HITCHHIKER’S GUIDE TO COLORING PAIRS OF X,

NOTES BY DANIEL T. SOUKUP

ABSTRACT. The aim of this note is to present Shelah’s celebrated
coloring theorem [4] of pairs of wa by closely following S. Todorcevic
[7]. The only aim of this paper is to collect all preliminary results
and standard tricks in a single place which hopefully makes the
results more accessible to interested non-specialists.

1. INTRODUCTION

Our goal is to present a proof of the following theorem in a self-
contained manner:

Main Theorem. There is a ¢ : [ws]? — wo such that for every n € w,
for every pairwise disjoint A € [[we]™]*? and every h : n xn — wy there
is a <be A such that

c(a(i), b(j)) = h(i, j)
for alli,7 € n.

Here a < b means that a < § for all @ € a, 5 € b and a(i) denotes
the ith element of a with respect the natural ordering.
We will prove the Main Theorem in four stages as follows:

Stage I: we define a standard "square bracket" coloring f on wy,

Stage II: using the above coloring f, we define a map g : W — w;
with strong properties reminiscent of square bracket color-
ings!,

Stage I1I: we construct a map cp : [we]? — w; which has the universal
properties of our Main Theorem with w;-many colors and
constant functions h?,

Stage IV: we modify ¢y in two smaller, independent steps to get a
coloring ¢ : [wq]® — wo satisfying the requirements of the
Main Theorem.
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In the proofs, the reader will find the definition of the corresponding
coloring in the first paragraph; this makes it possible to get a sense of
the idea while not spending much time checking the details.

Finally, it is not our goal to show the importance of the Main The-
orem however we mention two application.

Shelah’s original motivation was to prove that there are two No-
chain condition posets Fy, Py (i.e. no anti-chains of size 8, in P;) with
the product containing an anti-chain of size Ny. Recall that the same
problem for X;-chain condition is undecidable in ZFC [8]|. Define

Py ={p€ [wa”: " [p]* = {i}}
with ¢ from the Main Theorem and ¢ € 2. Then F,, P, witnesses the
above fact.

The second application is to topology; a significant portion of set
theoretic topology in the 20th century revolved around the problem
of S-and L-spaces [3], i.e. determining the connection between regular
hereditarily separable (HS) and hereditarily Lindel6f spaces (HL). It
was soon realized that there are many models of ZFC where these
properties do not imply each other i.e. the existence of S-spaces and
L-spaces. The research culminated in two deep results: S. Todorcevic
proved that PFA implies that every HS space must be HL [5] (nicely
worked out at [2]) and J. Moore proved that there is, in ZFC, an HL
space which is not HS [1].

Naturally, one can ask the same question for higher cardinals thus
defining the class of xk-HL and s-HS spaces. The coloring of Main
Theorem provides us wo-HL spaces which are not ws-HS and vica versa:

Theorem 1.1. There are dense subsets X, Y C 22 such that X is right
separated in order type wy and has density wy, while Y s left separated
in order type wy and has Lindeldf-degree wy .

It is an intriguing open problem whether there are compact spaces
with the above properties.
STAGE [
Our first theorem is the now classical result of S. Todorcevic [6]:

Theorem 1.2. There is f : [wi]?> — wy such that for every n € w and
A= {7, v €w} Cw} with pairwise disjoint range and every & € wy
there s ¢ < v < wy such that

fre(i), (i) = €

for all v < n.



HITCHHIKER’S GUIDE TO COLORING PAIRS OF RX» 3

We will (locally) refer to the above situation as realizing the color €.

This theorem is usually stated for pairwise disjoint finite sets {7, :
v € wq} rather than finite sequences with disjoint range. Also, the
reader first encountering this argument is encouraged to work out the
n = 1 case only, i.e. where A is simply an uncountable subset of w;.

