How to make infinite combinatorics simple?

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Introduction

Here is myonly the usual method for proving theorems: enumerate the objectives \longrightarrow inductively meet these goals.

> Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Introduction

Here is the usual method for proving theorems:

enumerate the objectives \longrightarrow inductively meet these goals.

> Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Introduction

Here is the usual method for proving theorems: enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Introduction

Here is my the usual method for proving theorems: enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Introduction

Here is the usual method for proving theorems: enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Introduction

Here is the usual method for proving theorems: enumerate the objectives \longrightarrow inductively meet these goals.

> Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Introduction

Here is the usual method for proving theorems: enumerate the objectives \longrightarrow inductively meet these goals.

> Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than \mathfrak{c} such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

Goals - a short tutorial

- explore a general framework for inductive constructions,
- demonstrate the applicability through entertaining examples:

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces, - how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
- paradoxical decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
- paradoxical decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
- paradoxical decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.

Goals - a short tutorial

- explore a general framework for inductive constructions, - arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
- paradoxical decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on
"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]
a joint paper with L. Soukup.
"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then."
P. Erdős

Sierpinski and CH

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then."
P. Erdős
[Sierpinski, 1919] CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- S_{0} has countable vertical segments, and
- S_{1} has countable horizontal segments.

How about $2^{\aleph_{0}} \leq \aleph_{n}$?

Sierpinski and CH

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then."
P. Erdős
[Sierpinski, 1919] CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- S_{0} has countable vertical segments, and
- S_{1} has countable horizontal segments.
[Sierpinski, 1933] CH implies that \mathbb{R}^{2} is the union of countably many curves i.e. rotated graphs of single-valued functions.

[^0]
Sierpinski and CH

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then."
P. Erdős
[Sierpinski, 1919] CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- S_{0} has countable vertical segments, and
- S_{1} has countable horizontal segments.
[Sierpinski, 1933] CH implies that \mathbb{R}^{2} is the union of countably many curves i.e. rotated graphs of single-valued functions.

Is CH necessary here?

Sierpinski and CH

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then."
P. Erdős
[Sierpinski, 1919] CH holds iff $\mathbb{R}^{2}=S_{0} \cup S_{1}$ so that

- S_{0} has countable vertical segments, and
- S_{1} has countable horizontal segments.

How about $2^{\aleph_{0}} \leq \aleph_{n}$?
[Sierpinski, 1933] CH implies that \mathbb{R}^{2} is the union of countably many curves i.e. rotated graphs of single-valued functions.

Is CH necessary here?

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.

[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff

> [Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.
> [cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
\square
[Davies, 1963] In $Z F C, \mathbb{R}^{2}$ is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

$$
\text { [cover by } \aleph_{0} \text { sets with one-element sections] }
$$

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
(II) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
\square
[cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
\quad [cover by $n+1$ sets with countable sections]
$\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.
[cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[cover by $n+1$ sets with countable sections]
(II) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$
[Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.
[cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[cover by $n+1$ sets with countable sections]
(II) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$
[cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[cover by $n+1$ sets with countable sections]
(II) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$. [cover by $n+2$ sets with finite sections]
[Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$
[cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[cover by $n+1$ sets with countable sections]
(II) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$. [cover by $n+2$ sets with finite sections]
[Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.
[cover by \aleph_{0} sets with one-element sections]

R. O. Davies and covering without CH

Let Θ_{i} denote distinct directions, \mathcal{L}_{i} the lines in direction Θ_{i}.
[Davies, 1963] $2^{\aleph_{0}} \leq \aleph_{n}$ iff
(I) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n}$ so that $\left|L \cap S_{i}\right| \leq \aleph_{0}$ for all $L \in \mathcal{L}_{i}$.
[cover by $n+1$ sets with countable sections]
(II) $\mathbb{R}^{2}=S_{0} \cup \cdots \cup S_{n+1}$ so that $\left|L \cap S_{i}\right|<\aleph_{0}$ for all $L \in \mathcal{L}_{i}$. [cover by $n+2$ sets with finite sections]
[Davies, 1963] In ZFC, \mathbb{R}^{2} is the union of countably many curves i.e. $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.
[cover by \aleph_{0} sets with one-element sections]

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?
r is constructible from Θ_{i}, Θ_{j} and previous points from S_{i}, S_{j}.

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?

r is constructible from Θ_{i}, Θ_{j} and previous points from S_{i}, S_{j}.

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?
 r is constructible from Θ_{i}, Θ_{j} and previous points from S_{i}, S_{j}.

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?

