How to make infinite combinatorics simple?

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Dániel Soukup (KGRC)

Infinite combinatorics plain and simple

ESTC, July 2017 1 / 24

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that **both colors** appear on **any copy of the Cantor-space** in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that **both colors** appear on **any copy of the Cantor-space** in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that **both colors** appear on **any copy of the Cantor-space** in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are **more than c such subspaces** then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

2 / 24

enumerate the objectives \longrightarrow inductively meet these goals.

Colour the points of a topological space X with red and blue so that both colors appear on any copy of the Cantor-space in X.

- list all Cantor subspaces of X, and
- inductively declare one point red and one point blue from each.

If there are more than c such subspaces then, after continuum many steps, we could have accidentally covered some Cantor-subspace with red points only.

2 / 24

• explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

explore a general framework for inductive constructions, arbitrary large structures by countable/continuum sized pieces,

- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

• explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?

• demonstrate the applicability through entertaining examples:

- paradoxical decompositions of the plane, and
- Bernstein-decompositions of arbitrary topological spaces.

Based on

explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]

• explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

"Infinite combinatorics plain and simple" [ArXiv: 1705.06195]

a joint paper with L. Soukup.

• explore a general framework for inductive constructions,

- arbitrary large structures by countable/continuum sized pieces,
- how avoid the previous types of problems?
- demonstrate the applicability through entertaining examples:
 - paradoxical decompositions of the plane, and
 - Bernstein-decompositions of arbitrary topological spaces.

Based on

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then." P. Erdős

Dániel Soukup (KGRC)

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then." P. Erdős

4 / 24

[Sierpinski, 1919] CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S₁ has countable horizontal segments.

How about $2^{\aleph_0} \leq \aleph_n$?

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then." P. Erdős

[Sierpinski, 1919] CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S₁ has countable horizontal segments.

[Sierpinski, 1933] CH implies that \mathbb{R}^2 is the union of countably many *curves* i.e. rotated graphs of single-valued functions.

Is CH necessary here?

How about $2^{\aleph_0} \leq \aleph_n$?

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then." P. Erdős

[Sierpinski, 1919] CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S₁ has countable horizontal segments.

[Sierpinski, 1933] CH implies that \mathbb{R}^2 is the union of countably many *curves* i.e. rotated graphs of single-valued functions.

Is CH necessary here?

How about $2^{\aleph_0} \leq \aleph_n$?

"There is a beautiful theorem of Sierpinski. I remember how surprised I was when I first saw it. [...] It is a very simple theorem by present standards but it was very startling then." P. Erdős

[Sierpinski, 1919] CH holds iff $\mathbb{R}^2 = S_0 \cup S_1$ so that

- S₀ has countable vertical segments, and
- S₁ has countable horizontal segments.

```
[Sierpinski, 1933] CH implies that \mathbb{R}^2 is the union of countably many curves i.e. rotated graphs of single-valued functions.
```

```
Is CH necessary here?
```

```
How about 2^{\aleph_0} \leq \aleph_n?
```

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (I) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. (II) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$.

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

[cover by \aleph_0 sets with one-element sections]

Dániel Soukup (KGRC) Infinite combin

Infinite combinatorics plain and simple

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (I) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. (II) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$.

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (I) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 1 sets with countable sections] (II) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$.

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

[cover by \aleph_0 sets with one-element sections]

5 / 24

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (1) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$.

Dániel Soukup (KGRC) Infinite combinatorics plain and simple

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (1) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 1 sets with countable sections] (11) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (1) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 1 sets with countable sections] (11) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (1) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 1 sets with countable sections] (11) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (I) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 1 sets with countable sections] (II) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let Θ_i denote distinct directions, \mathcal{L}_i the lines in direction Θ_i .

