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What makes combinatorics interesting?

Why (infinite) combinatorics?

Accessibility and diversity.

"A clever argument is beautiful to the problem-solver, a curiosity to a
structuralist. [...] It is the brilliant proofs, those that expand
and/or transcend known technologies, which express the soul of
the subject."

J. Spencer

"... combinatorics, a sort of glorified dicethrowing..." R. Kanigel

"Combinatorics is the slums of topology." H. Whitehead

Where does interesting combinatorics come from?

The theme of local/global tension.
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Outline

Intro to graphs and chromatic numbers;

Review of partition relations and the arrow notation;

2-dimensional relations: orientations and edge-colourings;

Higher dimensions;

Classical open problems.
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Quiz 1: name the iconic U of T building.
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Quiz 1: name the iconic U of T building.

Robarts Library
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What is the chromatic number?

Definition
The chromatic number of a graph G , denoted by χ(G ), is the least
cardinal κ such that the vertices of G can be covered by κ many
independent sets.

Theme: large chromatic number
versus local sparsity.

Boosting/ramifying partition
relations.
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What is the chromatic number?

Definition
The chromatic number of a graph G , denoted by χ(G ), is the least
cardinal κ such that the vertices of G can be covered by κ many
independent sets.

b
b

b
bb Theme: large chromatic number

versus local sparsity.

Boosting/ramifying partition
relations.
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Partition calculus

Pigeonhole (dimension 1)
For any c : N → r with r finite, there is an infinite A ⊂ N so that
c ↾ A is constant.

N → (ℵ0)
1
r

Ramsey’s theorem (dimension 2)
For any c : [N]2 → r with r finite, there is an infinite A ⊂ N so that
c ↾ [A]2 is constant.

N → (ℵ0)
2
r

Todorcevic’s anti Ramsey theorem
There is c : [ω1]

2 → ω1 so that for any uncountable A ⊂ ω1,
c[A]2 = ω1.

ω1 ̸→ [ω1]
2
ω1
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Arrows for graphs

1-dimensional graph arrow (coloring vertices)
For every colouring c : V (G ) → ω, there is a monochromatic copy of
H.

G → (H)1ω

2-dimensional graph arrow (coloring edges)
For every colouring c : E (G ) → ω, there is a monochromatic copy of
H.

G → (H)2ω
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Locally sparse graphs - cycles

Note: χ(G ) > ω if and only if G → (edge)1ω.

Erdős - Hajnal boosting

G → (edge)1ω implies G → (C2n)
1
ω for any n ≥ 2.

G → (edge)1ω does not imply that C2n+1 ↪→ G for any n ≥ 1.

G → (edge)1ω implies G → (Pω)
1
ω.

Hajnal - Komjáth boosting
G → (edge)1ω implies G → (Hω,ω)

1
ω.

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Locally sparse graphs - cycles

Note: χ(G ) > ω if and only if G → (edge)1ω.

Erdős - Hajnal boosting

G → (edge)1ω implies G → (C2n)
1
ω for any n ≥ 2.

G → (edge)1ω does not imply that C2n+1 ↪→ G for any n ≥ 1.

G → (edge)1ω implies G → (Pω)
1
ω.

Hajnal - Komjáth boosting
G → (edge)1ω implies G → (Hω,ω)

1
ω.

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Locally sparse graphs - cycles

Note: χ(G ) > ω if and only if G → (edge)1ω.

Erdős - Hajnal boosting

G → (edge)1ω implies G → (C2n)
1
ω for any n ≥ 2.

G → (edge)1ω does not imply that C2n+1 ↪→ G for any n ≥ 1.

G → (edge)1ω implies G → (Pω)
1
ω.

Hajnal - Komjáth boosting
G → (edge)1ω implies G → (Hω,ω)

1
ω.

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Locally sparse graphs - cycles

Note: χ(G ) > ω if and only if G → (edge)1ω.

Erdős - Hajnal boosting

G → (edge)1ω implies G → (C2n)
1
ω for any n ≥ 2.

G → (edge)1ω does not imply that C2n+1 ↪→ G for any n ≥ 1.

G → (edge)1ω implies G → (Pω)
1
ω.

Hajnal - Komjáth boosting
G → (edge)1ω implies G → (Hω,ω)

1
ω.

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Locally sparse graphs - cycles

Note: χ(G ) > ω if and only if G → (edge)1ω.

Erdős - Hajnal boosting

G → (edge)1ω implies G → (C2n)
1
ω for any n ≥ 2.

G → (edge)1ω does not imply that C2n+1 ↪→ G for any n ≥ 1.

G → (edge)1ω implies G → (Pω)
1
ω.
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Locally sparse graphs - growth of finite subgraphs

Erdős - de Bruijn reflection, 1951
χ(G ) > ω implies that

sup{Chr(H) : H ↪→ G finite} = ∞.

How fast?? [Erdős, Hajnal, and Szemerédi, 1982]

Lambie-Henson, 2019 [link to video]
For any function h : ω → ω, there is a graph G of chromatic number
ℵ1 so that for any H ↪→ G ,

Chr(H) ≥ n implies |H| ≥ h(n).

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 9 / 22

https://youtu.be/HrVGQOR6tTM
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Quiz 2: name the iconic neighbourhood.
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Quiz 2: name the iconic neighbourhood.

Kensington Market
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The dichromatic number

A digraph D is a pair (V ,A) with A ⊂ V 2.