Sierpinski and CH - the proof

CH implies that $\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

- fix distinct directions Θ_{i},
- if you want to cover a countable $R_{0}=\left\{r_{0}, r_{1} \ldots\right\}$ only then we can put $r_{i} \in S_{i}$
- what prevents us from adding an extra point r to the union of S_{i} 's?

r is constructible from Θ_{i}, Θ_{j} and previous points from S_{i}, S_{j}.

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

> If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use $C H$, to write $\mathbb{D P}^{2}$ as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R_{α} is closed under constructibility.
- if the S_{i} 's union is R_{Q} then list $R_{a+1} \backslash R_{Q}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use CH , to write \mathbb{R}^{2} as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R is closed under constructibility.
- if the S_{i} 's union is R_{α} then list $R_{\alpha+1} \backslash R_{\alpha}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use CH , to write \mathbb{R}^{2} as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R_{α} is closed under constructibility.
- if the S_{i} 's union is R_{α} then list $R_{\alpha+1} \backslash R_{\alpha}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use CH , to write \mathbb{R}^{2} as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R_{α} is closed under constructibility.
- if the S_{i} 's union is R_{α} then list $R_{\alpha+1} \backslash R_{\alpha}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use CH , to write \mathbb{R}^{2} as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R_{α} is closed under constructibility.
- if the S_{i} 's union is R_{α} then list $R_{\alpha+1} \backslash R_{\alpha}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use CH , to write \mathbb{R}^{2} as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R_{α} is closed under constructibility.
- if the S_{i} 's union is R_{α} then list $R_{\alpha+1} \backslash R_{\alpha}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?
- \Rightarrow if both $2 n$ and $2 n+1$ are bad for t_{n} then t_{n} is constructible from
points in R_{α} and hence $t_{n} \in R_{\alpha}$ \}

Sierpinski and CH - the proof

CH implies that \mathbb{R}^{2} is the union of countably many rotated graphs of functions.

> If the union of S_{i} 's is closed under constructibility then any new $r \in \mathbb{R}^{2}$ can be added to all but at most one S_{i}.

- use CH , to write \mathbb{R}^{2} as a continuous, increasing union of countable R_{α} for $\alpha<\omega_{1}$,
- make sure that each R_{α} is closed under constructibility.
- if the S_{i} 's union is R_{α} then list $R_{\alpha+1} \backslash R_{\alpha}$ as $\left\{t_{n}: n<\omega\right\}$,
- put t_{n} into $S_{2 n}$ or $S_{2 n+1}$, wherever we allowed. Why is this possible?
- ξ if both $2 n$ and $2 n+1$ are bad for t_{n} then t_{n} is constructible from points in R_{α} and hence $t_{n} \in R_{\alpha}$ z

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V agrees on properties of structures of size $\ll \theta$;
- for any countable $x \subseteq H(\theta)$ there is
a countable $x \subseteq M \prec H(\theta)$;

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility:
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V
agrees on properties of structures of
size
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V
agrees on properties of structures of
size
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V
agrees on properties of structures of
size
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V agrees on properties of structures of size

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

$$
M \models \Phi \leftrightarrow H \models \Phi
$$

for all first order Φ with parameters from M.

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V agrees on properties of structures of size $\ll \theta$;
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

$$
M \models \Phi \leftrightarrow H \models \Phi
$$

for all first order Φ with parameters from M.

Filtrations by elementary submodels

The sequence $\left\langle R_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is called a filtration of \mathbb{R}^{2} sometimes.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- $H=H(\theta)$ and the real universe V agrees on properties of structures of size $\ll \theta$;
- for any countable $x \subseteq H(\theta)$ there is

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

$$
M \models \Phi \leftrightarrow H \models \Phi
$$

for all first order Φ with parameters from M. a countable $x \subseteq M \prec H(\theta)$;

Filtrations by elementary submodels

> For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x. Given a set $R \subseteq H(\theta)$ of size \aleph_{1} there is a continuous, increasing sequence of countable elementary submodels $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;
[CH] We can choose $R_{\alpha}=M_{\alpha} \cap \mathbb{R}^{2}$ where $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is a continuous, increasing sequence of countable elementary submodels of $H\left(\mathfrak{c}^{+}\right)$covering \mathbb{R}^{2}

Note: we can never cover \aleph_{2} by an increasing sequence of countable sets.

Filtrations by elementary submodels

For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x.
\square

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

Note: we can never cover \aleph_{2} by an increasing sequence of countable sets.

