Enrichments of graphs with uncountable chromatic number

Dániel T. Soukup

Kurt Gödel Research Center, University of Vienna

Thank you for the support of the Fields Institute.

Visit: www.logic.univie.ac.at/~soukupd73/ Papers, preprints and 'Combinatorial Set Theory' lecture notes.

What makes combinatorics interesting?

• Why (infinite) combinatorics?

- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 - The theme of local/global tension.

What makes combinatorics interesting?

• Why (infinite) combinatorics?

- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 - The theme of local/global tension.

- Why (infinite) combinatorics?
 - Accessibility and diversity.
 - "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 - The theme of local/global tension.

- Why (infinite) combinatorics?
 - Accessibility and diversity.
 - "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 - The theme of local/global tension.

- Why (infinite) combinatorics?
 - Accessibility and diversity.
 - "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 The theme of local/global tension.

- Why (infinite) combinatorics?
 - Accessibility and diversity.
 - "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 - The theme of local/global tension.

- Why (infinite) combinatorics?
 - Accessibility and diversity.
 - "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
 - The theme of local/global tension.

• Intro to graphs and chromatic numbers;

- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

Quiz 1: name the iconic U of T building.

D. Soukup (UniVie)

Quiz 1: name the iconic U of T building.

Robarts Library

D. Soukup (UniVie)

Enrichments of graphs

The **chromatic number** of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

• Pigeonhole (dimension 1)

For any $c : \mathbb{N} \to r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright A$ is constant.

$$\mathbb{N} \to (\aleph_0)^1_r$$

• Ramsey's theorem (dimension 2)

For any $c : [\mathbb{N}]^2 \to r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright [A]^2$ is constant.

 $\mathbb{N} o (\aleph_0)_r^2$

• Todorcevic's anti Ramsey theorem There is $c : [\omega_1]^2 \to \omega_1$ so that for any uncountable $A \subset \omega_1$, $c[A]^2 = \omega_1$. • Pigeonhole (dimension 1)

For any $c : \mathbb{N} \to r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright A$ is constant.

$$\mathbb{N} \to (\aleph_0)^1_r$$

• Ramsey's theorem (dimension 2) For any $c : [\mathbb{N}]^2 \to r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright [A]^2$ is constant.

$$\mathbb{N} \to (\aleph_0)_r^2$$

• Todorcevic's anti Ramsey theorem There is $c : [\omega_1]^2 \to \omega_1$ so that for any uncountable $A \subset \omega_1$, $c[A]^2 = \omega_1$. • Pigeonhole (dimension 1)

For any $c : \mathbb{N} \to r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright A$ is constant.

$$\mathbb{N} \to (\aleph_0)^1_r$$

• Ramsey's theorem (dimension 2) For any $c : [\mathbb{N}]^2 \to r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright [A]^2$ is constant.

$$\mathbb{N} \to (\aleph_0)_r^2$$

• Todorcevic's anti Ramsey theorem There is $c : [\omega_1]^2 \to \omega_1$ so that for any uncountable $A \subset \omega_1$, $c[A]^2 = \omega_1$. $\omega_1 \not\rightarrow [\omega_1]^2_{\omega_1}$ • 1-dimensional graph arrow (coloring vertices) For every colouring $c: V(G) \rightarrow \omega$, there is a monochromatic copy of *H*.

$$G
ightarrow (H)^1_\omega$$

• 2-dimensional graph arrow (coloring edges) For every colouring $c : E(G) \rightarrow \omega$, there is a monochromatic copy of *H*.

$$G
ightarrow (H)^2_\omega$$

1-dimensional graph arrow (coloring vertices)
 For every colouring c : V(G) → ω, there is a monochromatic copy of H.

$$G
ightarrow (H)^1_{u}$$

• 2-dimensional graph arrow (coloring edges) For every colouring $c : E(G) \to \omega$, there is a monochromatic copy of *H*.

$$G
ightarrow (H)^2_\omega$$

- Erdős Hajnal boosting
 - $G \to (\text{edge})^1_{\omega}$ implies $G \to (C_{2n})^1_{\omega}$ for any $n \ge 2$.
 - $G \to (\text{edge})^1_{\omega}$ does not imply that $C_{2n+1} \hookrightarrow G$ for any $n \ge 1$.
 - $G \to (edge)^1_{\omega}$ implies $G \to (P_{\omega})^1_{\omega}$
- Hajnal Komjáth boosting $G \to (edge)^1_{\omega} \text{ implies } G \to (H_{\omega,\omega})^1_{\omega}.$