[Davies, 1963] $2^{\aleph_0} \leq \aleph_n$ iff (I) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_n$ so that $|L \cap S_i| \leq \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 1 sets with countable sections] (II) $\mathbb{R}^2 = S_0 \cup \cdots \cup S_{n+1}$ so that $|L \cap S_i| < \aleph_0$ for all $L \in \mathcal{L}_i$. [cover by n + 2 sets with finite sections]

[Davies, 1963] In ZFC, \mathbb{R}^2 is the union of countably many curves i.e. $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

r is constructible from Θ_i, Θ_j and previous points from S_i, S_j .

6 / 24

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

• fix distinct directions Θ_i ,

- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point *r* to the union of *S*_i's?

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

r is constructible from Θ_i, Θ_j and previous points from S_i, S_j .

CH implies that $\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \leq 1$ for all $L \in \mathcal{L}_i$.

- fix distinct directions Θ_i ,
- if you want to cover a countable $R_0 = \{r_0, r_1 \dots\}$ only then we can put $r_i \in S_i$
- what prevents us from adding an extra point r to the union of S_i's?

r is constructible from Θ_i, Θ_j and previous points from S_i, S_j .

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of S_i 's is closed under constructibility then any new $r \in \mathbb{R}^2$ can be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,
- put t_n into S_{2n} or S_{2n+1} , wherever we allowed. Why is this possible?
 - f if both 2*n* and 2*n* + 1 are bad for t_n then t_n is constructible from points in R_α and hence $t_n \in R_\alpha \notin$

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of S_i 's is closed under constructibility then any new $r \in \mathbb{R}^2$ can be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,

put t_n into S_{2n} or S_{2n+1}, wherever we allowed. Why is this possible?
 if both 2n and 2n + 1 are bad for t_n then t_n is constructible from points in R_α and hence t_n ∈ R_α ∉

7 / 24

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of
$$S_i$$
's is closed under con-
structibility then any new $r \in \mathbb{R}^2$ can
be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,

put t_n into S_{2n} or S_{2n+1}, wherever we allowed. Why is this possible?
 if both 2n and 2n + 1 are bad for t_n then t_n is constructible from points in R_α and hence t_n ∈ R_α ∉

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of
$$S_i$$
's is closed under constructibility then any new $r \in \mathbb{R}^2$ can be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,

put t_n into S_{2n} or S_{2n+1}, wherever we allowed. Why is this possible?
 if both 2n and 2n + 1 are bad for t_n then t_n is constructible from points in R_α and hence t_n ∈ R_α ∉

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of
$$S_i$$
's is closed under con-
structibility then any new $r \in \mathbb{R}^2$ can
be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,
- put t_n into S_{2n} or S_{2n+1}, wherever we allowed. Why is this possible?
 if both 2n and 2n + 1 are bad for t_n then t_n is constructible from points in R_α and hence t_n ∈ R_α ∉

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of
$$S_i$$
's is closed under con-
structibility then any new $r \in \mathbb{R}^2$ can
be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,
- put t_n into S_{2n} or S_{2n+1}, wherever we allowed. Why is this possible? *i* if both 2n and 2n + 1 are bad for t_n then t_n is constructible from points in R_α and hence t_n ∈ R_α *i*

7 / 24

CH implies that \mathbb{R}^2 is the union of countably many rotated graphs of functions.

If the union of
$$S_i$$
's is closed under con-
structibility then any new $r \in \mathbb{R}^2$ can
be added to all but at most one S_i .

- use CH, to write ℝ² as a continuous, increasing union of countable R_α for α < ω₁,
- make sure that each R_{α} is closed under constructibility.
- if the S_i 's union is R_{α} then list $R_{\alpha+1} \setminus R_{\alpha}$ as $\{t_n : n < \omega\}$,
- put t_n into S_{2n} or S_{2n+1} , wherever we allowed. Why is this possible?
 - \ddagger if both 2n and 2n + 1 are bad for t_n then t_n is constructible from points in R_α and hence $t_n \in R_\alpha \notin$

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;
- for any countable x ⊆ H(θ) there is a countable x ⊆ M ≺ H(θ);

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

```
M \models \Phi \leftrightarrow H \models \Phi
```

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

```
M \models \Phi \leftrightarrow H \models \Phi
```

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and $M \models \Phi \leftrightarrow H \models \Phi$ for all first order Φ with parameters from M.