Filtrations by elementary submodels

For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x.
Given a set $R \subseteq H(\theta)$ of size \aleph_{1} there is a continuous, increasing sequence of countable elementary submodels $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

Note: we can never cover \aleph_{2} by an increasing sequence of countable

Filtrations by elementary submodels

For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x.
Given a set $R \subseteq H(\theta)$ of size \aleph_{1} there is a continuous, increasing sequence of countable elementary submodels $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

Note: we can never cover \aleph_{2} by an increasing sequence of countable

Filtrations by elementary submodels

For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x.
Given a set $R \subseteq H(\theta)$ of size \aleph_{1} there is a continuous, increasing sequence of countable elementary submodels $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

Filtrations by elementary submodels

For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x.
Given a set $R \subseteq H(\theta)$ of size \aleph_{1} there is a continuous, increasing sequence of countable elementary submodels $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;
[CH] We can choose $R_{\alpha}=M_{\alpha} \cap \mathbb{R}^{2}$ where $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is a continuous, increasing sequence of countable elementary submodels of $H\left(\mathfrak{c}^{+}\right)$covering \mathbb{R}^{2}.

Note: we can never cover \aleph_{2} by an increasing sequence of countable

Filtrations by elementary submodels

For any infinite $x \subseteq H(\theta)$ there is $M \prec H(\theta)$ of size $|x|$ covering x.
Given a set $R \subseteq H(\theta)$ of size \aleph_{1} there is a continuous, increasing sequence of countable elementary submodels $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;
[CH] We can choose $R_{\alpha}=M_{\alpha} \cap \mathbb{R}^{2}$ where $\left\langle M_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ is a continuous, increasing sequence of countable elementary submodels of $H\left(\mathfrak{c}^{+}\right)$covering \mathbb{R}^{2}.

Note: we can never cover \aleph_{2} by an increasing sequence of countable sets.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- we have a tree indexed by finite sequences of ordinals,
- <lex well orders the terminal nodes,
> $\bigcup\left\{M_{s}: s<l e x t\right.$ terminal $\}=$
> the union of $|t|$-many el. subm

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \mathbf{c}.
> - write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ each of size $<c=\left|M_{\emptyset}\right|$;
> - if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
> - repeat until all terminal models are countable.

- we have a tree indexed by
finite sequences of ordinals,
- <lex well orders the terminal
nodes,

- M_{\emptyset}

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- reneat until all terminal models are countable.
- we have a tree indexed by
finite sequences of ordinals,
- <lex well orders the terminal
nodes,

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <lex well orders the terminal nodes,
\square

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by
finite sequences of ordinals,
- <lex well orders the terminal

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals, - <lex well orders the terminal nodes,

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size c.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <lex well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies' idea - what can we do without CH?

[Davies, 1963] Take \mathbb{R}^{2} and cover with M_{\emptyset} of size \boldsymbol{c}.

- write M_{\emptyset} as a continuous increasing $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ each of size $<\mathfrak{c}=\left|M_{\emptyset}\right|$;
- if M_{α} is uncountable, write it as a continuous increasing $\left\langle M_{\alpha \beta}\right\rangle_{\beta<\lambda}$ so that $\left|M_{\alpha \beta}\right|<\left|M_{\alpha}\right|=\lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\text {lex }}$ well orders the terminal nodes,
$\bigcup\left\{M_{s}: s<_{\text {lex }} t\right.$ terminal $\}=$ the union of $|t|$-many el. subm.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a

 sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that (I) $\left|M_{\alpha}\right|=\omega$ and $x \in I$
(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and

```
for every }\beta<\kappa\mathrm{ there is m}\mp@subsup{m}{\beta}{}\in\mathbb{N}\mathrm{ and models }\mp@subsup{N}{\beta,j}{}\precH(0)\mathrm{ such that
x\inN N\beta,j}\mathrm{ for }j<\mp@subsup{m}{\beta}{}\mathrm{ and
```


We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and

for avery $\beta<\pi$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{B, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and

> for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x .

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

[countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

[countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and [cover κ]
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\}
$$

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

[countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and [cover κ]
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\} .
$$

[initial segments are finite unions of models]

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ so that
(I) $\left|M_{\alpha}\right|=\omega$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,

[countable models with all the parameters]

(II) $\kappa \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and [cover κ]
(III) for every $\beta<\kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta, j} \prec H(\theta)$ such that $x \in N_{\beta, j}$ for $j<m_{\beta}$ and

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<m_{\beta}\right\} .
$$

[initial segments are finite unions of models]

We call $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ a Davies-tree for κ over x.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<c}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{\text {; }}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
- so almost all choices of i_{n} works.

Sierpinski without CH

$\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots$ so that $\left|L \cap S_{i}\right| \leq 1$ for all $L \in \mathcal{L}_{i}$.

