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Introduction

Goal: to study the chromatic number of uncountable digraphs.

first organized effort on undirected case: P. Erdős and A. Hajnal in
the 1960s;

significant contributions: P. Komjáth, S. Shelah, C. Thomassen, S.
Todorcevic...

very good surveys by Komjáth and Todorcevic.
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What is the chromatic number?

Definition

The chromatic number of a graph G , denoted by χ(G ), is the least

cardinal κ such that the vertices of G can be covered by κ many

independent sets.

How does large chromatic number
affect the subgraph structure?

Is there a universal witness of large
chromatic number?
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The first results

Tutte, 1954: There are △-free
graphs of arbitrary large finite
chromatic number.

Erdős, 1959: There are graphs
with arbitrary large girth and
arbitrary large finite
chromatic number.
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Obligatory subgraphs

What graphs must occur as subgraphs of uncountably chromatic graphs?

Erdős-Rado, 1959: There are
△-free graphs with size and
chromatic number κ for each
infinite κ.

Erdős-Hajnal, 1966:
If Chr(G ) > ω then Kn,ω1

embeds into G for each n ∈ ω.

In particular, any even cycle
embeds into G .
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Further finite obligatory subgraphs

What cycles must occur as subgraphs of uncountably chromatic graphs?

Erdős-Hajnal, 1966: For any n ∈ N

there is a graph G with Chr(G ) = ω1

such that G does not contain odd
cycles of length < n.

Erdős et al, Thomassen 1983: If
Chr(G ) > ω then there is an n ∈ ω
such that any odd cycle of length
bigger than n embeds into G .

The finite obligatory graphs are exactly the
finite bipartite graphs.
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Shift graphs

Define the shift graph Shn(λ) (for 2 ≤ n < ω) on [λ]n by connecting
u = {ξ0 < · · · < ξn−1} with v = {ξ1 < · · · < ξn}.

If λ = expn−1(κ)
+ then Shn(λ) → (Kκ)

1
κ. So χ(Shn(λ)) > κ.

No odd cycles of length ≤ 2n − 1.
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The dichromatic number of digraphs

Definition

The dichromatic number −→χ (D) of a digraph D is the least cardinal κ

such that the vertices of D can be covered by κ many acyclic sets.

Examples of digraphs with large/uncountable dichromatic number.

What are the implications of large dichromatic number?

How is −→χ (D) related to χ(D)?
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A simple construction

How to find D with large −→χ (D)?

[Bokal et al, 2004] There are digraphs with arbitrary large digirth and
arbitrary large finite chromatic number.
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Uncountable tournaments

How to find D with −→χ (D) > ω?

[J. Moore] Let f : [ω1]
2 → 2 so that if A,B ⊆ ω1 are uncountable and

i < 2 then f (α, β) = i for some α ∈ A, β ∈ B with α < β.
Let αβ ∈ E iff α < β and f (α, β) = 0; otherwise βα ∈ E .

If X ⊆ ω1 is uncountable then
−→
C 3 →֒ D[X ].

Find u ∈ X so that A = N+(u) ∩ X and B = N−(u) ∩ X are
uncountable.

Now pick α < β so that α ∈ A, β ∈ B and f (α, β) = 0. Then

{u, α, β} =
−→
C 3 in D[X ].

Alternate proof: diagonalization of length c using countable elementary
submodels.
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The digirth and chromatic number

Recall: there are digraphs with large girth and large finite dichromatic number.

How about uncountable dichromatic number?

[DS, 2016] Let λ = expn(κ) for some 2 ≤ n < ω and infinite κ. Then
there is an orientation D of Shn(λ) so that whenever G : [λ]n → κ then
there is a monochromatic directed 4-cycle in D.

In particular, short odd cycles can be avoided while the dichromatic
number is as large as we wish.
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Arrows

D → (D0)
1
r iff for every

r -colouring of the vertices of D
one can find a monochromatic
copy of D0.

G
ENL
−→

(

D0

)1

r
iff there is an

orientation D of G such that
D → (D0)

1
r .

G
ENL
=⇒

(

D0

)

iff there is an
orientation D of G such that
D0 →֒ D[W ] whenever
χ(G [W ]) = χ(G ).
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Avoiding all small cycles

Recall: C4 →֒ G if χ(G) > ω.

[DS, 2016] Consistently, for each n ∈ ω there is a digraph D = Dn on
vertex set ω1 so that

1 D has no directed cycles of length ≤ n, and

2
−→
C n+1 →֒ D[X ] for every uncountable X ⊆ ω1.

Consistently, there are graphs with uncountable dichromatic number
and arbitrarily large digirth.
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The natural forcing

Fix n ∈ ω.

Let p ∈ P = Pn iff p is a finite digraph of girth > n on a subset of ω1.

p ≤ q iff V p ⊇ V q and Eq = Ep ∩ (V q)2.

Goal: P is ccc.

Let Ġ ⊆ P generic filter. Define Ḋ = (ω1,E
G ) by EG =

⋃

{Ep : p ∈ G}.

Goal: V [G ] |= −→χ (Ḋ) = ω1.