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

$$M \models \Phi \leftrightarrow H \models \Phi$$

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;

• for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$; We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

$$M \models \Phi \leftrightarrow H \models \Phi$$

- any countable set is included in a countable set closed under constructibility;
- we could have closed under all first order operations, still countable;
- H = H(θ) and the real universe V agrees on properties of structures of size << θ;
- for any countable $x \subseteq H(\theta)$ there is a countable $x \subseteq M \prec H(\theta)$;

We take closure using elementary submodels: $M \prec H$ iff $M \subseteq H$ and

$$M \models \Phi \leftrightarrow H \models \Phi$$

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

build inductively, taking unions at limit steps,

• this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Given a set $R \subseteq H(\theta)$ of size \aleph_1 there is a continuous, increasing sequence of countable elementary submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ of $H(\theta)$ covering R.

- build inductively, taking unions at limit steps,
- this ensures continuity which also implies elementarity at limits;

[CH] We can choose $R_{\alpha} = M_{\alpha} \cap \mathbb{R}^2$ where $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is a continuous, increasing sequence of countable elementary submodels of $H(\mathfrak{c}^+)$ covering \mathbb{R}^2 .

Note: we can never cover \aleph_2 by an increasing sequence of countable sets.

9 / 24

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_α is uncountable, write it as a continuous increasing ⟨M_{αβ}⟩_{β<λ} so that |M_{αβ}| < |M_α| = λ;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

10 / 24

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_α is uncountable, write it as a continuous increasing ⟨M_{αβ}⟩_{β<λ} so that |M_{αβ}| < |M_α| = λ;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_α is uncountable, write it as a continuous increasing ⟨M_{αβ}⟩_{β<λ} so that |M_{αβ}| < |M_α| = λ;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;

repeat until all terminal models are countable.

- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
 - <_{lex} well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\rm lex}$ well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\rm lex}$ well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{lex}$ well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{lex}$ well orders the terminal nodes,

 $\bigcup \{M_s : s <_{\text{lex}} t \text{ terminal} \} =$ the union of |t|-many el. subm.

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\rm lex}$ well orders the terminal nodes,

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{\rm lex}$ well orders the terminal nodes,

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{lex}$ well orders the terminal nodes,

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{lex}$ well orders the terminal nodes,

[Davies, 1963] Take \mathbb{R}^2 and cover with M_{\emptyset} of size \mathfrak{c} .

- write M_{\emptyset} as a continuous increasing $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ each of size $< \mathfrak{c} = |M_{\emptyset}|$;
- if M_{α} is uncountable, write it as a continuous increasing $\langle M_{\alpha\beta} \rangle_{\beta < \lambda}$ so that $|M_{\alpha\beta}| < |M_{\alpha}| = \lambda$;
- repeat until all terminal models are countable.
- we have a tree indexed by finite sequences of ordinals,
- $<_{lex}$ well orders the terminal nodes.

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

(II) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$M_{\leq\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

11 / 24

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (1) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$, (11) $\kappa \subset \bigcup_{\alpha \ll \kappa} M_{\alpha}$, and (11) for every $\beta \ll \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j \ll m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

(II) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

(II) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

(II) $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that

(I)
$$|M_{\alpha}| = \omega$$
 and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

[countable models with all the parameters]

(II)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

We call $\langle M_{\alpha} : \alpha < \kappa \rangle$ a Davies-tree for κ over x.

11 / 24

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$, [countable models with all the parameters]

(II)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and [cover κ]

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

[countable models with all the parameters]

(II)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and [cover κ]

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

[initial segments are finite unions of models]

We call $\langle M_{lpha}: lpha < \kappa
angle$ a Davies-tree for κ over x.