- Erdős Hajnal boosting
 - $G \to (\text{edge})^1_{\omega}$ implies $G \to (C_{2n})^1_{\omega}$ for any $n \ge 2$.
 - $G \to (edge)^1_{\omega}$ does not imply that $C_{2n+1} \hookrightarrow G$ for any $n \ge 1$.
 - $G \to (edge)^1_{\omega}$ implies $G \to (P_{\omega})^1_{\omega}$.
- Hajnal Komjáth boosting $G \to (edge)^1_{\omega}$ implies $G \to (H_{\omega,\omega})^1_{\omega}$.

- Erdős Hajnal boosting
 - $G \to (\text{edge})^1_{\omega}$ implies $G \to (C_{2n})^1_{\omega}$ for any $n \ge 2$.

• $G \to (\text{edge})^1_{\omega}$ does not imply that $C_{2n+1} \hookrightarrow G$ for any $n \ge 1$.

- $G \to (edge)^1_{\omega}$ implies $G \to (P_{\omega})^1_{\omega}$.
- Hajnal Komjáth boosting $G \to (edge)^1_{\omega} \text{ implies } G \to (H_{\omega,\omega})^1_{\omega}.$

- Erdős Hajnal boosting
 - $G \to (\text{edge})^1_{\omega}$ implies $G \to (C_{2n})^1_{\omega}$ for any $n \ge 2$.
 - $G \to (\text{edge})^1_{\omega}$ does not imply that $C_{2n+1} \hookrightarrow G$ for any $n \ge 1$.
 - $G \to (edge)^1_{\omega}$ implies $G \to (P_{\omega})^1_{\omega}$.
- Hajnal Komjáth boosting $G \to (edge)^1_{\omega} \text{ implies } G \to (H_{\omega,\omega})^1_{\omega}$

- Erdős Hajnal boosting
 - $G \to (\text{edge})^1_{\omega}$ implies $G \to (C_{2n})^1_{\omega}$ for any $n \ge 2$.
 - $G \to (edge)^1_{\omega}$ does not imply that $C_{2n+1} \hookrightarrow G$ for any $n \ge 1$.
 - $G
 ightarrow (\operatorname{\mathsf{edge}})^1_\omega$ implies $G
 ightarrow (P_\omega)^1_\omega$.
- Hajnal Komjáth boosting $G \to (edge)^1_{\omega} \text{ implies } G \to (H_{\omega,\omega})^1_{\omega}.$

- Erdős Hajnal boosting
 - $G \to (\operatorname{edge})^1_{\omega}$ implies $G \to (C_{2n})^1_{\omega}$ for any $n \geq 2$.
 - $G \to (\text{edge})^1_{\omega}$ does not imply that $C_{2n+1} \hookrightarrow G$ for any $n \ge 1$.
 - $G \to (\text{edge})^1_{\omega} \text{ implies } G \to (P_{\omega})^1_{\omega}.$
- Hajnal Komjáth boosting $G \to (edge)^1_\omega$ implies $G \to (H_{\omega,\omega})^1_\omega$.
Locally sparse graphs - growth of finite subgraphs

• Erdős - de Bruijn reflection, 1951 $\chi(G) > \omega$ implies that

 $\sup\{Chr(H): H \hookrightarrow G \text{ finite}\} = \infty.$

- How fast?? [Erdős, Hajnal, and Szemerédi, 1982]
- Lambie-Henson, 2019 [link to video] For any function $h: \omega \to \omega$, there is a graph G of chromatic number \aleph_1 so that for any $H \hookrightarrow G$,

 $Chr(H) \ge n$ implies $|H| \ge h(n)$.

Locally sparse graphs - growth of finite subgraphs

• Erdős - de Bruijn reflection, 1951 $\chi(G) > \omega$ implies that

 $\sup\{Chr(H): H \hookrightarrow G \text{ finite}\} = \infty.$

- How fast?? [Erdős, Hajnal, and Szemerédi, 1982]
- Lambie-Henson, 2019 [link to video] For any function $h: \omega \to \omega$, there is a graph G of chromatic number \aleph_1 so that for any $H \hookrightarrow G$,

 $Chr(H) \ge n$ implies $|H| \ge h(n)$.

