup

http://renyi.hu/~dsoukup/

Dániel Soukup (U of Calgary)

Orientations and chromatic number

San Diego 2016 1 / 13

Goal: present results on chromatic number of directed uncountable graphs.

- first organized effort (undirected case): P. Erdős and A. Hajnal in the 1960s;
- significant contributions: **P. Komjáth**, S. Todorcevic, S. Shelah, C. Thomassen...

Goal: present results on chromatic number of directed uncountable graphs.

- first organized effort (undirected case): P. Erdős and A. Hajnal in the 1960s;
- significant contributions: P. Komjáth, S. Todorcevic, S. Shelah, C. Thomassen...

Goal: present results on chromatic number of directed uncountable graphs.

- first organized effort (undirected case): P. Erdős and A. Hajnal in the 1960s;
- significant contributions: P. Komjáth, S. Todorcevic, S. Shelah, C. Thomassen...

The **chromatic number** of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Is there a universal witness of large chromatic number?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The chromatic number of a graph G, denoted by Chr(G), is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are
 Δ-free graphs with size and
 chromatic number κ for each
 infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, **any even cycle embeds** into *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

 Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.

• Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, any even cycle embeds into *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, **any even cycle embeds** into *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, any even cycle embeds into *G*.

What cycles must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any n ∈ N there is a graph G with Chr(G) = ω₁ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If *Chr*(*G*) > ω then there is an *n* ∈ ω such that any odd cycle of length bigger than *n* embeds into *G*.

What cycles must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any $n \in \mathbb{N}$ there is a graph G with $Chr(G) = \omega_1$ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If $Chr(G) > \omega$ then there is an $n \in \omega$ such that any odd cycle of length bigger than n embeds into G.

What cycles must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any $n \in \mathbb{N}$ there is a graph G with $Chr(G) = \omega_1$ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If $Chr(G) > \omega$ then there is an $n \in \omega$ such that any odd cycle of length bigger than n embeds into G.

What cycles must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Hajnal, 1966: For any $n \in \mathbb{N}$ there is a graph G with $Chr(G) = \omega_1$ such that G does not contain odd cycles of length < n.
- Erdős et al, Thomassen 1983: If $Chr(G) > \omega$ then there is an $n \in \omega$ such that any odd cycle of length bigger than n embeds into G.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

No odd cycles of length $\leq 2n - 1$.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

No odd cycles of length $\leq 2n - 1$.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

No odd cycles of length $\leq 2n - 1$.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

No odd cycles of length $\leq 2n - 1$.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

If κ is large enough then the chromatic number of $Sh_n(\kappa)$ is large.

The dichromatic number of a digraph D, denoted by $\overline{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many **acyclic sets**.

What are the implications of large dichromatic number? How is $\vec{\chi}(D)$ related to the chromatic number of the underlying graph?

If $\vec{\chi}(D) \ge \kappa$ then the underlying directed graph must have chromatic number $\ge \kappa$.

The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

What are the implications of large dichromatic number? How is $\vec{\chi}(D)$ related to the chromatic number of the underlying graph?

If $\vec{\chi}(D) \ge \kappa$ then the underlying directed graph must have chromatic number $\ge \kappa$.

The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

What are the implications of large dichromatic number? How is $\vec{\chi}(D)$ related to the chromatic number of the underlying graph?

If $\vec{\chi}(D) \ge \kappa$ then the underlying directed graph must have chromatic number $\ge \kappa$.

The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

What are the implications of large dichromatic number? How is $\vec{\chi}(D)$ related to the chromatic number of the underlying graph?

If $\vec{\chi}(D) \geq \kappa$ then the underlying directed graph must have chromatic number $\geq \kappa$.

How about uncountable dichromatic number?

[DS, 2016] Let $\lambda = \exp_n(\kappa)$ for some $2 \le n < \omega$ and infinite κ . Then there is an orientation D of $\operatorname{Sh}_n(\lambda)$ so that whenever $G : [\lambda]^n \to \kappa$ then there is a monochromatic directed 4-cycle in D.

How about uncountable dichromatic number?

[DS, 2016] Let $\lambda = \exp_n(\kappa)$ for some $2 \le n < \omega$ and infinite κ . Then there is an orientation D of $\operatorname{Sh}_n(\lambda)$ so that whenever $G : [\lambda]^n \to \kappa$ then there is a monochromatic directed 4-cycle in D.

How about uncountable dichromatic number?

[DS, 2016] Let $\lambda = \exp_n(\kappa)$ for some $2 \le n < \omega$ and infinite κ . Then there is an orientation D of $\operatorname{Sh}_n(\lambda)$ so that whenever $G : [\lambda]^n \to \kappa$ then there is a monochromatic directed 4-cycle in D.