Dániel Soukup (KGRC)

Suppose that κ is cardinal, x is a set. Then there is $\kappa \ll \theta$ and a sequence $\langle M_{\alpha} : \alpha \ll \kappa \rangle$ of elementary submodels of $H(\theta)$ so that (I) $|M_{\alpha}| = \omega$ and $x \in M_{\alpha}$ for all $\alpha \ll \kappa$,

[countable models with all the parameters]

(II)
$$\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and [cover κ]

(III) for every $\beta < \kappa$ there is $m_{\beta} \in \mathbb{N}$ and models $N_{\beta,j} \prec H(\theta)$ such that $x \in N_{\beta,j}$ for $j < m_{\beta}$ and

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < m_{\beta}\}.$$

[initial segments are finite unions of models]

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_\alpha \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_lpha many $i>i_{n-1}$ so we cannot put t_n into $S_i.$

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- pigeon hole: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha}$

• so almost all choices of *i_n* works.

A ∰ ► A ∃

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_\alpha \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_lpha many $i>i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- pigeon hole: there is a $j < m_{lpha}$ and i < i' so that $r_i, r_{i'} \in N_{lpha,j},$
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha}$

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

- Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.
 - Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
 - let $\mathbb{R}^2 \cap M_\alpha \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
 - recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_lpha many $i>i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{\leq \alpha}$ witnesses that t_n can't go into S_i ,
- pigeon hole: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,i} \subset M_{<\alpha}$
- so almost all choices of *i_n* works.

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_\alpha \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < m_{\alpha} \}$ is a finite union, so

there is at most m_{lpha} many $i>i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- **pigeon hole**: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,i} \subset M_{<\alpha}$

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_{α} many $i > i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- pigeon hole: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha} \notin$

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_{α} many $i > i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- pigeon hole: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha} \notin$

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_{α} many $i > i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- **pigeon hole**: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha} \notin$

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_\alpha \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_{α} many $i > i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- **pigeon hole**: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha}$
- so almost all choices of *i_n* works.

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_{α} many $i > i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- **pigeon hole**: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha} \notin$

$\mathbb{R}^2 = S_0 \cup S_1 \cup \ldots$ so that $|L \cap S_i| \le 1$ for all $L \in \mathcal{L}_i$.

Let $\langle M_{\alpha} \rangle_{\alpha < \mathfrak{c}}$ be a Davies-tree covering \mathbb{R}^2 so that $\Theta_i \in M_{\alpha}$.

- Step α : distribute the countable $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha}$ among the S_i ;
- let $\mathbb{R}^2 \cap M_{\alpha} \setminus M_{<\alpha} = \{t_n\}_{n \in \omega}$, find $i_0 < i_1 < \dots$ so $t_n \in S_{i_n}$ works;
- recall that $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < m_{\alpha}\}$ is a finite union, so

there is at most m_{α} many $i > i_{n-1}$ so we cannot put t_n into S_i .

- f suppose $r_i \in S_i \cap M_{<\alpha}$ witnesses that t_n can't go into S_i ,
- **pigeon hole**: there is a $j < m_{\alpha}$ and i < i' so that $r_i, r_{i'} \in N_{\alpha,j}$,
- but t_n is constructible from $r_i, r_{i'}$ so $t_n \in N_{\alpha,j} \subset M_{<\alpha} \notin$
- so almost all choices of *i_n* works.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of ℝ² which intersects each isometric copy of Z × Z in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of ℝ² which intersects each isometric copy of Z × Z in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed **nicer Davies-trees**,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^2 which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^2 which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed **nicer Davies-trees**,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of ℝ² which intersects each isometric copy of Z × Z in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $\left\lceil \kappa \right\rceil ^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of ℝ² which intersects each isometric copy of Z × Z in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $\left\lceil \kappa \right\rceil ^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset \left[\omega_{m}
 ight]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^2 which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^2 which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $\left[\kappa\right]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^2 which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