Locally sparse graphs - growth of finite subgraphs

• Erdős - de Bruijn reflection, 1951 $\chi(G) > \omega$ implies that

 $\sup{Chr(H): H \hookrightarrow G \text{ finite}} = \infty.$

- How fast?? [Erdős, Hajnal, and Szemerédi, 1982]
- Lambie-Henson, 2019 [link to video] For any function $h: \omega \to \omega$, there is a graph G of chromatic number \aleph_1 so that for any $H \hookrightarrow G$,

 $Chr(H) \ge n$ implies $|H| \ge h(n)$.

Quiz 2: name the iconic neighbourhood.

D. Soukup (UniVie)

Quiz 2: name the iconic neighbourhood.

Kensington Market

D. Soukup (UniVie)

Enrichments of graphs

Toronto 2019 10 / 22

• A digraph D is a pair (V, A) with $A \subset V^2$.

An orientation of a graph G = (V, E) is some digraph D = (V, A) so that for any {u, v} ∈ E either (u, v) or (v, u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

$$\overrightarrow{\chi}(D) > \omega \iff D \to (\bigvee_{n \ge 3} \overrightarrow{C}_n)^1_{\omega}$$

• A digraph D is a pair (V, A) with $A \subset V^2$.

An orientation of a graph G = (V, E) is some digraph D = (V, A) so that for any {u, v} ∈ E either (u, v) or (v, u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

$$\overrightarrow{\chi}(D) > \omega \iff D \to (\bigvee_{n \ge 3} \overrightarrow{C}_n)^1_{\omega}$$

- A digraph D is a pair (V, A) with $A \subset V^2$.
- An orientation of a graph G = (V, E) is some digraph D = (V, A) so that for any {u, v} ∈ E either (u, v) or (v, u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

$$\overrightarrow{\chi}(D) > \omega \iff D \to (\bigvee_{n \ge 3} \overrightarrow{C}_n)^1_{\omega}$$

- A digraph D is a pair (V, A) with $A \subset V^2$.
- An orientation of a graph G = (V, E) is some digraph D = (V, A) so that for any {u, v} ∈ E either (u, v) or (v, u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

$$\overrightarrow{\chi}(D) > \omega \iff D \to (\bigvee_{n \ge 3} \overrightarrow{C}_n)^1_{\omega}$$

- A digraph D is a pair (V, A) with $A \subset V^2$.
- An orientation of a graph G = (V, E) is some digraph D = (V, A) so that for any {u, v} ∈ E either (u, v) or (v, u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

$$\overrightarrow{\chi}(D) > \omega \iff D \to (\bigvee_{n \ge 3} \overrightarrow{C}_n)^1_{\omega}$$

- A digraph D is a pair (V, A) with $A \subset V^2$.
- An orientation of a graph G = (V, E) is some digraph D = (V, A) so that for any {u, v} ∈ E either (u, v) or (v, u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

$$\overrightarrow{\chi}(D) > \omega \iff D \to (\bigvee_{n \ge 3} \overrightarrow{C}_n)^1_{\omega}$$

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

 $v(\delta) \equiv u(\delta) + 1 \bmod n$

- for $\delta = \Delta(u, v)$.
- No cycles of length < n but dichrom. ≥ κ.

[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

- D has no directed cycles of length ≤ n, and
- $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Construction by Attila Joó, 2019:

• vertices are
$$V = n^{\kappa}$$
,

• $uv \in A$ iff

 $v(\delta) \equiv u(\delta) + 1 \bmod n$

for $\delta = \Delta(u, v)$.

 No cycles of length < n but dichrom. ≥ κ. **[DS, 2018]** Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

D has no directed cycles of length ≤ n, and

• $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Construction by Attila Joó, 2019:

• vertices are $V = n^{\kappa}$,

• $uv \in A$ iff

 $v(\delta) \equiv u(\delta) + 1 \bmod n$

for $\delta = \Delta(u, v)$.

 No cycles of length < n but dichrom. ≥ κ. **[DS, 2018]** Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

- D has no directed cycles of length ≤ n, and
- $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

$$v(\delta) \equiv u(\delta) + 1 \bmod n$$

for
$$\delta = \Delta(u, v)$$
.

[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

 D has no directed cycles of length ≤ n, and

•
$$\overrightarrow{C}_{n+1} \hookrightarrow D[X]$$
 for every uncountable $X \subseteq \omega_1$.

Size \aleph_1 in ZFC??

 No cycles of length < n but dichrom. ≥ κ.