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the $S_{\text {; }}$
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{-}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find
so $t_{n} \in S_{i_{n}}$ works
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
there is at most m_{α} many $i>i_{n-1}$ so we cannot put t_{n} into S_{i}.
- 乌 suppose $r_{i} \in S_{i} \cap M_{<\alpha}$ witnesses that t_{n} can't go into S_{i}
- pigeon hole: there is a $j<m_{\alpha}$ and $i<i^{\prime}$ so that $r_{i}, r_{i} \in N_{\alpha, j}$ - but t_{n} is constructible from r_{i}, r_{i} so $t_{n} \in N_{\alpha, j} \subset M_{<\alpha}$ z
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
there is at most m_{α} many $i>i_{n-1}$ so we cannot put t_{n} into S_{i}.
- $\hat{\text { s }}$ suppose $r_{i} \in S_{i} \cap M_{<\alpha}$ witnesses that t_{n} can't go into S_{i}
- pigeon hole: there is a $j<m_{\alpha}$ and $i<i^{\prime}$ so that $r_{i}, r_{i^{\prime}} \in N_{\alpha, j}$
- but t_{n} is constructible from r_{i}, r_{i}, so $t_{n} \in N_{\alpha, j} \subset M_{<\alpha}$ \&
- so almost all choices of i_{n} works. \square

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
there is at most m_{α} many $i>i_{n-1}$ so we cannot put t_{n} into S_{i}.
- ζ suppose $r_{i} \in S_{i} \cap M_{<\alpha}$ witnesses that t_{n} can't go into S_{i},
- pigeon hole: there is a $j<m_{\alpha}$ and $i<i^{\prime}$ so that $r_{i}, r_{i^{\prime}} \in N_{\alpha, j}$,
- but t_{n} is constructible from $r_{i}, r_{i^{\prime}}$ so $t_{n} \in N_{\alpha, j} \subset M_{<\alpha} \notin$
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
there is at most m_{α} many $i>i_{n-1}$ so we cannot put t_{n} into S_{i}.
- ξ suppose $r_{i} \in S_{i} \cap M_{<\alpha}$ witnesses that t_{n} can't go into S_{i},
- pigeon hole: there is a $j<m_{\alpha}$ and $i<i^{\prime}$ so that $r_{i}, r_{i^{\prime}} \in N_{\alpha, j}$,
- but t_{n} is constructible from $r_{i}, r_{i^{\prime}}$ so $t_{n} \in N_{\alpha, j} \subset M_{<\alpha}$ h
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
there is at most m_{α} many $i>i_{n-1}$ so we cannot put t_{n} into S_{i}.
- ξ suppose $r_{i} \in S_{i} \cap M_{<\alpha}$ witnesses that t_{n} can't go into S_{i},
- pigeon hole: there is a $j<m_{\alpha}$ and $i<i^{\prime}$ so that $r_{i}, r_{i^{\prime}} \in N_{\alpha, j}$,
- but t_{n} is constructible from $r_{i}, r_{i^{\prime}}$ so $t_{n} \in N_{\alpha, j} \subset M_{<\alpha}$ \&
- so almost all choices of i_{n} works.

Sierpinski without CH

$$
\mathbb{R}^{2}=S_{0} \cup S_{1} \cup \ldots \text { so that }\left|L \cap S_{i}\right| \leq 1 \text { for all } L \in \mathcal{L}_{i} .
$$

Let $\left\langle M_{\alpha}\right\rangle_{\alpha<\mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^{2} so that $\Theta_{i} \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}$ among the S_{i};
- let $\mathbb{R}^{2} \cap M_{\alpha} \backslash M_{<\alpha}=\left\{t_{n}\right\}_{n \in \omega}$, find $i_{0}<i_{1}<\ldots$ so $t_{n} \in S_{i_{n}}$ works;
- recall that $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<m_{\alpha}\right\}$ is a finite union, so
there is at most m_{α} many $i>i_{n-1}$ so we cannot put t_{n} into S_{i}.
- ξ suppose $r_{i} \in S_{i} \cap M_{<\alpha}$ witnesses that t_{n} can't go into S_{i},
- pigeon hole: there is a $j<m_{\alpha}$ and $i<i^{\prime}$ so that $r_{i}, r_{i^{\prime}} \in N_{\alpha, j}$,
- but t_{n} is constructible from $r_{i}, r_{i^{\prime}}$ so $t_{n} \in N_{\alpha, j} \subset M_{<\alpha}$ z
- so almost all choices of i_{n} works.

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...
[${ }^{[R}$ O. Davies, 1900s] various paradoxical coverings of \mathbb{R}^{2},

- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
[D. Milovich, 2003] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs
- various other applications in our new paper

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly in many other proofs.
- various other applications in our new paper

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs.
- various other applications in our new paper:

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
- refining almost disjoint families of κ
- conflict-free colourings of almost disj. $\mathcal{A} \subset\left[\omega_{m}\right]^{\omega}$
- subgraph structure of uncountably chromatic graphs.