13 / 24

- [R. O. Davies, 1960s] various paradoxical coverings of \mathbb{R}^2 ,
- [S. Jackson, R. D. Mauldin, 2002] There is a subset of \mathbb{R}^2 which intersects each isometric copy of $\mathbb{Z} \times \mathbb{Z}$ in exactly one point,
- [D. Milovich, 2008] Base properties of compact spaces, Freese-Nation property, and developed nicer Davies-trees,
- implicitly, in many other proofs...
- various other applications in our new paper:
 - refining almost disjoint families of $[\kappa]^{\omega}$,
 - conflict-free colourings of almost disj. $\mathcal{A} \subset [\omega_m]^{\omega}$,
 - subgraph structure of uncountably chromatic graphs.

13 / 24

Combinatorics from L

Dániel Soukup (KGRC) Infinite combinatorics plain and simple ESTC, July 2017

æ

Combinatorics from L

Dániel Soukup (KGRC)

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

Dániel Soukup (KGRC)

< 一型

æ

Dániel Soukup (KGRC)

< 一型

æ

Dániel Soukup (KGRC)

ESTC, July 2017

< 一型

14 / 24

문 문 문

ē) ē

Э

ESTC, July 2017 14 / 24

→

< A

Э

æ ESTC, July 2017 14 / 24

→

< Al

→ < Ξ →</p>

3

M is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;
 - [Erdős, Rado, 1956] $\mathfrak{c}^+ o (\omega_1)^2_{\omega}$.

M is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size \leq c;
 - [Erdős, Rado, 1956] $\mathfrak{c}^+ o (\omega_1)^2_{\omega}$.

M is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.

- for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
- c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;

15 / 24

• [Erdős, Rado, 1956] $\mathfrak{c}^+ \to (\omega_1)^2_{\omega}$.

Countable models \rightarrow enumeration in type ω , \rightarrow deal with finite pieces one at a time.

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
 - c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;

15 / 24

• [Erdős, Rado, 1956] $\mathfrak{c}^+ o (\omega_1)^2_{\omega}$.

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
 - c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq c$;

15 / 24

• [Erdős, Rado, 1956] $\mathfrak{c}^+ \to (\omega_1)^2_{\omega}$.

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
 - c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;

15 / 24

• [Erdős, Rado, 1956] $\mathfrak{c}^+ \to (\omega_1)^2_{\omega}$.

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
 - c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;
 - [Erdős, Rado, 1956] $\mathfrak{c}^+ \to (\omega_1)^2_{\omega}$.

- *M* is countably closed if $x \subseteq M$, $|x| \leq \omega$ implies $x \in M$.
 - for any $x \subseteq H(\theta)$ there is a countably closed $M \prec H(\theta)$ of size $|x|^{\omega}$;
 - c.c. models of size c are very useful in various situations:
 - [Arhangelskii, 1969] Any compact, first countable space has size $\leq \mathfrak{c}$;

15 / 24

• [Erdős, Rado, 1956] $\mathfrak{c}^+ \to (\omega_1)^2_{\omega}$.

(1)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II)
$$[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$$
, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

ESTC, July 2017

16 / 24

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(I)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

- (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and
- (III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{ M_{\alpha} : \alpha < \beta \} = \bigcup \{ N_{\beta,j} : j < \omega \}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(I)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(I)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(I)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

(I)
$$[M_{\alpha}]^{\omega} \subset M_{\alpha}$$
, $|M_{\alpha}| = \mathfrak{c}$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

(II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$M_{<\beta} = \bigcup \{M_{\alpha} : \alpha < \beta\} = \bigcup \{N_{\beta,j} : j < \omega\}.$$

Note that $\kappa^{\omega} = \kappa$ if there is a high Davies-tree for κ .

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t.

Dániel Soukup (KGRC)

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t.

Dániel Soukup (KGRC)

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t.