D. Soukup (UniVie)

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

$$v(\delta) \equiv u(\delta) + 1 \bmod n$$

for
$$\delta = \Delta(u, v)$$
.

 No cycles of length < n but dichrom. ≥ κ. **[DS, 2018]** Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

- D has no directed cycles of length ≤ n, and
- $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

$$v(\delta) \equiv u(\delta) + 1 \bmod n$$

for
$$\delta = \Delta(u, v)$$
.

[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

D has no directed cycles of length ≤ n, and

•
$$\overrightarrow{C}_{n+1} \hookrightarrow D[X]$$
 for every uncountable $X \subseteq \omega_1$.

Size \aleph_1 in ZFC??

• No cycles of length < n but dichrom. $\geq \kappa$.

D. Soukup (UniVie)

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

$$v(\delta) \equiv u(\delta) + 1 \bmod n$$

for
$$\delta = \Delta(u, v)$$
.

[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

 D has no directed cycles of length ≤ n, and

• $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Size \aleph_1 in ZFC??

 No cycles of length < n but dichrom. ≥ κ.

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

$$v(\delta) \equiv u(\delta) + 1 \bmod n$$

for
$$\delta = \Delta(u, v)$$
.

- **[DS, 2018]** Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that
 - D has no directed cycles of length ≤ n, and
 - $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Size \aleph_1 in ZFC??

• No cycles of length < n but dichrom. $\geq \kappa$.

D. Soukup (UniVie)

Construction by Attila Joó, 2019:

- vertices are $V = n^{\kappa}$,
- $uv \in A$ iff

$$v(\delta) \equiv u(\delta) + 1 \bmod n$$

for
$$\delta = \Delta(u, v)$$
.

[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D = D_n$ on vertex set ω_1 so that

- D has no directed cycles of length ≤ n, and
- $\overrightarrow{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_1$.

Size \aleph_1 in ZFC??

• No cycles of length < n but dichrom. $\geq \kappa$.

Note: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Note: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Note: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

Note: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f : \mathbb{N} \to \mathbb{N}$ so that $\chi(G) \ge f(n)$ implies $\overrightarrow{\chi}(D) \ge n$ for some orientation D of G?

Even the existence of f(3) is open.

[DS, 2018] \diamond^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any orientation of a finite bipartite *H*.

[DS, 2018] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overline{\chi}(D) \leq \omega$ for any orientation D of G.

[DS, 2018] \diamondsuit^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \vec{C}_4 can be substituted by any orientation of a finite bipartite *H*.

[DS, 2018] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overline{\chi}(D) \leq \omega$ for any orientation D of G.

[DS, 2018] \diamond^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any orientation of a finite bipartite *H*.

[DS, 2018] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overline{\chi}(D) \leq \omega$ for any orientation D of G.

[DS, 2018] \diamond^+ implies that every graph *G* with $\chi(G) = |G| = \omega_1$ has an orientation *D* so that $\overrightarrow{C}_4 \hookrightarrow D[X]$ whenever $\chi(G[X]) = \omega_1$.

• \overrightarrow{C}_4 can be substituted by any orientation of a finite bipartite *H*.

[DS, 2018] Consistently, there is a graph G with $\chi(G) = |G| = \omega_1$ so that $\overrightarrow{\chi}(D) \leq \omega$ for any orientation D of G.

Moore's L-space colouring can be used but \overrightarrow{C}_3 appears.

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into D?

Does $\vec{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

A few open problems

How to get size and dichromatic number \aleph_1 (with large digirth)?

Moore's L-space colouring can be used but \overrightarrow{C}_3 appears.

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Moore's L-space colouring can be used but \overrightarrow{C}_3 appears.

Does $\vec{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into D?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Moore's L-space colouring can be used but \overrightarrow{C}_3 appears.

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into *D*?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of D?

Moore's L-space colouring can be used but \overrightarrow{C}_3 appears.

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into *D*?

Does $\overrightarrow{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of *D*?

Moore's L-space colouring can be used but \overrightarrow{C}_3 appears.

Does $\overrightarrow{\chi}(D) > \omega$ imply that cycles of all but finitely many length embed into *D*?

Does $\vec{\chi}(D) > \omega$ imply that there is a strongly 2-connected subgraph of *D*?

Suppose that G has orientations D_{ξ} so that $\sup \overrightarrow{\chi}(D_{\xi}) = \kappa$. Is there a single orientation D with $\overrightarrow{\chi}(D) = \kappa$?