Ḋ is clearly
−→
C n-free so we are done.
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Let Ġ ⊆ P generic filter. Define Ḋ = (ω1,E
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The key amalgamation lemma

Suppose that {Di : i ≤ k} are isomorphic digraphs of girth > n forming
a ∆-system with isomorphism ψij : Vi → Vj . Let D =

⋃

{Di : i ≤ k}.

Any path P from α ∈ Vi to α′ = ψij(α) ∈ Vj

in D has length > n.

D has girth > n.

If k ≥ n and

E (D∗) = E (D) ∪ {αkα0, αiαi+1 : i < k}

then D∗ has girth > n.
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No more cycles please...

Suppose that χ(D) > ω for some digraph D. Does

D → (
−→
C n)

1
ω

hold for some n = n(D)? Yes, for all the previous examples...

[DS, 2016] Consistently, for any monotone f ∈ ωω with lim
k→∞

f (k) = ∞

there is a digraph D = Df on vertex set ω1 so that

1 χ(D) = ω1, and

2 D 9 (
−→
C k)

1
f (k) for all k < ω.

In ZFC? Can we do this with f (k) ≡ 2??
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Chromatic and dichromatic number

Note: if −→χ (D) ≥ κ then χ(D) ≥ κ.

[Erdős, Neumann-Lara, 1979] Is there a function f : N → N so that
χ(G ) ≥ f (n) implies −→χ (D) ≥ n for some orientation D of G?

The existence of f (3) is still open.

Does χ(G ) > ω imply that −→χ (D) > ω for some orientation D of G?
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Yes.

[DS, 2016] ♦+ implies that G
ENL
=⇒

(−→
C 4

)

for every graph G with
χ(G ) = |G | = ω1.

That is,
−→
C 4 →֒ D[X ] for some orientation D whenever χ(G [X ]) = ω1.

In particular, −→χ (D) = ω1.

[DS, 2016] ♦+ implies that if χ(G ) = |G | = ω1 then

G
ENL
=⇒

(

∧

{D : D is an orientation of Hω,ω}
)

.
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But also no...

[DS, 2016] Consistently, there is a graph G with χ(G ) = |G | = ω1 so
that −→χ (D) ≤ ω for any orientation D of G .

P0: force a graph G on ω1 with finite conditions from a model of CH.

Qα: pick an orientation Ḋα of G in V Pα and let q ∈ Qα iff
q ∈ Fn(ω1, ω, ω) so that Ḋα[q

−1(n)] is acyclic for all n ∈ ω.

Pα will be ccc for all α < ω2 by the amalgamation lemma.

We can arrange the names (Ḋα)α<ω2 so that −→χ (Ḋ) ≤ ω for any
orientation Ḋ of Ġ in V Pω2 .

Dániel Soukup (KGRC) Orientations and chromatic number Prague, 2016 October 19 / 25



But also no...

[DS, 2016] Consistently, there is a graph G with χ(G ) = |G | = ω1 so
that −→χ (D) ≤ ω for any orientation D of G .

P0: force a graph G on ω1 with finite conditions from a model of CH.
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Open problems - Erdős-Neumann-Lara

−→χ (G ) = sup{−→χ (D) : D is an orientation of G}

Does χ(G ) > ω imply −→χ (D) ≥ 3 for some orientation D of G?

χ(G ) > ω ⇒ −→χ (G ) > ω is independent of ZFC for |G | = ω1.

Is χ(G ) > ω ⇒ −→χ (G ) > ω consistent for all G with χ(G ) = ω1?

Is there a G with χ(G ) > ω but −→χ (G ) ≤ ω in ZFC?
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Open problems - sup = max?

Recall: −→χ (G) = sup{−→χ (D) : D is an orientation of G}

What happens if −→χ (G ) is a limit cardinal?

Does −→χ (D) = −→χ (G ) for some orientation D of G?

Conjecture:

Yes, if cf(−→χ (G )) = ω.

Consistently no in general.
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Open problems - cycles again

Recall: we can consistently avoid finitely many cycles.

Does −→χ (D) > ω imply that cycles of all but finitely many length
embed into D?

[Erdős, Thomassen...] Yes, for undirected graphs.

Can we find a digraph D with −→χ (D) > ω and girth > n in ZFC?

Does D → (
−→
C 3)

1
ω imply that

−→
C 4 →֒ D?

Yes, for undirected graphs.
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Open problems - connected subgraphs

D is strongly n-connected iff for any vertices u, v and finite set F of size < n

there is a directed path from u to v avoiding vertices in F .

If −→χ (D) > ω then −→χ (D0) > ω for some strongly connected D0 →֒ D.

If χ(G ) > ω and n ∈ ω then Kn,n →֒ G is an n-connected subgraph.

[Komjáth] If χ(G ) > ω and n ∈ ω the χ(G0) > ω for some
n-connected G0 →֒ G .

Does −→χ (D) > ω imply that D0 →֒ D for some strongly 2-connected
digraph D0?

There could be no uniform witness: the girth of D can be arbitrary large.
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Thank you very much!
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Thank you very much!

Any questions?
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