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

[DS, LS] There are high Davies-tree for any uncountable $\kappa < \mathfrak{c}^{+\omega}$, e.g. for $\kappa = \aleph_n$ if $n < \omega$.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t.

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{<\alpha} = \bigcup \{N_{\alpha,j} : j < \omega\}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

[DS, LS] There are high Davies-tree for any uncountable $\kappa < \mathfrak{c}^{+\omega}$, e.g. for $\kappa = \aleph_n$ if $n < \omega$.

Theorem [DS, LS]

There are high Davies-tree for any uncountable κ if V = L.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t.

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size c, (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{\alpha} = \bigcup \{N_{\alpha} : i < \omega\}$ for some

(III) $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

Main Theorem [DS, LS]

There are high Davies-tree for κ if $\kappa^{\omega} = \kappa$ and

 $\mu^{\omega} = \mu^+$, μ is ω -inaccessible and \Box_{μ} holds

for all $\mathfrak{c} < \mu < \kappa$ with $cf(\mu) = \omega$.

A high Davies-tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ s.t.

(I) $x \in M_{\alpha} \prec H(\theta)$ is c.c. of size \mathfrak{c} , (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and (III) $M_{\alpha} = \bigcup \{N_{\alpha} : i \leq \omega\}$ for some

(III) $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ for some c.c. $x \in N_{\alpha,j} \prec H(\theta)$.

Main Theorem [DS, LS]

There are high Davies-tree for κ if $\kappa^{\omega} = \kappa$ and

 $\mu^{\omega} = \mu^+$, μ is ω -inaccessible and \Box_{μ} holds

for all $\mathfrak{c} < \mu < \kappa$ with $cf(\mu) = \omega$.

Remark: no high Davies-trees for $\kappa \geq \aleph_{\omega}$ if $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$.

Dániel Soukup (KGRC)

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

[Shelah, **2004]** Using a supercompact, consistently there is a 0-dim, T_2 space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

[Shelah, 2004] Using a supercompact, consistently there is a 0-dim, T_2 space X of size $\aleph_{\omega+1}$ without Bernstein-decomposition.

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

A **Bernstein-decomposition of** X is a map $f : X \to \mathfrak{c}$ so that $f[C] = \mathfrak{c}$ for all $C \subseteq X$ homeomorphic to the Cantor set.

Which topological spaces have a Bernstein-decomposition?

[Bernstein, 1908] Any topological space of size $\leq \mathfrak{c}$ admits a Bernstein-decomposition.

[Nesetril, Pelant, Rődl, 1977] There is a T_1 topology Y (on \mathbb{R}^2) so that $Y \to (\text{Cantor})^1_c$.

[W. Weiss, 1980] Any T_2 topological space has a Bernstein-decomposition if $\mu^{\omega} = \mu^+$ and \Box_{μ} for all $cf(\mu) = \omega < \mathfrak{c} < \mu$.

• see "Partitioning topological spaces" by Weiss, 1990 for a survey.

Bernstein-decompositions from high Davies-trees

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

• we make sure that

if $C \subseteq X$, $C \in M_{<\alpha}$ and C is Cantor then $f_{\alpha}[C] = \mathfrak{c}$.

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

• we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

• we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

• suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,

• we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,

• note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,

• there is a countable $D \subseteq X$ so that $cl_X(D) = C$,

• $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

• we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ where $X_{<\alpha} = X \cap M_{<\alpha}$,
- note that if C ⊆ X is Cantor then C ∈ M_{<α} for some α < κ,
 there is a countable D ⊆ X so that cl_X(D) = C,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

• we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{lpha}:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

• we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{lpha}:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,

• $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{lpha}:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .

we make sure that

Suppose that X is a Hausdorff top. space of size κ .

If there is a high Davies-tree for κ over X, then X has a Bernstein-decomposition.