D. Soukup (UniVie)

Stepping up the dimensions

Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

$\overrightarrow{\chi}(D) > \omega$ implies $\chi_2(G) > \omega$ for the underlying graph G.

- linearly order the vertices of D by some ≺ and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.

Stepping up the dimensions

Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

$\overrightarrow{\chi}(D) > \omega$ implies $\chi_2(G) > \omega$ for the underlying graph G.

- linearly order the vertices of D by some ≺ and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.
Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

- linearly order the vertices of D by some ≺ and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.

Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.

Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

- linearly order the vertices of D by some ≺ and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.

Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

- linearly order the vertices of D by some ≺ and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.

Note: an orientation with $\overrightarrow{\chi}(D) > \omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_r(G) > \omega$ if there is some edge *r*-colouring of *G* so that for any ω -partition of the vertices, one class has all the colours.

- linearly order the vertices of *D* by some ≺ and colour edge by forward/backward;
- given an ω -partition of the vertices, there is a monochromatic cycle $v_0 v_1 \dots$;
- each cycle has a \prec -maximal vertex v_k ;
- $v_{k-1}v_k$ is forward and v_kv_{k+1} is backward.

Does $\chi(G) > \omega$ imply $\chi_2(G) > \omega$?

Even for $\chi(G) = |G| = \aleph_1$, $\chi_{\omega_1}(G) > \omega$ could be true in ZFC!

[Todorcevic, 1987] Yes, for $G = K_{\omega_1}$.

[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G) = \aleph_1$.

Does $\chi(G) > \omega$ imply $\chi_2(G) > \omega$?

Even for $\chi(G) = |G| = \aleph_1$, $\chi_{\omega_1}(G) > \omega$ could be true in ZFC!

[Todorcevic, 1987] Yes, for $G = K_{\omega_1}$.

[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G) = \aleph_1$.

Does $\chi(G) > \omega$ imply $\chi_2(G) > \omega$?

Even for $\chi(G) = |G| = \aleph_1$, $\chi_{\omega_1}(G) > \omega$ could be true in ZFC!

[Todorcevic, 1987] Yes, for $G = K_{\omega_1}$.

[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G) = \aleph_1$.

Does $\chi(G) > \omega$ imply $\chi_2(G) > \omega$?

Even for $\chi(G) = |G| = \aleph_1$, $\chi_{\omega_1}(G) > \omega$ could be true in ZFC!

[Todorcevic, 1987] Yes, for $G = K_{\omega_1}$.

[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G) = \aleph_1$.

Does $\chi(G) > \omega$ imply $\chi_2(G) > \omega$?

Even for $\chi(G) = |G| = \aleph_1$, $\chi_{\omega_1}(G) > \omega$ could be true in ZFC!

[Todorcevic, 1987] Yes, for $G = K_{\omega_1}$.

[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G) = \aleph_1$.

Maybe in ZFC???

Does $\chi(G) > \omega$ imply $\chi_2(G) > \omega$?

Even for $\chi(G) = |G| = \aleph_1$, $\chi_{\omega_1}(G) > \omega$ could be true in ZFC!

[Todorcevic, 1987] Yes, for $G = K_{\omega_1}$.

[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G) = \aleph_1$.

Maybe in ZFC???

(日) (周) (日) (日) (日) (0)

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G) = \aleph_1$ then destroy witnesses to $\chi_2(G) > \omega$.

Consistently, there is a graph *G* so that

- G has size and chromatic number \aleph_1 , and
- (2) for any edge 2-colouring c, there is a poset \mathbb{P}_c so that

$$V^{\mathbb{P}_c} \models \chi(G) = \aleph_1 \text{ and } c \not\vdash \chi_2(G) > \omega.$$

Approach: ladder system graph and weak uniformization.

Can we iterate \mathbb{P}_c and preserve $\chi(G) = \aleph_1$??

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G) = \aleph_1$ then destroy witnesses to $\chi_2(G) > \omega$.

Consistently, there is a graph *G* so that

• G has size and chromatic number \aleph_1 , and

(2) for any edge 2-colouring c, there is a poset \mathbb{P}_c so that

$$V^{\mathbb{P}_c} \models \chi(G) = \aleph_1 \text{ and } c \not\vdash \chi_2(G) > \omega.$$

Approach: ladder system graph and weak uniformization.

Can we iterate \mathbb{P}_c and preserve $\chi(G) = \aleph_1$??