Proof. Note that it suffices to construct fy : [wi]? — w; such that the
set of £ < w; realized by the coloring fy contains a club. Indeed, if
the map & — &* takes each value stationary often then the coloring

f(a, B) = fola, B)* | realizes all colors.
Now, pick a 1-1 sequence of reals R = {r, : @« <w;} C 2* and let

A(a, f) =min{n € w: ro(n) #rz(n)}

for a < 8 < wy. Also, fix a sequence e, : @ — w of 1-1 maps. Let

fole, B) = min((ez" (Ala, B)) U{B}) \ a)

for a < B < wy.

We prove that fy works for club many colors £ € wq; indeed, we
prove that if £ = M N w; for some countable elementary submodel of
H(Ny) with wy, R, (€4)acw,--- € M then we can realize the color &.

Fix M as above and let £ = M N w;; pick any 7, such that b =
ranT, C wy \ €. Let m = max{eg(&) : § € b} + 1 and consider the set

B={(<w Vi<n:r, g [m=r.u [ m}

It should be clear that B € M and v € B which implies that |B| = w;.
Let

S={se @) :Vi<n:si=r | (|si| = 1) (1 =7 w(sil)}

and let B, = {C € B : (1.5 | [8i|)i<n = s} for s € S. Note that an
s € § simply defines the place where the sequence of reals (TTC(Z'))KH
first differs from (- (;))i<n-

Then B\ {y} = U{B; : s € S} thus there is s € S such that
|Bs| = wi. Note that the value of (A(7¢(7),7,(7)))icn € (w\ m)" is
constant if ¢ runs over By. Call this sequence (m;);<, and let

F = U{e;l(i) (mi) :i < n}.

Note that F'N¢ is a finite set in M and B, € M is uncountable thus we
can pick ¢ € By such that ran7. C w; \ (max F'+1). It is now straight-
forward to check that the above choices guarantee fo(7¢(7),7,()) = &
for all « < n. U
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STAGE 11

The next somewhat technical result will play a key role in defining
the final colorings; although at this point, it is very far from trivial to
see how we will utilize this particular map to define a coloring on pairs
of wWa.

Theorem 1.3. There is g : wy® — wy such that for every {ry, : v €
wi} C wi® with vy € ran(r,) and every £ € wy there is v < § < wy such
that

glo™9) =¢
for all 0 C 7,9 C 75 with v € ran(o) and § € ran(?).

Proof. Pick a 1-1 sequence of reals R = {r, : @ <w;} C 2 and let

A(7) = max{A(rr), 7r()) 2 6,5 <n,7(i) # 7(j)}
for any non constant 7 € wi, i.e. A finds the minimal distance ap-
pearing in the set {r-; : 4 < n}. In particular, the reals {r;q) : i < |7|}
already differ restricted to A(7) + 1. We fix a coloring f as defined in
Stage [ and let

9(r) = f(7(0),7(j))

where (i,7) = min{(p,q) € |7]* : A(T) = A(rr(p), 7r(q))} and 7 € wi¥
is non constant; otherwise g(7) = 0 for constant 7 € w™.

We prove now that g works; pick a set {7, : v € w1} C w* as above
and note that we can suppose that the sequences are non constant.
Otherwise, 7, is constant v and g(c~v) = f(v,0) foralle C 7,9 C 75
with v € ran(o) and § € ran(+)). Thus each color £ € w; is realized by
the choice of f.

Now, we can thin out the sequence {7, : v € w;} so that there are
k,l,m € wand I € [w]*":

(i) |7| =1 and A(ry) =m for all y € I,
(ii) (re @) [ m+ 1)« is constant in v € I,
i
i

