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Colour the points of a topological space X with red and
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Cantor-space in X.
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Introduction

Here is my-only the usual method for proving theorems:
enumerate the objectives — inductively meet these goals.
Colour the points of a topological space X with red and

blue so that both colors appear on any copy of the
Cantor-space in X.

@ list all Cantor subspaces of X, and
@ inductively declare one point red and one point blue from each.

If there are more than ¢ such subspaces then, after continuum many
steps, we could have accidentally covered some Cantor-subspace with red
points only.
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Goals - a short tutorial

@ explore a general framework for inductive constructions,
o arbitrary large structures by countable/continuum sized pieces,

o how avoid the previous types of problems?
@ demonstrate the applicability through entertaining examples:
o paradoxical decompositions of the plane, and

@ Bernstein-decompositions of arbitrary topological spaces.
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Goals - a short tutorial

@ explore a general framework for inductive constructions,
o arbitrary large structures by countable/continuum sized pieces,

o how avoid the previous types of problems?

@ demonstrate the applicability through entertaining examples:
o paradoxical decompositions of the plane, and

@ Bernstein-decompositions of arbitrary topological spaces.

Based on
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]

a joint paper with L. Soukup.
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P. Erdés

[Sierpinski, 1919] CH holds iff
R? = Sy U S; so that
@ Sy has countable vertical
segments, and

@ S; has countable horizontal
segments.
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Sierpinski and CH

“There is a beautiful theorem of Sierpinski. | remember how

surprised | was when | first saw it. [...] It is a very simple

theorem by present standards but it was very startling then.”
P. Erdés

[Sierpinski, 1919] CH holds iff [Sierpinski, 1933] CH implies that
R? = Sy U S; so that R? is the union of countably many
curves i.e. rotated graphs of

@ Sy has countable vertical
single-valued functions.

segments, and

@ S; has countable horizontal
segments.

Is CH necessary here?

How about 2% < X,?

ESTC, July 2017
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R. O. Davies and covering without CH

Let ©; denote distinct directions, £; the lines in direction ©;.

[Davies, 1963] 2% < X, iff

() R2=SyU---US, so that [LNS;| < Vg for all L € L;.
[cover by n+ 1 sets with countable sections]
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Let ©; denote distinct directions, £; the lines in direction ©;.

[Davies, 1963] 2% < X, iff

() R2=SyU---US, so that [LNS;| < Vg for all L € L;.
[cover by n+ 1 sets with countable sections]

(1) R2=SyU---US,s1 sothat [LNS;| < Vg forall L€ L;.

[cover by n + 2 sets with finite sections]
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R. O. Davies and covering without CH

Let ©; denote distinct directions, £; the lines in direction ©;.

[Davies, 1963] 2% < X, iff

() R2=SyU---US, so that [LNS;| < Vg for all L € L;.
[cover by n+ 1 sets with countable sections]

(1) R2=SyU---US,s1 sothat [LNS;| < Vg forall L€ L;.

[cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, R? is the union of countably many curves i.e.
R2=S,US U... sothat [LNS;| < 1forall LeL;.

[cover by N; sets with one-element sections]
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Sierpinski and CH - the proof

CH implies that R> = Sy U S; U... sothat [LNS;| <1 forall L € L;.

o fix distinct directions ©;,

@ if you want to cover a countable
Ro ={ro,r ...} only then we can put
ri € 5,'

@ what prevents us from adding an extra
point r to the union of S;'s?

r is constructible from ©;,©; and previous points from §;, SJJ
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countable R, for o < wy,
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CH implies that R? is the union of countably many rotated graphs of functions.

If the union of S;'s is closed under con-
structibility then any new r € R? can
be added to all but at most one S;.
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Sierpinski and CH - the proof

CH implies that R? is the union of countably many rotated graphs of functions.

If the union of S;'s is closed under con-
structibility then any new r € R? can
be added to all but at most one S;.

@ use CH, to write R? as a continuous, increasing union of
countable R, for o < wy,

@ make sure that each R, is closed under constructibility.
@ if the S;'s union is R, then list Ry4+1 \ Ry as {tn : n < w},

® put t, into Sy, or Sy,.1, wherever we allowed. Why is this possible?

o 7 if both 2n and 2n + 1 are bad for t, then t, is constructible from
points in R, and hence t, € R, 4
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@ any countable set is included in a
countable set closed under
constructibility;

@ we could have closed under all first
order operations, still countable;
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Filtrations by elementary submodels

The sequence (Ry)a<w, is called a filtration of R? sometimes.