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
- refining almost disjoint families of $[\kappa]^{\omega}$,
- conflict-free colourings of almost disj. $\mathcal{A} \subset\left[\omega_{m}\right]$
- subgraph structure of uncountably chromatic graphs.

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
- refining almost disjoint families of $[\kappa]^{\omega}$,
- conflict-free colourings of almost disj. $\mathcal{A} \subset\left[\omega_{m}\right]^{\omega}$,
- subgraph structure of uncountably chromatic graphs.

Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^{2},
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^{2} which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
- refining almost disjoint families of $[\kappa]^{\omega}$,
- conflict-free colourings of almost disj. $\mathcal{A} \subset\left[\omega_{m}\right]^{\omega}$,
- subgraph structure of uncountably chromatic graphs.

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

Combinatorics from L

[Silver, Foreman, Magidor]

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.

M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(0)$ there is a countably closed $M \sim H(0)$ of size $|x|^{\omega}$;
- c.c. models of size \mathfrak{c} are very useful in various situations:

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size c are very useful in various situations:

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size c are very useful in various situations:

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size c are very useful in various situations:

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size \mathfrak{c} are very useful in various situations:

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size \mathfrak{c} are very useful in various situations:
- [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;
- [Erdős, Rado, 1956] c ${ }^{+} \rightarrow\left(\omega_{1}\right)_{\omega}^{2}$

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size \mathfrak{c} are very useful in various situations:
- [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;
- [Erdős, Rado, 1956] $\mathfrak{c}^{+} \rightarrow\left(\omega_{1}\right)_{\omega}^{2}$.

Can we make Davies-trees from countably closed models of size c ?

Countably closed models

Countable models \rightarrow enumeration in type ω, \rightarrow deal with finite pieces one at a time.
M is countably closed if $x \subseteq M,|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size \mathfrak{c} are very useful in various situations:
- [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;
- [Erdős, Rado, 1956] $\mathfrak{c}^{+} \rightarrow\left(\omega_{1}\right)_{\omega}^{2}$.

Can we make Davies-trees from countably closed models of size \mathfrak{c} ?

High Davies-trees

We say that a high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular θ such that (I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=c$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \nsim H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<\omega\right\} .
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for κ.

High Davies-trees

We say that a high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular θ such that (I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=c$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$, (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{B, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that
.

High Davies-trees

We say that a high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular θ such that (I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[k]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for κ.

High Davies-trees

We say that a high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular θ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup_{\left\{M_{\alpha}\right.}
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for κ.

High Davies-trees

We say that a high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular θ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[k]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<\omega\right\} .
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for κ.

High Davies-trees

We say that a high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ of elementary submodels of $H(\theta)$ for some large enough regular θ such that
(I) $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha},\left|M_{\alpha}\right|=\mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha<\kappa$,
(II) $[k]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) for each $\beta<\kappa$ there are $N_{\beta, j} \prec H(\theta)$ with $\left[N_{\beta, j}\right]^{\omega} \subset N_{\beta, j}$ and $x \in N_{\beta, j}$ for $j<\omega$ such that

$$
M_{<\beta}=\bigcup\left\{M_{\alpha}: \alpha<\beta\right\}=\bigcup\left\{N_{\beta, j}: j<\omega\right\} .
$$

Note that $\kappa^{\omega}=\kappa$ if there is a high Davies-tree for κ.

Existence of high Davies-trees

A high Davies-tree for κ over x

is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ st.

Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size c,

A high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.

Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size c,

A high Davies-tree for κ over x

 is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.
[DS, LS] There are high Davies-tree for any uncountable $\kappa<\mathfrak{c}^{+\omega}$, e.g. for $\kappa=\aleph_{n}$ if $n<\omega$.

Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size c,

A high Davies-tree for κ over x

 is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.
[DS, LS] There are high Davies-tree for any uncountable $\kappa<\mathfrak{c}^{+\omega}$, e.g. for $\kappa=\aleph_{n}$ if $n<\omega$.

Theorem [DS, LS]

There are high Davies-tree for any uncountable κ if $V=L$.

Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size c,

A high Davies-tree for κ over x

 is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some с.c. $x \in N_{\alpha, j} \prec H(\theta)$.

Main Theorem [DS, LS]

There are high Davies-tree for κ if $\kappa^{\omega}=\kappa$ and

$$
\mu^{\omega}=\mu^{+}, \mu \text { is } \omega \text {-inaccessible and } \square_{\mu} \text { holds }
$$

for all $\mathfrak{c}<\mu<\kappa$ with $\operatorname{cf}(\mu)=\omega$.

