Enrichments of graphs with uncountable chromatic number

Dániel T. Soukup
Kurt Gödel Research Center, University of Vienna

Thank you for the support of the Fields Institute.
Visit: www.logic.univie.ac.at/~soukupd73/
Papers, preprints and 'Combinatorial Set Theory' lecture notes.

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."
J. Spencer
- "...combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."
- "...combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."

J. Spencer
 - "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
 - "Combinatorics is the slums of topology." H. Whitehead

- Where does interesting combinatorics come from?

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."
J. Spencer
- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."
J. Spencer
- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."
J. Spencer
- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
- The theme of local/global tension.

What makes combinatorics interesting?

- Why (infinite) combinatorics?
- Accessibility and diversity.
- "A clever argument is beautiful to the problem-solver, a curiosity to a structuralist. [...] It is the brilliant proofs, those that expand and/or transcend known technologies, which express the soul of the subject."
J. Spencer
- "... combinatorics, a sort of glorified dicethrowing..." R. Kanigel
- "Combinatorics is the slums of topology." H. Whitehead
- Where does interesting combinatorics come from?
- The theme of local/global tension.

Outline

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions:
- Classical open problems.

Outline

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

Outline

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

Outline

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

Outline

- Intro to graphs and chromatic numbers;
- Review of partition relations and the arrow notation;
- 2-dimensional relations: orientations and edge-colourings;
- Higher dimensions;
- Classical open problems.

Quiz 1: name the iconic U of T building.

Quiz 1: name the iconic U of T building.

Robarts Library

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

> Theme: large chromatic number versus local sparsity.

Boosting/ramifying partition relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Boosting/ramifying partition relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number
versus local sparsity.

Boosting/ramifying partition relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

Boosting/ramifying partition relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

Boosting/ramifying partition relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

Boosting/ramifying partition relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

Boosting/ramifying partition
relations.

What is the chromatic number?

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the least cardinal κ such that the vertices of G can be covered by κ many independent sets.

Theme: large chromatic number versus local sparsity.

Boosting/ramifying partition relations.

Partition calculus

- Pigeonhole (dimension 1)

For any $c: \mathbb{N} \rightarrow r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright A$ is constant.

$$
\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{r}^{1}
$$

- Ramsey's theorem (dimension 2) For any $c:[\mathbb{N}]^{2} \rightarrow r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright[A]^{2}$ is constant.

- Todorcevic's anti Ramsey theorem There is $c:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ so that for any uncountable $A \subset \omega_{1}$, $c[A]^{2}=\omega_{1}$.

$$
\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}
$$

Partition calculus

- Pigeonhole (dimension 1)

For any $c: \mathbb{N} \rightarrow r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright A$ is constant.

$$
\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{r}^{1}
$$

- Ramsey's theorem (dimension 2) For any $c:[\mathbb{N}]^{2} \rightarrow r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright[A]^{2}$ is constant.

$$
\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{r}^{2}
$$

- Todorcevic's anti Ramsey theorem There is $c:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ so that for any uncountable $A \subset \omega_{1}$, $c[A]^{2}=\omega_{1}$.

Partition calculus

- Pigeonhole (dimension 1)

For any $c: \mathbb{N} \rightarrow r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright A$ is constant.

$$
\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{r}^{1}
$$

- Ramsey's theorem (dimension 2)

For any $c:[\mathbb{N}]^{2} \rightarrow r$ with r finite, there is an infinite $A \subset \mathbb{N}$ so that $c \upharpoonright[A]^{2}$ is constant.

$$
\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{r}^{2}
$$

- Todorcevic's anti Ramsey theorem There is $c:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ so that for any uncountable $A \subset \omega_{1}$, $c[A]^{2}=\omega_{1}$.

$$
\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}
$$

Arrows for graphs

- 1-dimensional graph arrow (coloring vertices)

For every colouring $c: V(G) \rightarrow \omega$, there is a monochromatic copy of H.

$$
G \rightarrow(H)_{\omega}^{1}
$$

- 2-dimensional graph arrow (coloring edges) For every colouring $c: E(G) \rightarrow \omega$, there is a monochromatic copy of $G \rightarrow(H)_{\omega}^{2}$

Arrows for graphs

- 1-dimensional graph arrow (coloring vertices)

For every colouring $c: V(G) \rightarrow \omega$, there is a monochromatic copy of H.

$$
G \rightarrow(H)_{\omega}^{1}
$$

- 2-dimensional graph arrow (coloring edges)

For every colouring $c: E(G) \rightarrow \omega$, there is a monochromatic copy of H.

$$
G \rightarrow(H)_{\omega}^{2}
$$

Locally sparse graphs - cycles

Note: $\chi(G)>\omega$ if and only if $G \rightarrow(\text { edge })_{\omega}^{1}$.