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G) = \aleph_1$ then destroy witnesses to $\chi_2(G) > \omega$.

Consistently, there is a graph *G* so that

- G has size and chromatic number \aleph_1 , and
- 2 for any edge 2-colouring c, there is a poset \mathbb{P}_c so that

$$V^{\mathbb{P}_c} \models \chi(G) = \aleph_1 \text{ and } c \not\vdash \chi_2(G) > \omega.$$

Approach: ladder system graph and weak uniformization.

Can we iterate \mathbb{P}_c and preserve $\chi(G) = \aleph_1$??

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G) = \aleph_1$ then destroy witnesses to $\chi_2(G) > \omega$.

Consistently, there is a graph *G* so that

- G has size and chromatic number \aleph_1 , and
- 2 for any edge 2-colouring c, there is a poset \mathbb{P}_c so that

$$V^{\mathbb{P}_c} \models \chi(G) = \aleph_1 \text{ and } c \not\vdash \chi_2(G) > \omega.$$

Approach: ladder system graph and weak uniformization.

Can we iterate \mathbb{P}_c and preserve $\chi(G) = \aleph_1$??

D. Soukup (UniVie)

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G) = \aleph_1$ then destroy witnesses to $\chi_2(G) > \omega$.

Consistently, there is a graph *G* so that

- G has size and chromatic number \aleph_1 , and
- 2 for any edge 2-colouring c, there is a poset \mathbb{P}_c so that

$$V^{\mathbb{P}_c} \models \chi(G) = \aleph_1 \text{ and } c \not\vdash \chi_2(G) > \omega.$$

Approach: ladder system graph and weak uniformization.

Can we iterate \mathbb{P}_c and preserve $\chi(G) = \aleph_1$??

D. Soukup (UniVie)

Quiz 3: name the iconic set theorist.

D. Soukup (UniVie)

Quiz 3: name the iconic set theorist.

Paul Szeptycki

D. Soukup (UniVie)

Enrichments of graphs

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, **1985** $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, **1985** $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, **1985** $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

 $G
ightarrow (\omega)^1_\omega$ implies $G
ightarrow (H)^2_r$ for some 'large' H??

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, **1985** $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, **1985** $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, 1985 $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

- H = a finite obligatory subgraph such as copies of C_4 or $K_{n,n}$;
- H = an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega,\omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, 1985 $P \to (\omega)^1_{\omega}$ implies $P \to (\alpha)^2_r$ for $r < \omega, \alpha < \omega_1$.

 $G
ightarrow (\omega)^1_{\omega}$ implies $G
ightarrow (H)^2_r$ for some 'large' H??

Does χ(G) > ω imply that there is a Δ-free H → G with χ(H) > ω?

• Does $G \to (K_3)^2_{\omega}$ imply $K_4 \hookrightarrow G$?

[Consistently, no.]

 Does every two graphs G₀, G₁ with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. **"Erdős's Work on Infinite Graphs."** Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

Does χ(G) > ω imply that there is a Δ-free H → G with χ(H) > ω?

• Does $G \to (K_3)^2_{\omega}$ imply $K_4 \hookrightarrow G$?

[Consistently, no.]

 Does every two graphs G₀, G₁ with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. **"Erdős's Work on Infinite Graphs."** Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

- Does χ(G) > ω imply that there is a Δ-free H → G with χ(H) > ω?
- Does $G o (K_3)^2_\omega$ imply $K_4 o G?$ [Consistently, no.]

 Does every two graphs G₀, G₁ with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. **"Erdős's Work on Infinite Graphs."** Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

- Does χ(G) > ω imply that there is a Δ-free H → G with χ(H) > ω?
- Does $G o (K_3)^2_\omega$ imply $K_4 o G$? [Consistently, no.]
- Does every two graphs G₀, G₁ with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. **"Erdős's Work on Infinite Graphs."** Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

- Does χ(G) > ω imply that there is a Δ-free H → G with χ(H) > ω?
- Does $G \to (K_3)^2_{\omega}$ imply $K_4 \hookrightarrow G$? [Consistently, no.]
- Does every two graphs G₀, G₁ with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. **"Erdős's Work on Infinite Graphs."** Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

- Does χ(G) > ω imply that there is a Δ-free H → G with χ(H) > ω?
- Does $G o (K_3)^2_\omega$ imply $K_4 o G?$ [Consistently, no.]
- Does every two graphs G₀, G₁ with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. "Erdős's Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.