Existence of high Davies-trees

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size c,

A high Davies-tree for κ over x is a sequence $\left\langle M_{\alpha}: \alpha<\kappa\right\rangle$ s.t.
(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha<\kappa} M_{\alpha}$, and
(III) $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ for some c.c. $x \in N_{\alpha, j} \prec H(\theta)$.

Main Theorem [DS, LS]

There are high Davies-tree for κ if $\kappa^{\omega}=\kappa$ and

$$
\mu^{\omega}=\mu^{+}, \mu \text { is } \omega \text {-inaccessible and } \square_{\mu} \text { holds }
$$

for all $\mathfrak{c}<\mu<\kappa$ with $\operatorname{cf}(\mu)=\omega$.

Remark: no high Davies-trees for $\kappa \geq \aleph_{\omega}$ if $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?
[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.
[Nesetril, Pelant, Rődl, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })_{c}^{1}$
[W. Weiss, 1980] Any T_{2} topological space has a Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<\mathfrak{c}<\mu$

- see "Partitioning topological spaces" by Weiss, 1990 for a survey.
[Shelah, 2004] Using a supercompact, consistently
there is a $0-$ dim, T_{2} space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?
[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a
Bernstein-decomposition.
[Nesetril, Pelant, Rőd!, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })_{c}^{1}$
[W. Weiss, 1980] Any T_{2} topological space has a Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<c<\mu$.

- see "Partitioning topological spaces" by Weiss, 1990 for a survey.
[Shelah, 2004] Using a supercompact, consistently
there is a $0-\mathrm{dim}, T_{2}$ space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?
[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.
[Nesetril, Pelant, Rődl, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })_{c}^{1}$
[W. Weiss, 1980] Any T_{2} topological space has a Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<\mathfrak{c}<\mu$ - see "Partitioning topological spaces" by Weiss, 1990 for a survey.
[Shelah, 2004] Using a supercompact, consistently there is a $0-$ dim, T_{2} space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?
[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.
[Nesetril, Pelant, Rődl, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })^{1}$.
[W. Weiss, 1980] Any T_{2} topological space has a Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<\mathfrak{c}<\mu$ - see "Partitioning tonological spaces" by Weiss, 1990 for a survey.
[Shelah, 2004] Using a supercompact, consistently there is a 0 -dim, T_{2} space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?
[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.
[Nesetril, Pelant, Rődl, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })^{1}$.
[W. Weiss, 1980] Any T_{2} topological space has a
Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<\mathfrak{c}<\mu$.

- see "Partitioning topological spaces" by Weiss, 1990 for a survey.
[Shelah, 2004] Using a supercompact, consistently there is a 0 -dim, T_{2} space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.
[Nesetril, Pelant, Rődl, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })^{1}$.
[W. Weiss, 1980] Any T_{2} topological space has a
Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<\mathfrak{c}<\mu$.

- see "Partitioning topological spaces" by Weiss, 1990 for a survey.

[Shelah, 2004] Using a supercompact, consistently there is a 0 -dim, T_{2} space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition

Coloring topological spaces

A Bernstein-decomposition of X is a map $f: X \rightarrow \mathfrak{c}$ so that $f[C]=\mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.
[Nesetril, Pelant, Rődl, 1977] There is a T_{1} topology $Y\left(\right.$ on $\left.\mathbb{R}^{2}\right)$ so that $Y \rightarrow(\text { Cantor })_{c}^{1}$.
[W. Weiss, 1980] Any T_{2} topological space has a
Bernstein-decomposition if $\mu^{\omega}=\mu^{+}$and \square_{μ} for all $\operatorname{cf}(\mu)=\omega<\mathfrak{c}<\mu$.

- see "Partitioning topological spaces" by Weiss, 1990 for a survey.
[Shelah, 2004] Using a supercompact, consistently there is a 0 -dim, T_{2} space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X,

then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X<{ }_{\alpha} \rightarrow$ where $X<{ }_{\alpha}=X \cap M_{\alpha}$
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that

$$
\text { if } C \subseteq X, C \in M_{<\alpha} \text { and } C \text { is Cantor then } f_{\alpha}[C]=c \text {. }
$$

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X<\alpha \rightarrow$ where $X<\alpha=X \cap M<\alpha$.
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa_{\text {, }}$
- we make sure that

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X<\alpha \rightarrow$ where $X<\alpha=X \cap M$
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that
if $C \subseteq X, C \in M_{<\alpha}$ and C is Cantor then $f_{a}[C]=c$.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathrm{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that
if $C \subset X, C \in M_{<\alpha}$ and C is Cantor then $f_{a}[C]=c$.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- we make sure that
if $C \subseteq X, C \in M_{<\alpha}$ and C is Cantor then $f_{a}[C]=c$.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,