@ any countable set is included in a
countable set closed under

constructibility; .
Y We take closure using

@ we could have closed under all first elementary submodels: M < H
order operations, still countable; iff M C H and

ME® o HES®

for all first order ® with
parameters from M.
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@ any countable set is included in a
countable set closed under
constructibility;

We take closure using
@ we could have closed under all first elementary submodels: M < H
order operations, still countable; iff M C H and
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Filtrations by elementary submodels

The sequence (Ry)a<w, is called a filtration of R? sometimes.

@ any countable set is included in a
countable set closed under
constructibility;

We take closure using

@ we could have closed under all first elementary submodels: M < H

order operations, still countable; iff M C H and
@ H = H(#) and the real universe V ME®— HE®

agrees on properties of structures of

size << 0: for all first order ¢ with

~ parameters from M.

@ for any countable x C H(0) there is /

a countable x C M < H();
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Filtrations by elementary submodels

For any infinite x C H(0) there is M < H(0) of size |x| covering x.
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Given a set R C H(#) of size N; there is a continuous, increasing sequence
of countable elementary submodels (M, )<, of H(6) covering R.
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Filtrations by elementary submodels

For any infinite x C H(0) there is M < H(0) of size |x| covering x.

Given a set R C H(#) of size N; there is a continuous, increasing sequence
of countable elementary submodels (M, )<, of H(6) covering R.

@ build inductively, taking unions at limit steps,

@ this ensures continuity which also implies elementarity at limits;

[CH] We can choose R, = M, M R? where (M,)a<4, is a continuous,

increasing sequence of countable elementary submodels of H(c™) covering
R2.

Daniel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017 9/ 24



Filtrations by elementary submodels

For any infinite x C H(0) there is M < H(0) of size |x| covering x.

Given a set R C H(#) of size N; there is a continuous, increasing sequence
of countable elementary submodels (M, )<, of H(6) covering R.

@ build inductively, taking unions at limit steps,

@ this ensures continuity which also implies elementarity at limits;

[CH] We can choose R, = M, M R? where (M,)a<4, is a continuous,
increasing sequence of countable elementary submodels of H(c™) covering
R2.

Note: we can never cover X, by an increasing sequence of countable
sets.
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Davies' idea - what can we do without CH?

[Davies, 1963] Take R? and cover with M of size .

@ write My as a continuous increasing (M, )q<. €ach of size < ¢ = |My|;

@ if M, is uncountable, write it as a continuous increasing (M,3)3< so
that [Mug| < |Mo| =

@ repeat until all terminal models are countable.

Mao M1
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[Davies, 1963] Take R? and cover with M of size .

@ write My as a continuous increasing (M, )q<. €ach of size < ¢ = |My|;

@ if M, is uncountable, write it as a continuous increasing (M,3)3< so
that [Mug| < |Mo| =

@ repeat until all terminal models are countable.

. S M

@ we have a tree indexed by O t
finite sequences of ordinals, if 20 <N, then  _____________
height < n .

@ <o Well orders the terminal
nodes,

U{Ms : s <jex t terminal} =
the union of |t|-many el. subm.
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sequence (M, : a < k) of elementary submodels of H() so that

(1) IMy| =w and x € M,, for all a < &,

() % C U, Ma, and

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
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Suppose that & is cardinal, x is a set. Then there is kK << # and a
sequence (M, : a < k) of elementary submodels of H() so that

(1) IMy| =w and x € M,, for all a < &,
[countable models with all the parameters]

(1) & € Uger Ma, and [cover k]

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
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Davies-trees in general

Theorem [Davies, Milovich]

Suppose that & is cardinal, x is a set. Then there is kK << # and a
sequence (M, : a < k) of elementary submodels of H() so that

(1) IMy| =w and x € M,, for all a < &,
[countable models with all the parameters]

(1) & € Uger Ma, and [cover k]

(I11) for every B < k there is mg € N and models Ng; < H(6) such that
x € Ngj for j < mg and

M<5: U{Ma o< ,3}: U{NBJ < mﬂ}.

[initial segments are finite unions of models]

We call (M, : @ < k) a Davies-tree for ~ over x.
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Let (My)a<c be a Davies-tree covering R? so that ©; € M,,.

