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Introduction

Here is my only the usual method for proving theorems:

enumerate the objectives −→ inductively meet these goals.

Colour the points of a topological space X with red and
blue so that both colors appear on any copy of the
Cantor-space in X .

list all Cantor subspaces of X , and

inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many
steps, we could have accidentally covered some Cantor-subspace with red
points only.
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Goals - a short tutorial

explore a general framework for inductive constructions,
arbitrary large structures by countable/continuum sized pieces,

how avoid the previous types of problems?

demonstrate the applicability through entertaining examples:

paradoxical decompositions of the plane, and

Bernstein-decompositions of arbitrary topological spaces.

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]

a joint paper with L. Soukup.
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“There is a beautiful theorem of Sierpinski. I remember how
surprised I was when I first saw it. [...] It is a very simple
theorem by present standards but it was very startling then.”

P. Erdős
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Sierpinski and CH

“There is a beautiful theorem of Sierpinski. I remember how
surprised I was when I first saw it. [...] It is a very simple
theorem by present standards but it was very startling then.”

P. Erdős

[Sierpinski, 1919] CH holds iff
R

2 = S0 ∪ S1 so that

S0 has countable vertical
segments, and

S1 has countable horizontal
segments.

How about 2ℵ0 ≤ ℵn?
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R. O. Davies and covering without CH

Let Θi denote distinct directions, Li the lines in direction Θi .

[Davies, 1963] 2ℵ0 ≤ ℵn iff

(I) R
2 = S0 ∪ · · · ∪ Sn so that |L ∩ Si | ≤ ℵ0 for all L ∈ Li .

[cover by n + 1 sets with countable sections]

(II) R
2 = S0 ∪ · · · ∪ Sn+1 so that |L ∩ Si | < ℵ0 for all L ∈ Li .

[cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, R2 is the union of countably many curves i.e.
R

2 = S0 ∪ S1 ∪ . . . so that |L ∩ Si | ≤ 1 for all L ∈ Li .

[cover by ℵ0 sets with one-element sections]
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Sierpinski and CH - the proof

CH implies that R2 = S0 ∪ S1 ∪ . . . so that |L ∩ Si | ≤ 1 for all L ∈ Li .

fix distinct directions Θi ,

if you want to cover a countable
R0 = {r0, r1 . . . } only then we can put
ri ∈ Si

what prevents us from adding an extra
point r to the union of Si ’s?

r is constructible from Θi ,Θj and previous points from Si ,Sj .
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Sierpinski and CH - the proof

CH implies that R2 is the union of countably many rotated graphs of functions.

If the union of Si ’s is closed under con-
structibility then any new r ∈ R

2 can
be added to all but at most one Si .

use CH, to write R
2 as a continuous, increasing union of

countable Rα for α < ω1,

make sure that each Rα is closed under constructibility.

if the Si ’s union is Rα then list Rα+1 \ Rα as {tn : n < ω},

put tn into S2n or S2n+1, wherever we allowed. Why is this possible?

 

if both 2n and 2n+ 1 are bad for tn then tn is constructible from
points in Rα and hence tn ∈ Rα  
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Filtrations by elementary submodels

The sequence 〈Rα〉α<ω1 is called a filtration of R2 sometimes.

any countable set is included in a
countable set closed under
constructibility;

we could have closed under all first
order operations, still countable;

H = H(θ) and the real universe V

agrees on properties of structures of
size << θ;

for any countable x ⊆ H(θ) there is
a countable x ⊆ M ≺ H(θ);

We take closure using
elementary submodels: M ≺ H

iff M ⊆ H and

M |= Φ ↔ H |= Φ

for all first order Φ with
parameters from M.
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Filtrations by elementary submodels

For any infinite x ⊆ H(θ) there is M ≺ H(θ) of size |x | covering x .

Given a set R ⊆ H(θ) of size ℵ1 there is a continuous, increasing sequence
of countable elementary submodels 〈Mα〉α<ω1 of H(θ) covering R .

build inductively, taking unions at limit steps,

this ensures continuity which also implies elementarity at limits;

[CH] We can choose Rα = Mα ∩ R
2 where 〈Mα〉α<ω1 is a continuous,

increasing sequence of countable elementary submodels of H(c+) covering
R

2.

Note: we can never cover ℵ2 by an increasing sequence of countable
sets.
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Davies’ idea - what can we do without CH?