- suppose that $\langle M_{\alpha} \rangle_{\alpha < \kappa}$ is the high Davies-tree for κ over X,
- we define $f_{lpha}:X_{<lpha}
 ightarrow \mathfrak{c}$ where $X_{<lpha}=X\cap M_{<lpha}$,
- note that if $C \subseteq X$ is Cantor then $C \in M_{<\alpha}$ for some $\alpha < \kappa$,
 - there is a countable $D \subseteq X$ so that $cl_X(D) = C$,
 - $D \in [X]^{\omega} \subseteq M_{<\kappa}$ so $D \in M_{<\alpha}$ and $cl_X(D) = C \in M_{<\alpha}$ for some α .
- we make sure that

 $\text{ if } C \subseteq X, \ C \in M_{<\alpha} \text{ and } C \text{ is Cantor then } f_{\alpha}[C] = \mathfrak{c}.$

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{<\alpha+1}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already?

 $|C \cap X_{\leq \alpha}| \leq \omega$ or $f_{\alpha}[C \cap X_{\leq \alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Goal: given $f_{\alpha}: X_{\leq \alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{\leq \alpha+1} \to \mathfrak{c}$ so that Х $X_{<\alpha} = X \cap M_{<\alpha}$ • $M_{\leq \alpha} = \bigcup \{ N_{\alpha, i} : j < \omega \}$ so • pick ctble dense $D \subset C \cap N_{\alpha,i}$, • $C^* = \operatorname{cl}_X(D) \in N_{\alpha,i} \subseteq M_{\leq \alpha}$

ESTC, July 2017

Goal: given $f_{\alpha}: X_{\leq \alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{\leq \alpha+1} \to \mathfrak{c}$ so that Х $X \cap M_{\alpha}$ $X_{\leq \alpha} = X \cap M_{\leq \alpha}$ • $M_{\leq \alpha} = \bigcup \{ N_{\alpha, i} : j < \omega \}$ so • pick ctble dense $D \subset C \cap N_{\alpha,i}$, • $C^* = \operatorname{cl}_X(D) \in N_{\alpha,i} \subseteq M_{\leq \alpha}$

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{\leq \alpha}$. Х $X \cap M_{\alpha}$ $X_{<\alpha} = X \cap M_{<\alpha}$ • $M_{\leq \alpha} = \bigcup \{ N_{\alpha, i} : j < \omega \}$ so • pick ctble dense $D \subset C \cap N_{\alpha,i}$, • $C^* = \operatorname{cl}_X(D) \in N_{\alpha,i} \subseteq M_{<\alpha}$

ESTC, July 2017

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{< \alpha}$ by accident already?

 $|\mathcal{C} \cap X_{<lpha}| \le \omega$ or $f_{lpha}[\mathcal{C} \cap X_{<lpha}] = \mathfrak{c}.$

• $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,

pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

• $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,

pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017 20 / 24

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

• $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,

pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017 20 / 24

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

• $M_{\leq \alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,

pick ctble dense D ⊂ C ∩ N_{α,j},
 so D ∈ N_{α,j} too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017 20 / 24

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017 20 / 24

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_\alpha[C^*] \subseteq f_\alpha[C \cap X_{<\alpha}].$

ESTC, July 2017

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

•
$$C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$$

and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}]$

ESTC, July 2017 20 / 24

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

- $M_{<\alpha} = \bigcup \{ N_{\alpha,j} : j < \omega \}$ so $|C \cap N_{\alpha,j}| > \omega$ for some j,
- pick ctble dense $D \subset C \cap N_{\alpha,j}$, so $D \in N_{\alpha,j}$ too.

• $C^* = \operatorname{cl}_X(D) \in N_{\alpha,j} \subseteq M_{<\alpha}$ and so $\mathfrak{c} = f_{\alpha}[C^*] \subseteq f_{\alpha}[C \cap X_{<\alpha}].$

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick $y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick $y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick
$$y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

Х

Goal: given $f_{\alpha}: X_{<\alpha} \to \mathfrak{c}$ extend to $f_{\alpha+1}: X_{<\alpha+1} \to \mathfrak{c}$ so that

 $f_{\alpha+1}[C] = \mathfrak{c}$ for all $C \in M_{\alpha} \setminus M_{<\alpha}$.