- Erdős - Hajnal boosting
- Hajnal - Komjáth boosting $G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(H_{\omega}, \omega\right)_{\omega}^{1}$

Locally sparse graphs - cycles

Note: $\chi(G)>\omega$ if and only if $G \rightarrow(\text { edge })_{\omega}^{1}$.

- Erdős - Hajnal boosting

```
- \(G \rightarrow(\text { edge })_{\omega}^{1}\) implies \(G \rightarrow\left(C_{2 n}\right)_{\omega}^{1}\) for any \(n \geq 2\).
- \(G \rightarrow\) (edge) \()_{\omega}^{1}\) does not imply that \(C_{2 n+1} \hookrightarrow G\) for any \(n \geq 1\).
- \(G \rightarrow(\text { edge })^{1}\) implies \(G \rightarrow\left(P_{\omega}\right)^{1}\).
```

- Hajnal - Komjáth boosting $G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow(H, \omega)^{1}$.

Locally sparse graphs - cycles

Note: $\chi(G)>\omega$ if and only if $G \rightarrow(\text { edge })_{\omega}^{1}$.

- Erdős - Hajnal boosting
- $G \rightarrow$ (edge) $)_{\omega}^{1}$ implies $G \rightarrow\left(C_{2 n}\right)_{\omega}^{1}$ for any $n \geq 2$.
- $G \rightarrow(\text { edge })_{\omega}^{1}$ does not imply that $C_{2 n+1} \hookrightarrow G$ for any $n \geq 1$.
- $G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(P_{\omega}\right)_{\omega}^{1}$.
- Hajnal - Komjáth boosting
$G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(H_{\omega, \omega}\right)_{\omega}^{1}$.

Locally sparse graphs - cycles

Note: $\chi(G)>\omega$ if and only if $G \rightarrow(\text { edge })_{\omega}^{1}$.

- Erdős - Hajnal boosting
- $G \rightarrow$ (edge) $)_{\omega}^{1}$ implies $G \rightarrow\left(C_{2 n}\right)_{\omega}^{1}$ for any $n \geq 2$.
- $G \rightarrow$ (edge) $)_{\omega}^{1}$ does not imply that $C_{2 n+1} \hookrightarrow G$ for any $n \geq 1$.
- $G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(P_{\omega}\right)_{\omega}^{1}$
- Hajnal - Komjáth boosting
$G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(H_{\omega}, \omega\right)^{1}$

Locally sparse graphs - cycles

Note: $\chi(G)>\omega$ if and only if $G \rightarrow(\text { edge })_{\omega}^{1}$.

- Erdős - Hajnal boosting
- $G \rightarrow$ (edge) $)_{\omega}^{1}$ implies $G \rightarrow\left(C_{2 n}\right)_{\omega}^{1}$ for any $n \geq 2$.
- $G \rightarrow$ (edge) ${ }_{\omega}^{1}$ does not imply that $C_{2 n+1} \hookrightarrow G$ for any $n \geq 1$.
- $G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(P_{\omega}\right)_{\omega}^{1}$.
- Hajnal - Komjáth boosting
$G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(H_{\omega, \omega}\right)_{\omega}^{1}$

Locally sparse graphs - cycles

Note: $\chi(G)>\omega$ if and only if $G \rightarrow(\text { edge })_{\omega}^{1}$.

- Erdős - Hajnal boosting
- $G \rightarrow$ (edge) $)_{\omega}^{1}$ implies $G \rightarrow\left(C_{2 n}\right)_{\omega}^{1}$ for any $n \geq 2$.
- $G \rightarrow$ (edge) $)_{\omega}^{1}$ does not imply that $C_{2 n+1} \hookrightarrow G$ for any $n \geq 1$.
- $G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(P_{\omega}\right)_{\omega}^{1}$.
- Hajnal - Komjáth boosting
$G \rightarrow(\text { edge })_{\omega}^{1}$ implies $G \rightarrow\left(H_{\omega, \omega}\right)_{\omega}^{1}$.