An orientation of a graph G = (V ,E ) is some digraph D = (V ,A)
so that for any {u, v} ∈ E either (u, v) or (v , u) ∈ A (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

The dichromatic number of a digraph D, denoted by −→χ (D), is the least
cardinal κ such that the vertices of D can be covered by κ many acyclic
sets.

−→χ (D) > ω ⇐⇒ D → (
∨
n≥3

−→
C n)

1
ω
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How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

vertices are V = nκ,

uv ∈ A iff

v(δ) ≡ u(δ) + 1 mod n

for δ = ∆(u, v).

No cycles of length < n but
dichrom. ≥ κ.

[DS, 2018] Consistently, for each
n ∈ ω there is a digraph D = Dn on
vertex set ω1 so that

D has no directed cycles of
length ≤ n, and
−→
C n+1 ↪→ D[X ] for every
uncountable X ⊆ ω1.

Size ℵ1 in ZFC??

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 12 / 22
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Boosting large chromatic number to large dichrom. number

Note: large dichromatic # implies large chromatic # for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function f : N → N so that
χ(G ) ≥ f (n) implies −→χ (D) ≥ n for some orientation D of G?

Even the existence of f (3) is open.

Does χ(G ) > ω imply that −→χ (D) > ω for some orientation D of G?

D. Soukup (UniVie) Enrichments of graphs Toronto 2019 13 / 22
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Yes and no.

[DS, 2018] ♢+ implies that every graph G with χ(G ) = |G | = ω1 has
an orientation D so that

−→
C 4 ↪→ D[X ] whenever χ(G [X ]) = ω1.

−→
C 4 can be substituted by any orientation of a finite bipartite H.

[DS, 2018] Consistently, there is a graph G with χ(G ) = |G | = ω1 so
that −→χ (D) ≤ ω for any orientation D of G .
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[DS, 2018] Consistently, there is a graph G with χ(G ) = |G | = ω1 so
that −→χ (D) ≤ ω for any orientation D of G .
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A few open problems

How to get size and dichromatic number ℵ1 (with large digirth)?

Moore’s L-space colouring can be used but
−→
C 3 appears.

Does −→χ (D) > ω imply that cycles of all but finitely many length
embed into D?

Does −→χ (D) > ω imply that there is a strongly 2-connected subgraph of
D?

Suppose that G has orientations Dξ so that sup−→χ (Dξ) = κ. Is there a
single orientation D with −→χ (D) = κ?
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Stepping up the dimensions

Note: an orientation with −→χ (D) > ω is like an edge 2-colouring.

Simultaneous chromatic number
Let’s say χr (G ) > ω if there is some edge r -colouring of G so that for any
ω-partition of the vertices, one class has all the colours.

−→χ (D) > ω implies χ2(G ) > ω for the underlying graph G .

linearly order the vertices of D by some ≺ and colour edge by
forward/backward;

given an ω-partition of the vertices, there is a monochromatic cycle
v0v1 . . . ;

each cycle has a ≺-maximal vertex vk ;

vk−1vk is forward and vkvk+1 is backward.
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State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

Does χ(G ) > ω imply χ2(G ) > ω?

Even for χ(G ) = |G | = ℵ1, χω1(G ) > ω could be true in ZFC!

[Todorcevic, 1987] Yes, for G = Kω1 .

[Hajnal - Komjáth, 2003] Consistently, yes whenever χ(G ) = ℵ1.

Maybe in ZFC???
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Evidence for the consistent failure

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force χ(G ) = ℵ1 then destroy witnesses to χ2(G ) > ω.

Consistently, there is a graph G so that
1 G has size and chromatic number ℵ1, and

2 for any edge 2-colouring c , there is a poset Pc so that

V Pc |= χ(G ) = ℵ1 and c ̸⊢ χ2(G ) > ω.

Approach: ladder system graph and weak uniformization.

Can we iterate Pc and preserve χ(G ) = ℵ1??
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Quiz 3: name the iconic set theorist.
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Quiz 3: name the iconic set theorist.

Paul Szeptycki
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Looking forward - high dimensional relations

If G → (H)1ω then the hypergraph
(G
H

)
has uncountable chromatic number.

What can we say about this hypergraph?

H = a finite obligatory subgraph such as copies of C4 or Kn,n;

H = an infinite obligatory subgraph such as rays Pω or half-graphs
Hω,ω.

Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, 1985 P → (ω)1ω implies P → (α)2r for r < ω,α < ω1.

G → (ω)1ω implies G → (H)2r for some ’large’ H??
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Looking back - classical problems from Erdős

Does χ(G ) > ω imply that there is a ∆-free H ↪→ G with χ(H) > ω?

Does G → (K3)
2
ω imply K4 ↪→ G?

[Consistently, no.]

Does every two graphs G0,G1 with uncountable chromatic number
contain a common 4-chromatic subgraph? Is there a common
ω-chromatic subgraph?

Be inspired: Komjáth, P. "Erdős’s Work on Infinite Graphs." Erdős
Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

Further recommended: recent works from Hamburg Discrete Math group;
A. Rinot; Z. Vidnyánszky.
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Thank you very much! Questions?

Does χ(G ) > ω imply that there is a ∆-free H ↪→ G with χ(H) > ω?

Does G → (K3)
2
ω imply K4 ↪→ G?

[Consistently, no.]

Does every two graphs G0,G1 with uncountable chromatic number
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