[Davies, 1963] Take R
2 and cover with M∅ of size c.

write M∅ as a continuous increasing 〈Mα〉α<c each of size < c = |M∅|;

if Mα is uncountable, write it as a continuous increasing 〈Mαβ〉β<λ so
that |Mαβ| < |Mα| = λ;

repeat until all terminal models are countable.

we have a tree indexed by
finite sequences of ordinals,

<lex well orders the terminal
nodes,

⋃

{Ms : s <lex t terminal} =
the union of |t|-many el. subm.
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if Mα is uncountable, write it as a continuous increasing 〈Mαβ〉β<λ so
that |Mαβ| < |Mα| = λ;

repeat until all terminal models are countable.

we have a tree indexed by
finite sequences of ordinals,

<lex well orders the terminal
nodes,

⋃

{Ms : s <lex t terminal} =
the union of |t|-many el. subm.

b M∅

b b b b

M0 M1

b b bb b b

Mα

Mα0 Mα1 Mαβ

b b b b b bb b b

b Mt

Nt,0

Nt,1

Nt,n−1

height ≤ n

if 2ℵ0 ≤ ℵn then
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Davies-trees in general

Theorem [Davies, Milovich]

Suppose that κ is cardinal, x is a set. Then there is κ << θ and a
sequence 〈Mα : α < κ〉 of elementary submodels of H(θ) so that

(I) |Mα| = ω and x ∈ Mα for all α < κ,

(II) κ ⊂
⋃

α<κMα, and

(III) for every β < κ there is mβ ∈ N and models Nβ,j ≺ H(θ) such that
x ∈ Nβ,j for j < mβ and

M<β=
⋃

{Mα : α < β}=
⋃

{Nβ,j : j < mβ}.

We call 〈Mα : α < κ〉 a Davies-tree for κ over x .
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Sierpinski without CH

R
2 = S0 ∪ S1 ∪ . . . so that |L ∩ Si | ≤ 1 for all L ∈ Li .

Let 〈Mα〉α<c be a Davies-tree covering R
2 so that Θi ∈ Mα.

Step α: distribute the countable R
2 ∩Mα \M<α among the Si ;

let R2 ∩Mα \M<α = {tn}n∈ω, find i0 < i1 < . . . so tn ∈ Sin works;

recall that M<α=
⋃

{Nα,j : j < mα} is a finite union, so

there is at most mα many i > in−1 so we cannot put tn into Si .

 

suppose ri ∈ Si ∩M<α witnesses that tn can’t go into Si ,

pigeon hole: there is a j < mα and i < i ′ so that ri , ri ′ ∈ Nα,j ,

but tn is constructible from ri , ri ′ so tn ∈ Nα,j ⊂ M<α  

so almost all choices of in works.
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Applications - new and old

Davies-trees are not a new techniques but under the radar so far...

[R. O. Davies, 1960s] various paradoxical coverings of R2,

[S. Jackson, R. D. Mauldin, 2002] There is a subset of R2 which
intersects each isometric copy of Z× Z in exactly one point,

[D. Milovich, 2008] Base properties of compact spaces,
Freese-Nation property, and developed nicer Davies-trees,

implicitly, in many other proofs...

various other applications in our new paper:
refining almost disjoint families of

[

κ
]ω

,

conflict-free colourings of almost disj. A ⊂
[

ωm

]ω
,

subgraph structure of uncountably chromatic graphs.
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Countably closed models

Countable models → enumeration in type ω,
→ deal with finite pieces one at a time.

M is countably closed if x ⊆ M, |x | ≤ ω implies x ∈ M.

for any x ⊆ H(θ) there is a countably closed M ≺ H(θ) of size |x |ω;

c.c. models of size c are very useful in various situations:
[Arhangelskii, 1969] Any compact, first countable space has size ≤ c;

[Erdős, Rado, 1956] c+ → (ω1)
2
ω.

Can we make Davies-trees from countably closed models of size c?
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High Davies-trees

We say that a high Davies-tree for κ over x is a sequence 〈Mα : α < κ〉
of elementary submodels of H(θ) for some large enough regular θ such that

(I)
[

Mα

]ω
⊂ Mα, |Mα| = c and x ∈ Mα for all α < κ,

(II)
[

κ
]ω

⊂
⋃

α<κMα, and

(III) for each β < κ there are Nβ,j ≺ H(θ) with [Nβ,j ]
ω ⊂ Nβ,j and

x ∈ Nβ,j for j < ω such that

M<β=
⋃

{Mα : α < β}=
⋃

{Nβ,j : j < ω}.

Note that κω = κ if there is a high Davies-tree for κ.
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Existence of high Davies-trees

A high Davies-tree for κ over x

is a sequence 〈Mα : α < κ〉 s.t.

(I) x ∈ Mα ≺ H(θ) is c.c. of size c,

(II)
[

κ
]ω

⊂
⋃

α<κ
Mα, and

(III) M<α =
⋃

{Nα,j : j < ω} for some
c.c. x ∈ Nα,j ≺ H(θ).
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Mα, and
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⋃
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c.c. x ∈ Nα,j ≺ H(θ).

[DS, LS] There are high Davies-tree for any uncountable κ < c
+ω,

e.g. for κ = ℵn if n < ω.

Dániel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017 17 / 24



Existence of high Davies-trees

A high Davies-tree for κ over x

is a sequence 〈Mα : α < κ〉 s.t.
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(II)
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κ
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α<κ
Mα, and

(III) M<α =
⋃

{Nα,j : j < ω} for some
c.c. x ∈ Nα,j ≺ H(θ).