Locally sparse graphs - growth of finite subgraphs

- Erdős - de Bruijn reflection, 1951 $\chi(G)>\omega$ implies that

$$
\sup \{\operatorname{Chr}(H): H \hookrightarrow G \text { finite }\}=\infty .
$$

- How fast?? [Erdős, Hajnal, and Szemerédi, 1982]
- Lambie-Henson, 2019 llink to videol For any function $h: \omega \rightarrow \omega$, there is a graph G of chromatic number \aleph_{1} so that for any $\mathrm{H} \hookrightarrow G$,

Locally sparse graphs - growth of finite subgraphs

- Erdős - de Bruijn reflection, 1951 $\chi(G)>\omega$ implies that

$$
\sup \{\operatorname{Chr}(H): H \hookrightarrow G \text { finite }\}=\infty .
$$

- How fast?? [Erdős, Hajnal, and Szemerédi, 1982]
- Lambie-Henson, 2019 [link to video] For any function $h: \omega \rightarrow \omega$, there is a graph G of chromatic number \aleph_{1} so that for any $H \hookrightarrow G$,

Locally sparse graphs - growth of finite subgraphs

- Erdős - de Bruijn reflection, 1951 $\chi(G)>\omega$ implies that

$$
\sup \{\operatorname{Chr}(H): H \hookrightarrow G \text { finite }\}=\infty .
$$

- How fast?? [Erdős, Hajnal, and Szemerédi, 1982]
- Lambie-Henson, 2019 [link to video]

For any function $h: \omega \rightarrow \omega$, there is a graph G of chromatic number \aleph_{1} so that for any $H \hookrightarrow G$,

$$
\operatorname{Chr}(H) \geq n \text { implies }|H| \geq h(n) .
$$

Quiz 2: name the iconic neighbourhood.

Quiz 2: name the iconic neighbourhood.

Kensington Market

The dichromatic number

- A digraph D is a pair (V, A) with $A \subset V^{2}$.
- An orientation of a graph $G=(V, E)$ is some digraph $D=(V, A)$ so that for any $\{u, v\} \in E$ either (u, v) or $(v, u) \in A$ (not both).

Ordered vertex set: for each edge, we decide if forward or backward.
The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

$$
\vec{\chi}(D)>\omega \Longleftrightarrow D \rightarrow\left(\bigvee_{n \geq 3} \vec{C}_{n}\right)_{\omega}^{1}
$$

The dichromatic number

- A digraph D is a pair (V, A) with $A \subset V^{2}$.
- An orientation of a graph $G=(V, E)$ is some digraph $D=(V, A)$ so that for any $\{u, v\} \in E$ either (u, v) or $(v, u) \in A$ (not both).

Ordered vertex set: for each edge, we decide if forward or backward
The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

The dichromatic number

- A digraph D is a pair (V, A) with $A \subset V^{2}$.
- An orientation of a graph $G=(V, E)$ is some digraph $D=(V, A)$ so that for any $\{u, v\} \in E$ either (u, v) or $(v, u) \in A$ (not both).

Ordered vertex set: for each edge, we decide if forward or backward
The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic

The dichromatic number

- A digraph D is a pair (V, A) with $A \subset V^{2}$.
- An orientation of a graph $G=(V, E)$ is some digraph $D=(V, A)$ so that for any $\{u, v\} \in E$ either (u, v) or $(v, u) \in A$ (not both).

Ordered vertex set: for each edge, we decide if forward or backward.

The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic

The dichromatic number

- A digraph D is a pair (V, A) with $A \subset V^{2}$.
- An orientation of a graph $G=(V, E)$ is some digraph $D=(V, A)$ so that for any $\{u, v\} \in E$ either (u, v) or $(v, u) \in A$ (not both).

Ordered vertex set: for each edge, we decide if forward or backward.
The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

The dichromatic number

- A digraph D is a pair (V, A) with $A \subset V^{2}$.
- An orientation of a graph $G=(V, E)$ is some digraph $D=(V, A)$ so that for any $\{u, v\} \in E$ either (u, v) or $(v, u) \in A$ (not both).

Ordered vertex set: for each edge, we decide if forward or backward.
The dichromatic number of a digraph D, denoted by $\vec{\chi}(D)$, is the least cardinal κ such that the vertices of D can be covered by κ many acyclic sets.

$$
\vec{\chi}(D)>\omega \Longleftrightarrow D \rightarrow\left(\bigvee_{n \geq 3} \vec{C}_{n}\right)_{\omega}^{1}
$$

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff

$$
v(\delta) \equiv u(\delta)+1 \bmod n
$$

for $\delta=\Delta(u, v)$.