@ Step a: distribute the countable R?2 N M, \ M., among the S;;
o let R2N M, \ Mcy = {tn}new, find iy < iy < ... so t, € S; works;

o recall that M_,= [J{Na :j < my} is a finite union, so

there is at most m, many / > i,_1 so we cannot put t, into S;.

@ 7 suppose r; € 5; N M., witnesses that t, can't go into S;,
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Sierpinski without CH

R2=SUS U... sothat [LNS;| < 1forall LeL;.

Let (My)a<c be a Davies-tree covering R? so that ©; € M,,.

@ Step a: distribute the countable R?2 N M, \ M., among the S;;
o let R2N M, \ Mcy = {tn}new, find iy < iy < ... so t, € S; works;

o recall that M_,= [J{Na :j < my} is a finite union, so

there is at most m, many / > i,_1 so we cannot put t, into S;.

@ 7 suppose r; € 5; N M., witnesses that t, can't go into S;,
o pigeon hole: there is a j < m, and i < /" so that r;, riy € Ny j,

o but t, is constructible from r;, ri so t, € Noj C Mcq 4

@ so almost all choices of i, works. O
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Applications - new and old

Davies-trees are not a new techniques but under the radar so far...
e [R. O. Davies, 1960s] various paradoxical coverings of R?,

[S. Jackson, R. D. Mauldin, 2002] There is a subset of R? which
intersects each isometric copy of Z x Z in exactly one point,

o [D. Milovich, 2008] Base properties of compact spaces,
Freese-Nation property, and developed nicer Davies-trees,

implicitly, in many other proofs...

various other applications in our new paper:
o refining almost disjoint families of [x]”,
o conflict-free colourings of almost disj. A C [wm]”,

o subgraph structure of uncountably chromatic graphs.

Daniel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017
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x| < w implies x € M.
@ for any x C H(#) there is a countably closed M < H(#) of size |x|“;

@ c.c. models of size ¢ are very useful in various situations:
o [Arhangelskii, 1969] Any compact, first countable space has size < ¢;

o [Erdés, Rado, 1956] ¢t — (w;)?
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Countably closed models

Countable models — enumeration in type w,
— deal with finite pieces one at a time.

M is countably closed if x C M,

x| < w implies x € M.
@ for any x C H(#) there is a countably closed M < H(#) of size |x|“;

@ c.c. models of size ¢ are very useful in various situations:
o [Arhangelskii, 1969] Any compact, first countable space has size < ¢;

o [Erdés, Rado, 1956] ¢t — (w;)?

w"

Can we make Davies-trees from countably closed models of size ¢?
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High Davies-trees

We say that a high Davies-tree for x over x is a sequence (M,, : a < k)
of elementary submodels of H(#) for some large enough regular  such that

(1) [Ma]® € My, [My| = ¢ and x € M, for all a < &,
(1) [#]* €U, Ma, and

(1) for each < k there are Ng;j < H(#) with [Ng ;] C Ng; and
x € Ngj for j < w such that

M g= U{Ma fa < fl= U{NB,J' j <wh.
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High Davies-trees

We say that a high Davies-tree for x over x is a sequence (M,, : a < k)
of elementary submodels of H(#) for some large enough regular  such that

(1) [Ma]® € My, [My| = ¢ and x € M, for all a < &,

(”) [H]W C UO&</€ MU“ and

(1) for each < k there are Ng;j < H(#) with [Ng ;] C Ng; and
x € Ngj for j < w such that

M g= U{Ma fa < fl= U{NB,J' j <wh.

Note that k¥ = k if there is a high Davies-tree for .
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Existence of high Davies-trees

A high Davies-tree for « over x
is a sequence (M, : a < k) s.t.
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Existence of high Davies-trees

() x e My < H(0) is c.c. of size ¢,
A high Davies-tree for « over x w
is a sequence (M, : @ < k) s.t. () [£]” € Uacn Mo, and
() Meq = U{Na,:j < w} for some
cc. x € Ny j < H(0).
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Existence of high Davies-trees

() x e My < H(0) is c.c. of size ¢,
A high Davies-tree for « over x w
is a sequence (M, : @ < k) s.t. () [£]” € Uacn Mo, and
() Meq = U{Na,:j < w} for some
cc. x € Ny j < H(0).

[DS, LS] There are high Davies-tree for any uncountable x < ¢t,
e.g. for v =N, if n < w.
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Existence of high Davies-trees

() x e My < H(0) is c.c. of size ¢,
(1) [£]° € Uacr Ma, and

() Meq = U{Na,:j < w} for some
cc. x € Ny j < H(0).