(iii) {ranT, : v € I} is a A-system with root c,
(iv) 7 (k) = v for all v € I and
(v) A(rr (i), Tr5)) > m forall y <6 € I and i < 1,
(vi) 7 () = 7,(j) iff 7¢(¢) = 7¢(j) forall y < ( € T and i < L.
Fix an arbitrary color £ € w; which we wish to realize; by the properties
of f, we can find v < 9§ € I such that

f(my (@), 7)) = €
for all © <! and 7,(¢) € ran 7, \ c. We wish to show that v, d works for
g so fix 0 C 7,0 C 75 with v € ran(o) and ¢ € ran(J). Note that v

oo
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and 0 share the same position in ran7, \ ¢ and ran7;s \ ¢ by (iv) thus
A(7,6) > m by (v). Hence A(c™0) > m. Let g(c™0) = f(7(i),7(j))
where (7,7) is the pair picked by the definition of g. Let ¢ = o749
and note that ((¢) and ((j) cannot be both in ran, or ran7s by (i).
Also, 7 and j must share the same position in the running part of the
A-system; otherwise (ii) implies that 7¢;) and r¢(;) already differ below
m which contradicts A(¢) = A(r¢w), r¢jy) > m . Hence, there is n <[
such that 7,(n) = ((7) and 75(n) = ((j) (or vica versa 7,(n) = ((j)
and 75(n) = ((i)) and

9(Q) = f(ry(n), 75(n)) = &.

STAGE III

Before defining the coloring of this stage, we need some further no-
tions.

Definition 1.4. A C-sequence on wsy is a sequence {Cy : o € wy} such
that for all o € wo:

(1) C, is a closed unbounded subset of a with order type equal to
the cofinality of «,

(2) if ¢ € C, is a successor element of C, then ( is a successor
ordinal.

We fix a C-sequence {C,, : @ € wa} for the rest of the section.

The minimal walk (along the C-sequence) from S to o (where a <
B < wy) is a finite decreasing sequence = [y, f1, ..., Bn = « defined
recursively by

/Bi—i-l = min Cgi \ (0%

provided f; # a.
The set {f...0,} is called the upper trace of the walk and is denoted
by Tr(a, f). Furthermore, let

Mo, ) = max{max(Cg, Na) : §; € Tr(a, B) \ {a}}
for & < 8 < wq. Note that Ao, 5) < a and

Observation 1.5. For every a < § < v < wy such that A\(5,7) < «
the minimal walk from ~ to B is an wnitial segment of the walk from ~
to o.

We are now ready to define the coloring of this stage:
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Theorem 1.6. There is a ¢ : [wa]* — wy such that for every n € w,
for every pairwise disjoint A € [[we]™]*? and every & < w; there is
a <be A such that

co(al(i), b(j)) = ¢
foralli,j €n.

Proof. Let 6 — 6* map ws to w; such that
A¢ = {0 € 5.2 :0" =&} is stationary

for all £ € wy where S22 = {6 € wy : ¢f(d) = wi}. Now compose the
function * with the trace function to obtain

pe: [wa]? = wi®

that is

P, B) = (57 )i<n

where a@ < 8 < wy and (B)i<p, is the walk from 5 to «. Finally,

consider the map ¢ : wy® — w; constructed in Stage IT and define

Co: [W2]2 — wy by

Co(aa 6) = g(p*(aa 6))

for a < 6 < ws.

We claim that ¢y works! Fix n € w and pairwise disjoint A €
[[wa]™]¥2. We wish to set up a situation from Nj;-many elements of
A so that the minimal walks between these element meet each A; in a
nice way; in particular, the sequences defined by p, will contain every
element of wy.

More precisely, let

C={cwy:Vy<ddaecA:aC(v,9)}
and note that C is a club. Fix bs € A such that 6 < bs for all § € ws.

Claim 1.7. There is Ay € wy and stationary X C A NC for § € wy
such that

A(éa ﬁ) < )\0
for all § € wy,6 € X¢ and B € bs.
Proof. Recall that A(4,3) < §if 6 € S%? and § < B < w, and that

A¢ N C is stationary for each { € wy; thus the claim follows from the
Pressing Down Lemma. U
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Fixe € S2NM{lim X : £ <wi}\ Ao and d¢ € Ee\ (e+1) for £ € wy.
Pick a cofinal sequence (7¢)e<q, in € such that 7 € X¢ and