- No cycles of length $<n$ but dichrom.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,

[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D=D_{n}$ on
 vertex set ω_{1} so that
for $\delta=\Delta(u, v)$.
- No cycles of length $<n$ but dichrom.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff
> [DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D=D_{n}$ on vertex set ω_{1} so that $v(\delta) \equiv u(\delta)+1 \bmod n$
for $\delta=\Delta(u, v)$.
- No cycles of length $<n$ but dichrom.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff

$$
v(\delta) \equiv u(\delta)+1 \bmod n
$$

[DS, 2018] Consistently, for each

 $n \in \omega$ there is a digraph $D=D_{n}$ on vertex set ω_{1} so thatfor $\delta=\Delta(u, v)$.

- No cycles of length $<n$ but
dichrom.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff

[DS, 2018] Consistently, for each

 $n \in \omega$ there is a digraph $D=D_{n}$ on$$
v(\delta) \equiv u(\delta)+1 \bmod n
$$

for $\delta=\Delta(u, v)$.

- No cycles of length $<n$ but dichrom. $\geq \kappa$.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff
[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D=D_{n}$ on vertex set ω_{1} so that

$$
\text { for } \delta=\Delta(u, v)
$$

- No cycles of length $<n$ but dichrom. $\geq \kappa$.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff
[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D=D_{n}$ on

$$
v(\delta) \equiv u(\delta)+1 \bmod n
$$

$$
\text { for } \delta=\Delta(u, v)
$$

 vertex set ω_{1} so that

- D has no directed cycles of length $\leq n$, and

- No cycles of length $<n$ but dichrom. $\geq \kappa$.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff
[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D=D_{n}$ on

$$
v(\delta) \equiv u(\delta)+1 \bmod n
$$

$$
\text { for } \delta=\Delta(u, v)
$$

- $\vec{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_{1}$.
- No cycles of length $<n$ but dichrom. $\geq \kappa$.

How to get uncountable dichromatic number?

Construction by Attila Joó, 2019:

- vertices are $V=n^{\kappa}$,
- $u v \in A$ iff
[DS, 2018] Consistently, for each $n \in \omega$ there is a digraph $D=D_{n}$ on

$$
v(\delta) \equiv u(\delta)+1 \bmod n
$$

$$
\text { for } \delta=\Delta(u, v)
$$

- $\vec{C}_{n+1} \hookrightarrow D[X]$ for every uncountable $X \subseteq \omega_{1}$.

Size \aleph_{1} in ZFC??

- No cycles of length $<n$ but dichrom. $\geq \kappa$.

Boosting large chromatic number to large dichrom. number

Note: large dichromatic \# implies large chromatic \# for the underlying graph.

[Erdős, Neumann-Lara, 1979] Is there a function $f: \mathbb{N} \rightarrow \mathbb{N}$ so that implies $\vec{\chi}(D) \geq n$ for some orientation D of G ?

Even the existence of $f(3)$ is open.

Does $\chi(G)>\omega$ imply that $\vec{\chi}(D)>\omega$ for some orientation D of G ?

Boosting large chromatic number to large dichrom. number

Note: large dichromatic \# implies large chromatic \# for the underlying graph.
[Erdős, Neumann-Lara, 1979] Is there a function $f: \mathbb{N} \rightarrow \mathbb{N}$ so that $\chi(G) \geq f(n)$ implies $\vec{\chi}(D) \geq n$ for some orientation D of G ?

Even the existence of $f(3)$ is open.

Does
imply that
for some orientation D of G ?

Boosting large chromatic number to large dichrom. number

Note: large dichromatic \# implies large chromatic \# for the underlying graph.
[Erdős, Neumann-Lara, 1979] Is there a function $f: \mathbb{N} \rightarrow \mathbb{N}$ so that $\chi(G) \geq f(n)$ implies $\vec{\chi}(D) \geq n$ for some orientation D of G ?

Even the existence of $f(3)$ is open.

Does
imply that
for some orientation D of G ?

Boosting large chromatic number to large dichrom. number

Note: large dichromatic \# implies large chromatic \# for the underlying graph.
[Erdős, Neumann-Lara, 1979] Is there a function $f: \mathbb{N} \rightarrow \mathbb{N}$ so that $\chi(G) \geq f(n)$ implies $\vec{\chi}(D) \geq n$ for some orientation D of G ?

Even the existence of $f(3)$ is open.

Does $\chi(G)>\omega$ imply that $\vec{\chi}(D)>\omega$ for some orientation D of G ?

Yes and no.

[DS, 2018] \diamond^{+}implies that every graph G with $\chi(G)=|G|=\omega_{1}$ has an orientation D so that $C_{4} \hookrightarrow D[X]$ whenever $\chi(G[X])=\omega_{1}$.