A high Davies-tree for « over x
is a sequence (M, : a < k) s.t.

[DS, LS] There are high Davies-tree for any uncountable x < ¢*¥,
e.g. for k =N, if n < w.

Theorem [DS, LS]

There are high Davies-tree for any uncountable x if V = L.
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Existence of high Davies-trees

() x e My < H(0) is c.c. of size ¢,

A high Davies-tree for « over x w
is a sequence (M, : @ < k) s.t. () [£]” € Uacn Mo, and

() Meq = U{Na,:j < w} for some
cc. x € Ny j < H(0).

Main Theorem [DS, LS]

There are high Davies-tree for & if s = k and
u® = ut, pis w-inaccessible and [J,, holds

for all ¢ < p < K with cf(p) = w.
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Existence of high Davies-trees

() x e My < H(0) is c.c. of size ¢,

A high Davies-tree for « over x

is a sequence (M, : @ < k) s.t. () [£]” € Uacn Mo, and

() Meq = U{Na,:j < w} for some
cc. x € Ny j < H(0).

Main Theorem [DS, LS]

There are high Davies-tree for & if s = k and

u? = ut, pis w-inaccessible and [J,, holds

for all ¢ < pu < K with cf(p) = w.

Remark: no high Davies-trees for k > R, if (R,4+1,N,) — (X1, Ro).

17 / 24
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Coloring topological spaces

A Bernstein-decomposition of X is a map f : X — ¢ so that f[C] = ¢ for all
C C X homeomorphic to the Cantor set.
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C C X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?
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Coloring topological spaces

A Bernstein-decomposition of X is a map f : X — ¢ so that f[C] = ¢ for all
C C X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size < ¢ admits a
Bernstein-decomposition.

Daniel Soukup (KGRC)

Infinite combinatorics plain and simple ESTC, July 2017 18 / 24



Coloring topological spaces

A Bernstein-decomposition of X is a map f : X — ¢ so that f[C] = ¢ for all
C C X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size < ¢ admits a
Bernstein-decomposition.

[Nesetril, Pelant, R&dl, 1977] There is a T; topology Y (on R?)
so that Y — (Cantor)!.
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Coloring topological spaces

A Bernstein-decomposition of X is a map f : X — ¢ so that f[C] = ¢ for all
C C X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size < ¢ admits a
Bernstein-decomposition.

[Nesetril, Pelant, R&dl, 1977] There is a T; topology Y (on R?)
so that Y — (Cantor)!.

[W. Weiss, 1980] Any T, topological space has a
Bernstein-decomposition if p* = p* and O, for all cf(p) = w < ¢ < p.
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Coloring topological spaces

A Bernstein-decomposition of X is a map f : X — ¢ so that f[C] = ¢ for all
C C X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size < ¢ admits a
Bernstein-decomposition.

[Nesetril, Pelant, R&dl, 1977] There is a T; topology Y (on R?)

so that Y — (Cantor)!.

[W. Weiss, 1980] Any T, topological space has a
Bernstein-decomposition if p* = p* and O, for all cf(p) = w < ¢ < p.

@ see “Partitioning topological spaces" by Weiss, 1990 for a survey.
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Coloring topological spaces

A Bernstein-decomposition of X is a map f : X — ¢ so that f[C] = ¢ for all
C C X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size < ¢ admits a
Bernstein-decomposition.

[Nesetril, Pelant, R&dl, 1977] There is a T; topology Y (on R?)

so that Y — (Cantor)!.

[W. Weiss, 1980] Any T, topological space has a

Bernstein-decomposition if p* = p* and O, for all cf(p) = w < ¢ < p.
@ see “Partitioning topological spaces" by Weiss, 1990 for a survey.

[Shelah, 2004] Using a supercompact, consistently
there is a 0-dim, T, space X of size 8,1 without Bernstein-decomposition.
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Bernstein-decompositions from high Davies-trees
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X,
then X has a Bernstein-decomposition.}
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X,
then X has a Bernstein-decomposition.J

@ suppose that (M)« is the high Davies-tree for x over X,
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X,
then X has a Bernstein-decomposition.J

@ suppose that (M)« is the high Davies-tree for x over X,

o we define f, : X — ¢ where X, = XN M.,

Daniel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017 19 / 24



Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X,
then X has a Bernstein-decomposition.J

@ suppose that (M)« is the high Davies-tree for x over X,

o we define f, : X — ¢ where X, = XN M.,

@ note that if C C X is Cantor then C € M., for some a < k,
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X,
then X has a Bernstein-decomposition.J

@ suppose that (M)« is the high Davies-tree for x over X,

o we define f, : X — ¢ where X, = XN M.,

@ note that if C C X is Cantor then C € M., for some a < k,
@ there is a countable D C X so that clx(D) = C,
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X, J

then X has a Bernstein-decomposition.