- we make sure that
if $C \subset \mathbf{X}, C \in M_{<\alpha}$ and C is Cantor then $f_{\alpha}[C]=c$.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- there is a countable $D \subseteq X$ so that $\mathrm{cl}_{X}(D)=C$,

- we make sure that
if $C \subseteq X, C \in M<\alpha$ and C is Cantor then $f_{\alpha}[C]=c$.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- there is a countable $D \subseteq X$ so that $\mathrm{cl}_{X}(D)=C$,
- $D \in[X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $c_{X}(D)=C \in M_{<\alpha}$ for some α.
- we make sure that
if $C \subseteq X, C \in M_{<\alpha}$ and C is Cantor then $f_{\alpha}[C]=c$.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\left\langle M_{\alpha}\right\rangle_{\alpha<\kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ where $X_{<\alpha}=X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha<\kappa$,
- there is a countable $D \subseteq X$ so that $\mathrm{cl}_{X}(D)=C$,
- $D \in[X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $c l_{X}(D)=C \in M_{<\alpha}$ for some α.
- we make sure that

$$
\text { if } C \subseteq X, C \in M_{<\alpha} \text { and } C \text { is Cantor then } f_{\alpha}[C]=\mathfrak{c} .
$$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=c \text { for all } C \in M_{<\alpha+1} \text {. }
$$

Maybe we colored some

$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$C \cap X_{<\alpha} \mid \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

$$
\text { - } C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}
$$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow c$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{<\alpha+1} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{<\alpha+1} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{<\alpha+1}
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<}$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some $C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<}$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so
- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,
- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$
so

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some j,

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- pick ctble dense $D \subset C \cap N_{\alpha, j}$,

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some j,

- pick ctble dense $D \subset C \cap N_{\alpha, j}$, so $D \in N_{\alpha, j}$ too.

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c} .
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha, j}$, so $D \in N_{\alpha, j}$ too.

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$
and so

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
$$

- $M_{<\alpha}=\bigcup\left\{N_{\alpha, j}: j<\omega\right\}$ so $\left|C \cap N_{\alpha, j}\right|>\omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha, j}$, so $D \in N_{\alpha, j}$ too.

- $C^{*}=\mathrm{cl}_{X}(D) \in N_{\alpha, j} \subseteq M_{<\alpha}$
and so
$\mathfrak{c}=f_{\alpha}\left[C^{*}\right] \subseteq f_{\alpha}\left[C \cap X_{<\alpha}\right]$.

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?
$\left|C \cap X_{<\alpha}\right| \leq \omega$ or

$$
f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathbf{c}
$$

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some

Let $\left\{C_{\xi}: \xi<\mathfrak{c}\right\}$ list $C \in M_{\alpha} \backslash M_{<\alpha}$ s.t. $\left|C \cap X_{<\alpha}\right| \leq \omega$, each \mathfrak{c} times.

Let $f_{\alpha+1}\left(y_{\xi}\right)=\nu$ if C_{ξ} is the $\nu^{\text {th }}$-time
we see C_{ξ}

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some

Let $\left\{C_{\xi}: \xi<\mathfrak{c}\right\}$ list $C \in M_{\alpha} \backslash M_{<\alpha}$ s.t. $\left|C \cap X_{<\alpha}\right| \leq \omega$, each \mathfrak{c} times.

Pick $y_{\xi} \in C_{\xi} \backslash\left(X_{<\alpha} \cup\left\{y_{\zeta}: \zeta<\xi\right\}\right)$.

Bernstein-decompositions from high Davies-trees

Goal: given $f_{\alpha}: X_{<\alpha} \rightarrow \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \rightarrow \mathfrak{c}$ so that

$$
f_{\alpha+1}[C]=\mathfrak{c} \text { for all } C \in M_{\alpha} \backslash M_{<\alpha} .
$$

Maybe we colored some
$C \in M_{\alpha} \backslash M_{<\alpha}$ by accident already?

$$
\begin{aligned}
\left|C \cap X_{<\alpha}\right| \leq & \omega \text { or } \\
& f_{\alpha}\left[C \cap X_{<\alpha}\right]=\mathfrak{c} .
\end{aligned}
$$

Let $\left\{C_{\xi}: \xi<\mathfrak{c}\right\}$ list $C \in M_{\alpha} \backslash M_{<\alpha}$ s.t. $\left|C \cap X_{<\alpha}\right| \leq \omega$, each \mathfrak{c} times.