- \vec{C}_{4} can be substituted by any orientation of a finite bipartite H.
[DS, 2018] Consistently, there is a graph G with $\chi(G)=|G|=\omega_{1}$ so that $\vec{\chi}(D) \leq \omega$ for any orientation D of G.

Yes and no.

[DS, 2018] \diamond^{+}implies that every graph G with $\chi(G)=|G|=\omega_{1}$ has an orientation D so that $\vec{C}_{4} \hookrightarrow D[X]$ whenever $\chi(G[X])=\omega_{1}$.

- \vec{C}_{4} can be substituted by any orientation of a finite bipartite H.

[DS, 2018] Consistently, there is a graph G with $\chi(G)=|G|=\omega_{1}$ so that $\vec{\chi}(D) \leq \omega$ for any orientation D of G.

Yes and no.

[DS, 2018] \diamond^{+}implies that every graph G with $\chi(G)=|G|=\omega_{1}$ has an orientation D so that $\vec{C}_{4} \hookrightarrow D[X]$ whenever $\chi(G[X])=\omega_{1}$.

- \vec{C}_{4} can be substituted by any orientation of a finite bipartite H .

[DS, 2018] Consistently, there is a graph G with $\chi(G)=|G|=\omega_{1}$ so that $\vec{\chi}(D) \leq \omega$ for any orientation D of G.

Yes and no.

[DS, 2018] \diamond^{+}implies that every graph G with $\chi(G)=|G|=\omega_{1}$ has an orientation D so that $\vec{C}_{4} \hookrightarrow D[X]$ whenever $\chi(G[X])=\omega_{1}$.

- \vec{C}_{4} can be substituted by any orientation of a finite bipartite H.
[DS, 2018] Consistently, there is a graph G with $\chi(G)=|G|=\omega_{1}$ so that $\vec{\chi}(D) \leq \omega$ for any orientation D of G.

A few open problems

How to get size and dichromatic number \aleph_{1} (with large digirth)?

Moore's L-space colouring can be used but \vec{C}_{3} appears.

Does $\vec{\chi}(D)>\omega$ imply that cycles of all but finitely many length embed into D ?

Does $\vec{\chi}(D)>\omega$ imply that there is a strongly 2 -connected subgraph of D ?

Suppose that G has orientations D_{ξ} so that $\sup \vec{\chi}\left(D_{\xi}\right)=\kappa$. Is there a single orientation D with $\vec{\chi}(D)=\kappa$?

A few open problems

How to get size and dichromatic number \aleph_{1} (with large digirth)?

Suppose that G has orientations D_{ξ} so that sup $\vec{\chi}\left(D_{\xi}\right)=\kappa$. Is there a single nrientation D with $\vec{v}(D)=\kappa ?$

A few open problems

How to get size and dichromatic number \aleph_{1} (with large digirth)?
Moore's L-space colouring can be used but \vec{C}_{3} appears.
 $D ?$

Suppose that G has orientations D_{ξ} so that $\sup \vec{\chi}\left(D_{\xi}\right)=\kappa$. Is there a

A few open problems

How to get size and dichromatic number \aleph_{1} (with large digirth)?
Moore's L-space colouring can be used but \vec{C}_{3} appears.
Does $\vec{\chi}(D)>\omega$ imply that cycles of all but finitely many length embed into D ?

Does $\vec{\chi}(D)>\omega$ imply that there is a strongly 2 -connected subgraph of D?

Suppose that G has orientations D_{ξ} so that sup $\vec{\chi}\left(D_{\xi}\right)=\kappa$. Is there a

A few open problems

How to get size and dichromatic number \aleph_{1} (with large digirth)?
Moore's L-space colouring can be used but \vec{C}_{3} appears.
Does $\vec{\chi}(D)>\omega$ imply that cycles of all but finitely many length embed into D ?

Does $\vec{\chi}(D)>\omega$ imply that there is a strongly 2 -connected subgraph of D?

Suppose that G has orientations D_{ξ} so that sup $\vec{\chi}\left(D_{\xi}\right)=\kappa$. Is there a

A few open problems

How to get size and dichromatic number \aleph_{1} (with large digirth)?
Moore's L-space colouring can be used but \vec{C}_{3} appears.
Does $\vec{\chi}(D)>\omega$ imply that cycles of all but finitely many length embed into D ?

Does $\vec{\chi}(D)>\omega$ imply that there is a strongly 2 -connected subgraph of D?