@ suppose that (M)« is the high Davies-tree for x over X,

o we define f, : X — ¢ where X, = XN M.,

@ note that if C C X is Cantor then C € M., for some a < k,
@ there is a countable D C X so that clx(D) = C,

o De[X]¥ C My, soD e M, and clx(D) = C € M, for some a.
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size .

If there is a high Davies-tree for x over X, J

then X has a Bernstein-decomposition.

@ suppose that (M)« is the high Davies-tree for x over X,
o we define f, : X — ¢ where X, = XN M.,

@ note that if C C X is Cantor then C € M., for some a < k,
@ there is a countable D C X so that clx(D) = C,

o De[X]¥ C My, soD e M, and clx(D) = C € M, for some a.

@ we make sure that
‘if CC X, Ce M., and Cis Cantor then f,[C] = c.‘
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Bernstein-decompositions from high Davies-trees
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Bernstein-decompositions from high Davies-trees

Goal: given f,, : Xeq — ¢

X<(y = Xﬂ M<a
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — c extend to o1 : Xegi1 — ¢

XN M,
X<a:XﬁM<a
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

for1[C] = cforall C € Myys.

XN M,
X<a:XﬁM<a
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

XN M,
X<a:XﬁM<a
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some
C € M, \ M., by accident already?

X<(y = Xﬂ M<a
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Moo =U{No:j <w}
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C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Moo =U{No:j <w}
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fat1[C]l = cforall C € M, \ M_,.
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C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
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0 Moo =U{No:j <w}
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Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Moo =U{No:j <w}
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Mco =U{Noj:j<w}so
|C N Ny j| > w for some j,
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or ;
fa[C N X<a] = \\\‘\/' """ il’\

0 Mco =U{Noj:j<w}so
|C N Ngyj| > w for some j,

o :
\ DcCnhN,/

@ pick ctble dense D C C N Ny,
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or ;
fa[C N X<a] = \\\‘\/' """ il’\

0 Mco =U{Noj:j<w}so
|C N Ngyj| > w for some j,

o :
\ DcCnhN,/

@ pick ctble dense D C C N Ny,
so D € N, too.
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Mco =U{Noj:j<w}so
|C N Ny j| > w for some j,

@ pick ctble dense D C C N Ny,

so D € N, too. o C*=clx(D) € Nuj € My,
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xoo — ¢ extend to 41 : Xeqr1 — ¢ so that

fat1[C]l = cforall C € M, \ M_,.

Maybe we colored some

C € M, \ M., by accident already? XN M,
X<(y = X ﬁ M<(y

|C N Xeo| <w or
fa[C N X<Ot] =C.

0 Mco =U{Noj:j<w}so
|C N Ny j| > w for some j,

@ pick ctble dense D C C N Ny, .
so D € N, too. o (" =clx(D) € Naj € Mcq
and so

¢ = £,[C*] C £[C N Xeal.
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xco — ¢ extend to fy41 1 Xcgt1 — ¢ so that

fat1[Cl = cforall C € M, \ M.

Maybe we colored some

C € M, \ M., by accident already? X N M,
X<oz =XN M<oz

|C N Xeq| <w or
fa[C N Xen] = c.
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xco — ¢ extend to fy41 1 Xcgt1 — ¢ so that

fat1[Cl = cforall C € M, \ M.

Maybe we colored some

C € M, \ M., by accident already? X N M,
X<oz =XN M<oz

|C N Xeq| <w or
fa[C N Xen] = c.

Let {Ce: & <} list Ce My \ Mg
s.it. |CNXeo| <w, each ¢ times.
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xco — ¢ extend to fy41 1 Xcgt1 — ¢ so that

fat1[Cl = cforall C € M, \ M.

Maybe we colored some
C € M, \ M., by accident already?

|C N Xeq| <w or
fa[C N Xen] = c.

Let {Ce: & <} list Ce My \ Mg
s.it. |CNXeo| <w, each ¢ times.

