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Introduction

Goal: present results on chromatic number of directed uncountable
graphs.

first organized effort (undirected case): P. Erdős and A. Hajnal in
the 1960s;

significant contributions: P. Komjáth, S. Todorcevic, S. Shelah, C.
Thomassen...

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 2 / 13



Introduction

Goal: present results on chromatic number of directed uncountable
graphs.

first organized effort (undirected case): P. Erdős and A. Hajnal in
the 1960s;

significant contributions: P. Komjáth, S. Todorcevic, S. Shelah, C.
Thomassen...

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 2 / 13



Introduction

Goal: present results on chromatic number of directed uncountable
graphs.

first organized effort (undirected case): P. Erdős and A. Hajnal in
the 1960s;

significant contributions: P. Komjáth, S. Todorcevic, S. Shelah, C.
Thomassen...

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 2 / 13



What is the chromatic number?

Definition

The chromatic number of a graph G , denoted by Chr(G ), is the least

cardinal κ such that the vertices of G can be covered by κ many

independent sets.

How does large chromatic number
affect the subgraph structure?

Is there a universal witness of large
chromatic number?
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The first results

Tutte, 1954: There are △-free
graphs of arbitrary large finite
chromatic number.

Erdős, 1959: There are graphs
with arbitrary large girth and
arbitrary large finite
chromatic number.
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Obligatory subgraphs

What graphs must occur as subgraphs of uncountably chromatic graphs?

Erdős-Rado, 1959: There are
△-free graphs with size and
chromatic number κ for each
infinite κ.

Erdős-Hajnal, 1966:
If Chr(G ) > ω then Kn,ω1

embeds into G for each n ∈ ω.

In particular, any even cycle
embeds into G .
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Further finite obligatory subgraphs

What cycles must occur as subgraphs of uncountably chromatic graphs?

Erdős-Hajnal, 1966: For any n ∈ N

there is a graph G with Chr(G ) = ω1

such that G does not contain odd
cycles of length < n.

Erdős et al, Thomassen 1983: If
Chr(G ) > ω then there is an n ∈ ω

such that any odd cycle of length
bigger than n embeds into G .

The finite obligatory graphs are exactly the
finite bipartite graphs.
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Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b
u

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b
u v

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b
u v

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b
u v

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b
u v

b b b b

w

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



Shift graphs

Define the shift graph Shn(κ) (for 2 ≤ n < ω) on [κ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

κ

b b b b b
u v

b bbb

w

If κ is large enough then the chromatic number of Shn(κ) is large.

No odd cycles of length ≤ 2n − 1.

Dániel Soukup (U of Calgary) Orientations and chromatic number San Diego 2016 7 / 13



The dichromatic number of digraphs

Definition

The dichromatic number of a digraph D, denoted by −→χ (D), is the least

cardinal κ such that the vertices of D can be covered by κ many

acyclic sets.

What are the implications of large dichromatic number? How is −→χ (D)
related to the chromatic number of the underlying graph?

If −→χ (D) ≥ κ then the underlying directed graph must have chromatic
number ≥ κ.
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The girth and dichromatic number

[Bokal et al, 2004] There are digraphs with arbitrary large digirth and
arbitrary large finite dichromatic number.

How about uncountable dichromatic number?

[DS, 2016] Let λ = exp
n
(κ) for some 2 ≤ n < ω and infinite κ. Then

there is an orientation D of Shn(λ) so that whenever G : [λ]n → κ then
there is a monochromatic directed 4-cycle in D.

In particular, short odd cycles can be avoided while the dichromatic
number is as large as we wish.
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Even cycles and dichromatic number

Recall: C4 →֒ G if χ(G) > ω.

[DS, 2016] Consistently, for each n ∈ ω there is a digraph D = Dn on
vertex set ω1 so that

1 D has no directed cycles of length ≤ n, and

2
−→
C n+1 →֒ D[X ] for every uncountable X ⊆ ω1.

Consistently, there are graphs with uncountable dichromatic number
and arbitrarily large digirth. Compactess arguments give the [Bokal et
al, 2004] result as a corollary.
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Chromatic and dichromatic number

Recall: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function f : N → N so that
χ(G ) ≥ f (n) implies −→χ (D) ≥ n for some orientation D of G?

Even the existence of f (3) is open.

Does χ(G ) > ω imply that −→χ (D) > ω for some orientation D of G?
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Yes and no.

[DS, 2016] ♦+ implies that every graph G with χ(G ) = |G | = ω1 has

an orientation D so that
−→
C 4 →֒ D[X ] whenever χ(G [X ]) = ω1.

−→
C 4 can be substituted by any finite bipartite H.

[DS, 2016] Consistently, there is a graph G with χ(G ) = |G | = ω1 so
that −→χ (D) ≤ ω for any orientation D of G .
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A few open problems

Is there an elementary way of defining a digraph D with −→χ (D) > ω?

Does −→χ (D) > ω imply that cycles of all but finitely many length
embed into D?

Does −→χ (D) > ω imply that there is a strongly 2-connected subgraph of
D?

Suppose that G has orientations Dξ so that sup−→χ (Dξ) = κ. Is there a
single orientation D with −→χ (D) = κ?
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