Suppose that G has orientations D_{ξ} so that $\sup \vec{\chi}\left(D_{\xi}\right)=\kappa$. Is there a single orientation D with $\vec{\chi}(D)=\kappa$?

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number
Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.
$\vec{\chi}(D)>\omega$ implies $\chi_{2}(G)>\omega$ for the underlying graph G.

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω-partition of the vertices, there is a monochromatic cycle $v_{0} v_{1}$
- each cycle has a \prec-maximal vertex v_{k};
- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward.

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number
Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.

- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward.

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number
Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.
$\vec{\chi}(D)>\omega$ implies $\chi_{2}(G)>\omega$ for the underlying graph G.

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω-partition of the vertices, there is a monochromatic cycle $v_{0} v_{1}$
- each cycle has a \prec-maximal vertex v_{k};
- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward.

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.
$\vec{\chi}(D)>\omega$ implies $\chi_{2}(G)>\omega$ for the underlying graph G.

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω-partition of the vertices, there is a monochromatic cycle $v_{0} v_{1}$
- each cycle has a \prec-maximal vertex v_{k} i
- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward.

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.

$$
\vec{\chi}(D)>\omega \text { implies } \chi_{2}(G)>\omega \text { for the underlying graph } G .
$$

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω-partition of the vertices, there is a monochromatic cycle $v_{0} v_{1} \ldots$;
- each cycle has a \prec-maximal vertex v_{k};
- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.

$$
\vec{\chi}(D)>\omega \text { implies } \chi_{2}(G)>\omega \text { for the underlying graph } G .
$$

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω-partition of the vertices, there is a monochromatic cycle $v_{0} v_{1} \ldots$;
- each cycle has a \prec-maximal vertex v_{k};
- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward.

Stepping up the dimensions

Note: an orientation with $\vec{\chi}(D)>\omega$ is like an edge 2-colouring.

Simultaneous chromatic number

Let's say $\chi_{r}(G)>\omega$ if there is some edge r-colouring of G so that for any ω-partition of the vertices, one class has all the colours.

$$
\vec{\chi}(D)>\omega \text { implies } \chi_{2}(G)>\omega \text { for the underlying graph } G .
$$

- linearly order the vertices of D by some \prec and colour edge by forward/backward;
- given an ω-partition of the vertices, there is a monochromatic cycle $v_{0} v_{1} \ldots$;
- each cycle has a \prec-maximal vertex v_{k};
- $v_{k-1} v_{k}$ is forward and $v_{k} v_{k+1}$ is backward.

State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

Does $\chi(G)>\omega$ imply $\chi_{2}(G)>\omega$?

Even for $\chi(G)=|G|=\aleph_{1}, \chi_{\omega_{1}}(G)>\omega$ could be true in ZFC!
[Todorcevic, 1987] Yes, for $G=K_{\omega_{1}}$.
[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G)=\aleph_{1}$.
Maybe in ZFC???

State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

$$
\text { Does } \chi(G)>\omega \text { imply } \chi_{2}(G)>\omega \text { ? }
$$

Even for $\chi(G)=|G|=\aleph_{1}, \chi_{\omega_{1}}(G)>\omega$ could be true in ZFC!
[Todorcevic, 1987] Yes, for $G=K_{\omega_{1}}$
[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G)=\aleph_{1}$.
Maybe in ZFC???

State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

$$
\text { Does } \chi(G)>\omega \text { imply } \chi_{2}(G)>\omega \text { ? }
$$

Even for $\chi(G)=|G|=\aleph_{1}, \chi_{\omega_{1}}(G)>\omega$ could be true in ZFC!
[Todorcevic, 1987] Yes, for $G=K_{\omega_{1}}$
[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G)=\aleph_{1}$
Maybe in ZFC???

State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

$$
\text { Does } \chi(G)>\omega \text { imply } \chi_{2}(G)>\omega \text { ? }
$$

Even for $\chi(G)=|G|=\aleph_{1}, \chi_{\omega_{1}}(G)>\omega$ could be true in ZFC!
[Todorcevic, 1987] Yes, for $G=K_{\omega_{1}}$.
[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G)=\aleph_{1}$
Maybe in ZFC???

State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

$$
\text { Does } \chi(G)>\omega \text { imply } \chi_{2}(G)>\omega \text { ? }
$$

Even for $\chi(G)=|G|=\aleph_{1}, \chi_{\omega_{1}}(G)>\omega$ could be true in ZFC!
[Todorcevic, 1987] Yes, for $G=K_{\omega_{1}}$.
[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G)=\aleph_{1}$.