How about uncountable dichromatic number?

[DS, 2016] Let $\lambda = \exp_n(\kappa)$ for some $2 \le n < \omega$ and infinite κ . Then there is an orientation D of $\operatorname{Sh}_n(\lambda)$ so that whenever $G : [\lambda]^n \to \kappa$ then there is a monochromatic directed 4-cycle in D.

How about uncountable dichromatic number?

[DS, 2016] Let $\lambda = \exp_n(\kappa)$ for some $2 \le n < \omega$ and infinite κ . Then there is an orientation D of $\operatorname{Sh}_n(\lambda)$ so that whenever $G : [\lambda]^n \to \kappa$ then there is a monochromatic directed 4-cycle in D.

In particular, short odd cycles can be avoided while the dichromatic number is as large as we wish.

Recall: $C_4 \hookrightarrow G$ if $\chi(G) > \omega$.

[DS, 2016] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

- D has no directed cycles of length $\leq n$, and
- $\bigcirc \ \overline{\mathcal{C}}_{n+1} \hookrightarrow D[X] \text{ for every uncountable } X \subseteq \omega_1.$

Consistently, there are graphs with uncountable dichromatic number and arbitrarily large digirth. Compactess arguments give the [Bokal et al, 2004] result as a corollary.

Recall: $C_4 \hookrightarrow G$ if $\chi(G) > \omega$.

[DS, 2016] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that **O** has no directed cycles of length $\leq n$, and **O** $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Consistently, there are graphs with uncountable dichromatic number and arbitrarily large digirth. Compactess arguments give the [Bokal et al, 2004] result as a corollary.

Recall: $C_4 \hookrightarrow G$ if $\chi(G) > \omega$.

[DS, 2016] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that **1** D has no directed cycles of length $\leq n$, and **2** $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Consistently, there are graphs with uncountable dichromatic number and arbitrarily large digirth. Compactess arguments give the [Bokal et al, 2004] result as a corollary.

Recall: $C_4 \hookrightarrow G$ if $\chi(G) > \omega$.

[DS, 2016] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that **(a)** D has **no directed cycles of length** $\leq n$, and **(a)** $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Consistently, there are graphs with uncountable dichromatic number and arbitrarily large digirth. Compactess arguments give the [Bokal et al, 2004] result as a corollary.

Recall: $C_4 \hookrightarrow G$ if $\chi(G) > \omega$.

[DS, 2016] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that **1** D has **no directed cycles of length** $\leq n$, and **2** $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Consistently, there are graphs with uncountable dichromatic number and arbitrarily large digirth. Compactess arguments give the [Bokal et al, 2004] result as a corollary.

10 / 13

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016

Recall: $C_4 \hookrightarrow G$ if $\chi(G) > \omega$.

[DS, 2016] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that **1** D has **no directed cycles of length** $\leq n$, and **2** $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Consistently, there are graphs with uncountable dichromatic number and arbitrarily large digirth. Compactess arguments give the [Bokal et al, 2004] result as a corollary.

Recall: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Does $\chi(G) > \omega$ imply that $\overrightarrow{\chi}(D) > \omega$ for some orientation D of G?

Recall: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Does $\chi(G) > \omega$ imply that $\overrightarrow{\chi}(D) > \omega$ for some orientation D of G?

Recall: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Does $\chi(G) > \omega$ imply that $\overrightarrow{\chi}(D) > \omega$ for some orientation D of G?

Recall: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Does $\chi(G) > \omega$ imply that $\overrightarrow{\chi}(D) > \omega$ for some orientation D of G?

[DS, 2016] \diamond^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any finite bipartite *H*.

[DS, 2016] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overline{\chi}(D) \leq \omega$ for any orientation D of G.

[DS, 2016] \diamondsuit^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any finite bipartite *H*.

[DS, 2016] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overline{\chi}(D) \leq \omega$ for any orientation D of G.

[DS, 2016] \diamondsuit^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any finite bipartite *H*.

[DS, 2016] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overline{\chi}(D) \leq \omega$ for any orientation D of G.

[DS, 2016] \diamond^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any finite bipartite *H*.

[DS, 2016] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overrightarrow{\chi}(D) \leq \omega$ for any orientation D of G.

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into *D*?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into *D*?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of *D*?

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into *D*?

Does $\vec{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Suppose that G has orientations D_{ξ} so that $\sup \overrightarrow{\chi}(D_{\xi}) = \kappa$. Is there a single orientation D with $\overrightarrow{\chi}(D) = \kappa$?

Dániel Soukup (U of Calgary) Orientati