Pick ye € Ce \ (Xca U {yc : ¢ < &}).
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Bernstein-decompositions from high Davies-trees

Goal: given f, : Xco — ¢ extend to fy41 1 Xcgt1 — ¢ so that

fat1[Cl = cforall C € M, \ M.

Maybe we colored some

C € M, \ M., by accident already? X N M,
X<oz =XN M<oz

|C N Xeq| <w or
fa[C N Xen] = c.

Let {Ce: & <} list Ce My \ Mg
s.it. |CNXeo| <w, each ¢ times.

Pick ye € Ce \ (Xca U{ye : ¢ < €}).
Ye 3 \ (X<a {yC ) Let fa+1()’§) =vif Ceis the vt"-time

we see C¢. O
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
° ([/{]w, C) has the weak Freese-Nation property,
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
° ([/{]w, C) has the weak Freese-Nation property,

o 3 saturated almost disj. families in [x]",

Daniel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017



Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
° ([/{]w, C) has the weak Freese-Nation property,

o 3 saturated almost disj. families in [x]",

sage Davies-tree = high D-tree + | (M, : a < 8) € Mg|for all 5 < k.
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
° ([/{]w, C) has the weak Freese-Nation property,

o 3 saturated almost disj. families in [x]",

sage Davies-tree = high D-tree + | (M, : a < 8) € Mg|for all 5 < k.

If 74 sage Davies-tree for x + CH holds then
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
° ([/{]w, C) has the weak Freese-Nation property,

o 3 saturated almost disj. families in [x]",

sage Davies-tree = high D-tree + | (M, : a < 8) € Mg|for all 5 < k.

If 74 sage Davies-tree for x + CH holds then

@ - splendid topological spaces of size x,
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Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If 3 high Davies-trees for x + CH holds then
° ([/{]w, C) has the weak Freese-Nation property,

o 3 saturated almost disj. families in [x]",

sage Davies-tree = high D-tree + | (M, : a < ) € Mg|for all 8 < K

If 74 sage Davies-tree for x + CH holds then
@ - splendid topological spaces of size x,

@ 3 cofinal Kurepa-families in [x]”

Daniel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017
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Some open problems in the neighbourhood
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Some open problems in the neighbourhood

There is f : R" — w such that there are

@ no monochromatic rational distances [Komjath], or

@ no monochromatic triangles with non-zero rational area [Schmerl].

Daniel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017 23 /24



Some open problems in the neighbourhood

There is f : R" — w such that there are

@ no monochromatic rational distances [Komjath], or

@ no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are ¢ points in the Hilbert-space ¢? so that any two
distinct points have rational distance.
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Some open problems in the neighbourhood

There is f : R" — w such that there are

@ no monochromatic rational distances [Komjath], or

@ no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are ¢ points in the Hilbert-space ¢? so that any two
distinct points have rational distance.

[Komjath] Are there ¢ points in £ so that any three form a triangle
with non-zero rational area?
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Some open problems in the neighbourhood

There is f : R" — w such that there are

@ no monochromatic rational distances [Komjath], or

@ no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are ¢ points in the Hilbert-space ¢? so that any two
distinct points have rational distance.

[Komjath] Are there ¢ points in £ so that any three form a triangle
with non-zero rational area?

A 2-point set A C R? is such that |AN ¢| = 2 for every line £ C R2.
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Some open problems in the neighbourhood

There is f : R" — w such that there are

@ no monochromatic rational distances [Komjath], or

@ no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are ¢ points in the Hilbert-space ¢? so that any two
distinct points have rational distance.

[Komjath] Are there ¢ points in £ so that any three form a triangle
with non-zero rational area?

A 2-point set A C R? is such that |AN ¢| = 2 for every line £ C R2.

[Sierpinski/Erdés] Is there a Borel 2-point set? J
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Some open problems in the neighbourhood

There is f : R" — w such that there are

@ no monochromatic rational distances [Komjath], or

@ no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are ¢ points in the Hilbert-space ¢? so that any two
distinct points have rational distance.

[Komjath] Are there ¢ points in £ so that any three form a triangle
with non-zero rational area?

A 2-point set A C R? is such that |AN ¢| = 2 for every line £ C R2.

[Sierpinski/Erdés] Is there a Borel 2-point set? J

Fremlin is offering £34 for "communicating a solution to him".
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[Sierpinski/Erdés] Is there a Borel 2-point set? J

Fremlin is offering £34 for "communicating a solution to him".
Efimov's problem pays £13, or £10 under MA + ¢ > N;.
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