State of the art

Still open from [Erdős - Galvin - Hajnal, 1975]:

$$
\text { Does } \chi(G)>\omega \text { imply } \chi_{2}(G)>\omega \text { ? }
$$

Even for $\chi(G)=|G|=\aleph_{1}, \chi_{\omega_{1}}(G)>\omega$ could be true in ZFC!
[Todorcevic, 1987] Yes, for $G=K_{\omega_{1}}$.
[Hajnal - Komjáth, 2003] Consistently, yes whenever $\chi(G)=\aleph_{1}$.
Maybe in ZFC???

Evidence for the consistent failure

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G)=\aleph_{1}$ then destroy witnesses to $\chi_{2}(G)>\omega$.
Consistently, there is a graph G so that
(1) G has size and chromatic number \aleph_{1}, and
(2) for any edge 2-colouring c, there is a poset \mathbb{P}_{c} so that

$$
V^{\mathbb{P}_{c}} \mid=\chi(G)=\aleph_{1} \text { and } c \not{ }^{\prime} \chi_{2}(G)>\omega .
$$

Approach: ladder system graph and weak uniformization.
Can we iterate \mathbb{P}_{c} and preserve $\chi(G)=\aleph_{1}$??

Evidence for the consistent failure

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G)=\aleph_{1}$ then destroy witnesses to $\chi_{2}(G)>\omega$.
Consistently, there is a graph G so that
(1) G has size and chromatic number \aleph_{1}, and
(2) for any edge 2-colouring c, there is a poset \mathbb{D}_{C} so that

Approach: ladder system graph and weak uniformization.
Can we iterate \mathbb{P}_{c} and preserve $\chi(G)=\aleph_{1}$??

Evidence for the consistent failure

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G)=\aleph_{1}$ then destroy witnesses to $\chi_{2}(G)>\omega$.
Consistently, there is a graph G so that
(1) G has size and chromatic number \aleph_{1}, and
(2) for any edge 2-colouring c, there is a poset \mathbb{P}_{c} so that

$$
V^{\mathbb{P}_{c}} \models \chi(G)=\aleph_{1} \text { and } c \nvdash \chi_{2}(G)>\omega .
$$

Approach: ladder system graph and weak uniformization.
Can we iterate \mathbb{P}_{C} and preserve $\chi(G)=\mathbb{X}_{1}$??

Evidence for the consistent failure

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G)=\aleph_{1}$ then destroy witnesses to $\chi_{2}(G)>\omega$.
Consistently, there is a graph G so that
(1) G has size and chromatic number \aleph_{1}, and
(2) for any edge 2-colouring c, there is a poset \mathbb{P}_{c} so that

$$
V^{\mathbb{P}_{c}} \models \chi(G)=\aleph_{1} \text { and } c \nvdash \chi_{2}(G)>\omega .
$$

Approach: ladder system graph and weak uniformization.

Evidence for the consistent failure

Joint work with M. Džamonja, T. Inamdar and J. Steprans.

Idea: Force $\chi(G)=\aleph_{1}$ then destroy witnesses to $\chi_{2}(G)>\omega$.
Consistently, there is a graph G so that
(1) G has size and chromatic number \aleph_{1}, and
(2) for any edge 2-colouring c, there is a poset \mathbb{P}_{c} so that

$$
V^{\mathbb{P}_{c}} \models \chi(G)=\aleph_{1} \text { and } c \nvdash \chi_{2}(G)>\omega .
$$

Approach: ladder system graph and weak uniformization.

$$
\text { Can we iterate } \mathbb{P}_{c} \text { and preserve } \chi(G)=\aleph_{1} ? ?
$$

Quiz 3: name the iconic set theorist.

Quiz 3: name the iconic set theorist.

Paul Szeptycki

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$;
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega, \omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$.

$$
G \rightarrow(\omega)_{\omega}^{1} \text { implies } G \rightarrow(H)^{2} \text { for some 'large' } H ? ?
$$

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$ i
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$ $G \rightarrow(\omega)^{\frac{1}{\omega}}$ implies $G \rightarrow(H)^{2}$ for some "large' H??

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$;
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$ $G \rightarrow(\omega)_{\omega}^{1}$ implies $G \rightarrow(H)^{2}$ for some "large' H??

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$;
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega, \omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$ $G \rightarrow(\omega)_{\omega}^{\frac{1}{\omega}}$ implies $G \rightarrow(H)^{2}$ for some 'large' H??

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$;
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega, \omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$ $G \rightarrow(\omega)^{1}$ implies $G \rightarrow(H)^{2}$ for some 'large' H??