(A= 8) B € Upeebs,} < e

for all £ < wy.
Pick a¢ € A such that

(i) sup{yy, :n <&} < ag <,
(i) A(ye,€) < ae,
(ili) U{A(e, B) : B € Uyeebs, } < ae

for £ < w;. We made the above choices in order to ensure that

pi(a,€) = pi(Ve, €) 7 pale Ye), (1.1)

p«(e; 8) = ps(0y, B) " pule, by), (1.2)
and

p(a, B) = pu(e, B) " pe(a,€) (1.3)

if n <& <wy,a € aeand B € bs,. Most importantly, n € ran p, (e, 3)
and £ € ran p,(a, ¢)!
Now, let

7e = (pu(a, 5))aeagﬁ (s (e, 5))5@55

for £ € wy. Note that { € ranTe
Fix v € w; and to finish the proof we will find n < £ < w; such that

cola, B) =v

for all & € a¢ and 8 € bs,. By the choice of g, we know that there is
n < & < w; such that

g(o™d) =v

for all o C 7,,9 C 7¢ with n € ran(o) and £ € ran()). Thus, if a € a;
and 8 € bs, then

co(a, B) = g(p«(a, B)) = g(p«(e, B) " ps(a, €));

finally observing that 7 € ran p.(e, §) and £ € ran p, (e, a) implies that
Co(OK, 5) =V
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STAGE IV

In this final stage, we improve the coloring of Stage III in two steps.
The first modification will make it possible to realize arbitrary pat-
terns and the second modification will yield the coloring of our Main
Theorem.

Theorem 1.8. There is a ¢; : [wo]* — wy such that for every n € w,
for every pairwise disjoint A € [[we]™]*? and every h : n xn — w; there
is a <be A such that

c1(a(i), b(7)) = h(i, j)
for alli,7 € n.
Proof. Fix a 1-1 sequence {t, : @ < wy} C 2*' and let
G={h:2"x2" = w :de w]™*}

Fix an arbitrary bijection 7 : w; — G and define ¢; : [ws]? — w; by

ci(e, B) = h(ta [ d;tg I d)

where | h = m(co(a, 5)) | and ‘domh =24 x 24 ‘

We wish to prove that ¢; works so fix n € w, pairwise disjoint A €
[[wa]™]“2 and h : n X n — wy. Note that there is a B € [A]“2, d € [wy|<¥
and {s; : i < n} € [29" such that

by [ d =8

for all b € B and @ < n. Now define h : 24 x 29 — w, so that
h(si,s;) = h(i,j) for all 4,5 < n; note that s; # s; if i # j so the
definition is valid.

By the definition of ¢y, there is a < b € B such that
m(co(al(i), b(j))) = h

for all 7,5 < n. Hence
ci(a(i), b()) = hlta) | d,toy | d) = h(sq, s5) = h(i, ])
for 7,5 <n. U

Main Theorem. There is a ¢ : [ws]? — wo such that for every n € w,
for every pairwise disjoint A € [[we]™]*? and every h : n xn — wy there
is a <be A such that

c(a(i),b(5)) = h(i, )

for alli,7 € n.
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Proof. Fix a bijection e, : @ — w; for each o < wy and let ¢; be as in
Theorem 1.8. Define ¢ : [w]? — wo by

c(a, B) = e5' (c1(ax, B))

for all a < 8 € ws.

We wish to prove that ¢ works so fix n € w, pairwise disjoint A €
[[wo]™]¥2 and h : n X n — wy. Let H = ranh and note that there is
B € [A]*2, J; € [w]Hl and ¢; : H — w; for i < n such that

éizeb(i) [HH—)JZ

for all b € B and 7 < n.
Now let h: n X n — wy so that

h(i, ) = &(h(i, 5))
for 7,7 < n. By the definition of ¢; we can find a < b € B such that

c1(a(d), b(j)) = h(i, j)
for i, 5 < n. Thus

c(a(i), b(7)) = ey (hli, 5)) = &' (h(i, 7)) = h(i, )
for all 7, 7 < n. O
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