Pick $y_{\xi} \in C_{\xi} \backslash\left(X_{<\alpha} \cup\left\{y_{\zeta}: \zeta<\xi\right\}\right)$.

Let $f_{\alpha+1}\left(y_{\xi}\right)=\nu$ if C_{ξ} is the $\nu^{\text {th }}$-time
we see C_{ξ}.
Let $f_{\alpha+1}\left(y_{\xi}\right)=\nu$ if C_{ξ} is the $\nu^{\text {th }}$-time
we see C_{ξ}.

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle\lceil\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
If \exists sage Davies-tree for $A+$ CH holds then
- \exists splendid topological spaces of size κ,
- \exists cofinal Kurepa-families in $[\kappa\rceil^{\omega}$.

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
If \exists sage Davies-tree for $n+\mathrm{CH}$ holds then
- \exists splendid topological spaces of size κ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]$
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
If \exists sage Davies-tree for $n+\mathrm{CH}$ holds then
- \exists splendid topological spaces of size κ,
- \exists cofinal Kurepa-families in

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

If \exists sage Davies-tree for $\kappa+\mathrm{CH}$ holds then

- \exists splendid topological spaces of size
- \exists cofinal Kurepa-families in

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
E sage Davies-tree for $\kappa+\mathrm{CH}$ holds then
- \exists splendid topological spaces of size
- \exists cofinal Kurena-families in

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[k]^{\omega}$,
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
If \exists sage Davies-tree for $\kappa+\mathrm{CH}$ holds then
- \exists splendid topological spaces of size
- \exists cofinal Kurepa-families in

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[k]^{\omega}$,
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
If \exists sage Davies-tree for $\kappa+\mathrm{CH}$ holds then
- \exists splendid topological spaces of size κ,
- \exists cofinal Kurepa-families in

Further applications

See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If \exists high Davies-trees for $\kappa+\mathrm{CH}$ holds then

- $\left\langle[\kappa]^{\omega}, \subset\right\rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[k]^{\omega}$,
sage Davies-tree $=$ high D-tree $+\left\langle M_{\alpha}: \alpha<\beta\right\rangle \in M_{\beta}$ for all $\beta<\kappa$.
If \exists sage Davies-tree for $\kappa+\mathrm{CH}$ holds then
- \exists splendid topological spaces of size κ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there c points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$. [Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering $£ 34$ for "communicating a solution to him". Efimov's problem pays $£ 13$, or $£ 10$ under $\mathrm{MA}+\mathfrak{c}>\aleph_{1}$.

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$ [Sierpinski/Erdös] Is there a Borel 2-point set? Fremlin is offering $£ 34$ for "communicating a solution to him" Efimov's problem pays $£ 13$, or $£ 10$ under MA $+\mathfrak{c}>\aleph_{1}$

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$
'Sierpinski/Erdoos' Is there a Borel 2-point set?
Fremlin is offering $£ 34$ for "communicating a solution to him" Efimov's problem pays $£ 13$, or $£ 10$ under MA $+\mathfrak{c}>\aleph_{1}$.

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there \mathfrak{c} points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$

Fremlin is offering $£ 34$ for "communicating a solution to him" Efimov's problem pays $£ 13$, or $£ 10$ under MA $+\mathfrak{c}>\aleph_{1}$

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there \mathfrak{c} points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$.
\square
Fremlin is offering $£ 34$ for "communicating a solution to him" Efimov's problem pays $£ 13$, or $£ 10$ under MA $+\mathfrak{c}>\aleph_{1}$

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there \mathfrak{c} points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$.
[Sierpinski/Erdős] Is there a Borel 2-point set?
Fremlin is offering $£ 34$ for "communicating a solution to him' Efimov's problem pays $£ 13$, or $£ 10$ under MA $+\mathfrak{c}>\aleph_{1}$

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there \mathfrak{c} points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering $£ 34$ for "communicating a solution to him".

Some open problems in the neighbourhood

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there \mathfrak{c} points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering $£ 34$ for "communicating a solution to him". Efimov's problem pays $£ 13$, or $£ 10$ under $\mathrm{MA}+\mathfrak{c}>\aleph_{1}$.

Thank you for your attention!

There is $f: \mathbb{R}^{n} \rightarrow \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^{2} so that any two distinct points have rational distance.
[Komjáth] Are there \mathfrak{c} points in ℓ^{2} so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^{2}$ is such that $|A \cap \ell|=2$ for every line $\ell \subset \mathbb{R}^{2}$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering $£ 34$ for "communicating a solution to him". Efimov's problem pays $£ 13$, or $£ 10$ under MA $+\mathfrak{c}>\aleph_{1}$.

[^0]: How about $2^{\aleph_{0}} \leq \aleph_{n}$?