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$;
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega, \omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$.

$$
G \rightarrow(\omega)_{\omega}^{1} \text { implies } G \rightarrow(H)_{r}^{2} \text { for some 'large' } H \text { ?? }
$$

Looking forward - high dimensional relations

If $G \rightarrow(H)_{\omega}^{1}$ then the hypergraph $\binom{G}{H}$ has uncountable chromatic number. What can we say about this hypergraph?

- $H=$ a finite obligatory subgraph such as copies of C_{4} or $K_{n, n}$;
- $H=$ an infinite obligatory subgraph such as rays P_{ω} or half-graphs $H_{\omega, \omega}$.
- Define anti-Ramsey hyper-edge-colourings!?

Todorcevic, $1985 P \rightarrow(\omega)_{\omega}^{1}$ implies $P \rightarrow(\alpha)_{r}^{2}$ for $r<\omega, \alpha<\omega_{1}$.

$$
G \rightarrow(\omega)_{\omega}^{1} \text { implies } G \rightarrow(H)_{r}^{2} \text { for some 'large' } H \text { ?? }
$$

Looking back - classical problems from Erdős

- Does $\chi(G)>\omega$ imply that there is a Δ-free $H \hookrightarrow G$ with $\chi(H)>\omega$?
- Does $G \rightarrow\left(K_{3}\right)^{2}$ imply $K_{4} \hookrightarrow G$? [Consistently, no.]
- Does every two graphs G_{0}, G_{1} with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. "Erdős's Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

Further recommended: recent works from Hamburg Discrete Math group; A. Rinot; Z. Vidnyánszky.

Looking back - classical problems from Erdős

- Does $\chi(G)>\omega$ imply that there is a Δ-free $H \hookrightarrow G$ with $\chi(H)>\omega$?
- Does $G \rightarrow\left(K_{3}\right)_{\omega}^{2}$ imply $K_{4} \hookrightarrow G$? [Consistently, no.]
- Does every two graphs G_{0}, G_{1} with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. "Erdős's Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

Further recommended: recent works from Hamburg Discrete Math group; A. Rinot; Z. Vidnyánszky.

Looking back - classical problems from Erdős

- Does $\chi(G)>\omega$ imply that there is a Δ-free $H \hookrightarrow G$ with $\chi(H)>\omega$?
- Does $G \rightarrow\left(K_{3}\right)_{\omega}^{2}$ imply $K_{4} \hookrightarrow G$?
[Consistently, no.]
- Does every two graphs G_{0}, G_{1} with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

> Be inspired: Komjáth, P. "Erdős's Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

> Further recommended: recent works from Hamburg Discrete Math group; A. Rinot; Z. Vidnyánszky.

Looking back - classical problems from Erdős

- Does $\chi(G)>\omega$ imply that there is a Δ-free $H \hookrightarrow G$ with $\chi(H)>\omega$?
- Does $G \rightarrow\left(K_{3}\right)_{\omega}^{2}$ imply $K_{4} \hookrightarrow G$?
[Consistently, no.]
- Does every two graphs G_{0}, G_{1} with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

> Be inspired: Komjáth, P. "Erdős's Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

> Further recommended: recent works from Hamburg Discrete Math group; A. Rinot; Z. Vidnyánszky.

Looking back - classical problems from Erdős

- Does $\chi(G)>\omega$ imply that there is a Δ-free $H \hookrightarrow G$ with $\chi(H)>\omega$?
- Does $G \rightarrow\left(K_{3}\right)_{\omega}^{2}$ imply $K_{4} \hookrightarrow G$?
[Consistently, no.]
- Does every two graphs G_{0}, G_{1} with uncountable chromatic number contain a common 4 -chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. "Erdős’s Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

Further recommended: recent works from Hamburg Discrete Math group; A. Rinot; Z. Vidnyánszky.

Thank you very much! Questions?

- Does $\chi(G)>\omega$ imply that there is a Δ-free $H \hookrightarrow G$ with $\chi(H)>\omega$?
- Does $G \rightarrow\left(K_{3}\right)_{\omega}^{2}$ imply $K_{4} \hookrightarrow G$?
[Consistently, no.]
- Does every two graphs G_{0}, G_{1} with uncountable chromatic number contain a common 4-chromatic subgraph? Is there a common ω-chromatic subgraph?

Be inspired: Komjáth, P. "Erdős’s Work on Infinite Graphs." Erdős Centennial. Springer, Berlin, Heidelberg, 2013. 325-345.

Further recommended: recent works from Hamburg Discrete Math group; A. Rinot; Z. Vidnyánszky.