[DS, LS] There are high Davies-tree for any uncountable κ < c
+ω,

e.g. for κ = ℵn if n < ω.

Theorem [DS, LS]

There are high Davies-tree for any uncountable κ if V = L.
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c.c. x ∈ Nα,j ≺ H(θ).

Main Theorem [DS, LS]

There are high Davies-tree for κ if κω = κ and

µω = µ+, µ is ω-inaccessible and �µ holds

for all c < µ < κ with cf(µ) = ω.
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(III) M<α =
⋃

{Nα,j : j < ω} for some
c.c. x ∈ Nα,j ≺ H(θ).

Main Theorem [DS, LS]

There are high Davies-tree for κ if κω = κ and

µω = µ+, µ is ω-inaccessible and �µ holds

for all c < µ < κ with cf(µ) = ω.

Remark: no high Davies-trees for κ ≥ ℵω if (ℵω+1,ℵω) ։ (ℵ1,ℵ0).

Dániel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017 17 / 24



Coloring topological spaces

A Bernstein-decomposition of X is a map f : X → c so that f [C ] = c for all
C ⊆ X homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size ≤ c admits a
Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T1 topology Y (on R
2)

so that Y → (Cantor)1
c
.

[W. Weiss, 1980] Any T2 topological space has a
Bernstein-decomposition if µω = µ+ and �µ for all cf(µ) = ω < c < µ.

see “Partitioning topological spaces" by Weiss, 1990 for a survey.

[Shelah, 2004] Using a supercompact, consistently
there is a 0-dim, T2 space X of size ℵω+1 without Bernstein-decomposition.
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Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ.

If there is a high Davies-tree for κ over X ,

then X has a Bernstein-decomposition.

suppose that 〈Mα〉α<κ is the high Davies-tree for κ over X ,

we define fα : X<α → c where X<α = X ∩M<α,

note that if C ⊆ X is Cantor then C ∈ M<α for some α < κ,
there is a countable D ⊆ X so that clX (D) = C ,

D ∈
[

X
]ω

⊆ M<κ so D ∈ M<α and clX (D) = C ∈ M<α for some α.

we make sure that

if C ⊆ X , C ∈ M<α and C is Cantor then fα[C ] = c.
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we define fα : X<α → c where X<α = X ∩M<α,

note that if C ⊆ X is Cantor then C ∈ M<α for some α < κ,
there is a countable D ⊆ X so that clX (D) = C ,

D ∈
[

X
]ω

⊆ M<κ so D ∈ M<α and clX (D) = C ∈ M<α for some α.

we make sure that

if C ⊆ X , C ∈ M<α and C is Cantor then fα[C ] = c.
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Bernstein-decompositions from high Davies-trees

Goal: given fα : X<α → c extend to fα+1 : X<α+1 → c so that

fα+1[C ] = c for all C ∈ M<α+1.

Maybe we colored some
C ∈ Mα \M<α by accident already?

|C ∩ X<α| ≤ ω or

fα[C ∩ X<α] = c.

M<α =
⋃

{Nα,j : j < ω} so
|C ∩ Nα,j | > ω for some j ,

pick ctble dense D ⊂ C ∩ Nα,j ,
so D ∈ Nα,j too. C ∗ = clX (D) ∈ Nα,j ⊆ M<α

and so
c = fα[C

∗] ⊆ fα[C ∩ X<α].
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Maybe we colored some
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Let {Cξ : ξ < c} list C ∈ Mα \M<α

s.t. |C ∩ X<α| ≤ ω, each c times.

Pick yξ ∈ Cξ \ (X<α ∪ {yζ : ζ < ξ}).

X

X<α = X ∩M<α

X ∩Mα

C ∈ Mα \M<α

C
∗ = clX (D)

Let fα+1(yξ) = ν if Cξ is the νth-time
we see Cξ.
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Further applications
See "Infinite combinatorics plain and simple" at [ArXiv: 1705.06195] for more.

If ∃ high Davies-trees for κ + CH holds then

〈
[

κ
]ω
,⊂〉 has the weak Freese-Nation property,

∃ saturated almost disj. families in
[

κ
]ω

,

sage Davies-tree = high D-tree + 〈Mα : α < β〉 ∈ Mβ for all β < κ.

If ∃ sage Davies-tree for κ + CH holds then

∃ splendid topological spaces of size κ,

∃ cofinal Kurepa-families in
[

κ
]ω

.
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Some open problems in the neighbourhood

There is f : Rn → ω such that there are

no monochromatic rational distances [Komjáth], or

no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are c points in the Hilbert-space ℓ2 so that any two
distinct points have rational distance.

[Komjáth] Are there c points in ℓ2 so that any three form a triangle
with non-zero rational area?

A 2-point set A ⊆ R
2 is such that |A ∩ ℓ| = 2 for every line ℓ ⊂ R

2.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for “communicating a solution to him”.
Efimov’s problem pays £13, or £10 under MA + c > ℵ1.
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Thank you for your attention!
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