Maybe we colored some $C \in M_{\alpha} \setminus M_{<\alpha}$ by accident already? $|C \cap X_{<\alpha}| \le \omega$ or $f_{\alpha}[C \cap X_{<\alpha}] = \mathfrak{c}.$

Let $\{C_{\xi} : \xi < \mathfrak{c}\}$ list $C \in M_{\alpha} \setminus M_{<\alpha}$ s.t. $|C \cap X_{<\alpha}| \le \omega$, each \mathfrak{c} times.

Pick
$$y_{\xi} \in C_{\xi} \setminus (X_{<\alpha} \cup \{y_{\zeta} : \zeta < \xi\}).$$

Let $f_{\alpha+1}(y_{\xi}) = \nu$ if C_{ξ} is the ν^{th} -time we see C_{ξ} .

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

- \exists splendid topological spaces of size κ ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

- \exists splendid topological spaces of size κ ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

- \exists splendid topological spaces of size κ ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

- \exists splendid topological spaces of size κ ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

If \exists sage Davies-tree for κ + CH holds then

- \exists splendid topological spaces of size κ ,
- \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

If \exists sage Davies-tree for κ + CH holds then

• \exists splendid topological spaces of size κ ,

• \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

- If \exists sage Davies-tree for κ + CH holds then
 - \exists splendid topological spaces of size κ ,
 - \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

If \exists high Davies-trees for κ + CH holds then

- $\langle [\kappa]^{\omega}, \subset \rangle$ has the weak Freese-Nation property,
- \exists saturated almost disj. families in $[\kappa]^{\omega}$,

sage Davies-tree = high D-tree + $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$.

- If \exists sage Davies-tree for κ + CH holds then
 - \exists splendid topological spaces of size κ ,
 - \exists cofinal Kurepa-families in $[\kappa]^{\omega}$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are \mathfrak{c} points in the **Hilbert-space** ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there \mathfrak{c} points in ℓ^2 so that any three form a triangle with non-zero rational area?

A **2-point set** $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f: \mathbb{R}^n \to \omega$ such that there are

- no monochromatic rational distances [Komjáth], or
- no monochromatic triangles with non-zero rational area [Schmerl].

Folklore: there are \mathfrak{c} points in the **Hilbert-space** ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there \mathfrak{c} points in ℓ^2 so that any three form a triangle with non-zero rational area?

A **2-point set** $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are \mathfrak{c} points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there \mathfrak{c} points in ℓ^2 so that any three form a triangle with non-zero rational area?

A **2-point set** $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are c points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there \mathfrak{c} points in ℓ^2 so that any three form a triangle with non-zero rational area?

A **2-point set** $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are c points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there c points in ℓ^2 so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are c points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there c points in ℓ^2 so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are c points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there c points in ℓ^2 so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under $MA + c > \aleph_1$.

There is $f : \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are c points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there c points in ℓ^2 so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.

There is $f: \mathbb{R}^n \to \omega$ such that there are

• no monochromatic rational distances [Komjáth], or

• no monochromatic triangles with non-zero rational area [Schmerl]. Folklore: there are c points in the Hilbert-space ℓ^2 so that any two distinct points have rational distance.

[Komjáth] Are there \mathfrak{c} points in ℓ^2 so that any three form a triangle with non-zero rational area?

A 2-point set $A \subseteq \mathbb{R}^2$ is such that $|A \cap \ell| = 2$ for every line $\ell \subset \mathbb{R}^2$.

[Sierpinski/Erdős] Is there a Borel 2-point set?

Fremlin is offering £34 for "communicating a solution to him". Efimov's problem pays £13, or £10 under MA + $c > \aleph_1$.