
HITCHHIKER'S GUIDE TO COLORING PAIRS OF ℵ2NOTES BY DÁNIEL T. SOUKUPAbstra
t. The aim of this note is to present Shelah's 
elebrated
oloring theorem [4℄ of pairs of ω2 by 
losely following S. Todor
evi
[7℄. The only aim of this paper is to 
olle
t all preliminary resultsand standard tri
ks in a single pla
e whi
h hopefully makes theresults more a

essible to interested non-spe
ialists.1. Introdu
tionOur goal is to present a proof of the following theorem in a self-
ontained manner:Main Theorem. There is a c : [ω2]
2 → ω2 su
h that for every n ∈ ω,for every pairwise disjoint A ∈ [[ω2]

n]ω2 and every h : n×n → ω2 thereis a < b ∈ A su
h that
c(a(i), b(j)) = h(i, j)for all i, j ∈ n.Here a < b means that α < β for all α ∈ a, β ∈ b and a(i) denotesthe ith element of a with respe
t the natural ordering.We will prove the Main Theorem in four stages as follows:Stage I: we de�ne a standard "square bra
ket" 
oloring f on ω1,Stage II: using the above 
oloring f , we de�ne a map g : ω<ω

1 → ω1with strong properties reminis
ent of square bra
ket 
olor-ings1,Stage III: we 
onstru
t a map c0 : [ω2]
2 → ω1 whi
h has the universalproperties of our Main Theorem with ω1-many 
olors and
onstant fun
tions h2,Stage IV: we modify c0 in two smaller, independent steps to get a
oloring c : [ω2]

2 → ω2 satisfying the requirements of theMain Theorem.2010 Mathemati
s Subje
t Classi�
ation. 03E02.Key words and phrases. 
oloring, square bra
ket.1
Pr6-type 
oloring in Shelah's notation2
Pr1-type 
olorings in Shelah's notation1



2 NOTES BY DÁNIEL T. SOUKUPIn the proofs, the reader will �nd the de�nition of the 
orresponding
oloring in the �rst paragraph; this makes it possible to get a sense ofthe idea while not spending mu
h time 
he
king the details.Finally, it is not our goal to show the importan
e of the Main The-orem however we mention two appli
ation.Shelah's original motivation was to prove that there are two ℵ2-
hain 
ondition posets P0, P1 (i.e. no anti-
hains of size ℵ2 in Pi) withthe produ
t 
ontaining an anti-
hain of size ℵ2. Re
all that the sameproblem for ℵ1-
hain 
ondition is unde
idable in ZFC [8℄. De�ne
Pi = {p ∈ [ω2]

ω : c”[p]2 = {i}}with c from the Main Theorem and i ∈ 2. Then P0, P1 witnesses theabove fa
t.The se
ond appli
ation is to topology; a signi�
ant portion of settheoreti
 topology in the 20th 
entury revolved around the problemof S-and L-spa
es [3℄, i.e. determining the 
onne
tion between regularhereditarily separable (HS) and hereditarily Lindelöf spa
es (HL). Itwas soon realized that there are many models of ZFC where theseproperties do not imply ea
h other i.e. the existen
e of S-spa
es andL-spa
es. The resear
h 
ulminated in two deep results: S. Todor
evi
proved that PFA implies that every HS spa
e must be HL [5℄ (ni
elyworked out at [2℄) and J. Moore proved that there is, in ZFC, an HLspa
e whi
h is not HS [1℄.Naturally, one 
an ask the same question for higher 
ardinals thusde�ning the 
lass of κ-HL and κ-HS spa
es. The 
oloring of MainTheorem provides us ω2-HL spa
es whi
h are not ω2-HS and vi
a versa:Theorem 1.1. There are dense subsets X, Y ⊆ 2ω2 su
h that X is rightseparated in order type ω2 and has density ω1 while Y is left separatedin order type ω2 and has Lindelöf-degree ω1.It is an intriguing open problem whether there are 
ompa
t spa
eswith the above properties. Stage IOur �rst theorem is the now 
lassi
al result of S. Todor
evi
 [6℄:Theorem 1.2. There is f : [ω1]
2 → ω1 su
h that for every n ∈ ω and

A = {τγ : γ ∈ ω1} ⊆ ωn
1 with pairwise disjoint range and every ξ ∈ ω1there is ζ < γ < ω1 su
h that

f(τζ(i), τγ(i)) = ξfor all i < n.



HITCHHIKER'S GUIDE TO COLORING PAIRS OF ℵ2 3We will (lo
ally) refer to the above situation as realizing the 
olor ξ.This theorem is usually stated for pairwise disjoint �nite sets {τγ :
γ ∈ ω1} rather than �nite sequen
es with disjoint range. Also, thereader �rst en
ountering this argument is en
ouraged to work out the
n = 1 
ase only, i.e. where A is simply an un
ountable subset of ω1.Proof. Note that it su�
es to 
onstru
t f0 : [ω1]

2 → ω1 su
h that theset of ξ < ω1 realized by the 
oloring f0 
ontains a 
lub. Indeed, ifthe map ξ 7→ ξ∗ takes ea
h value stationary often then the 
oloring
f(α, β) = f0(α, β)

∗ realizes all 
olors.Now, pi
k a 1-1 sequen
e of reals R = {rα : α < ω1} ⊆ 2ω and let
∆(α, β) = min{n ∈ ω : rα(n) 6= rβ(n)}for α < β < ω1. Also, �x a sequen
e eα : α → ω of 1-1 maps. Let

f0(α, β) = min
(

(e−1
β (∆(α, β)) ∪ {β}) \ α

)for α < β < ω1.We prove that f0 works for 
lub many 
olors ξ ∈ ω1; indeed, weprove that if ξ = M ∩ ω1 for some 
ountable elementary submodel of
H(ℵ2) with ω1, R, (eα)α∈ω1

... ∈ M then we 
an realize the 
olor ξ.Fix M as above and let ξ = M ∩ ω1; pi
k any τγ su
h that b =
ran τγ ⊆ ω1 \ ξ. Let m = max{eβ(ξ) : β ∈ b}+ 1 and 
onsider the set

B = {ζ < ω1 : ∀i < n : rτζ(i) ↾ m = rτγ (i) ↾ m}.It should be 
lear that B ∈ M and γ ∈ B whi
h implies that |B| = ω1.Let
S = {s ∈ (2<ω)n : ∀i < n : si = rτγ(i) ↾ (|si| − 1)⌢(1− rτγ(i)(|si|))}and let Bs = {ζ ∈ B : (rτζ(i) ↾ |si|)i<n = s} for s ∈ S. Note that an

s ∈ S simply de�nes the pla
e where the sequen
e of reals (rτζ(i))i<n�rst di�ers from (rτγ(i))i<n.Then B \ {γ} = ∪{Bs : s ∈ S} thus there is s ∈ S su
h that
|Bs| = ω1. Note that the value of (∆(τζ(i), τγ(i)))i<n ∈ (ω \ m)n is
onstant if ζ runs over Bs. Call this sequen
e (mi)i<n and let

F = ∪{e−1
τγ (i)

(mi) : i < n}.Note that F ∩ξ is a �nite set in M and Bs ∈ M is un
ountable thus we
an pi
k ζ ∈ Bs su
h that ran τζ ⊆ ω1 \ (maxF +1). It is now straight-forward to 
he
k that the above 
hoi
es guarantee f0(τζ(i), τγ(i)) = ξfor all i < n. �



4 NOTES BY DÁNIEL T. SOUKUPStage IIThe next somewhat te
hni
al result will play a key role in de�ningthe �nal 
olorings; although at this point, it is very far from trivial tosee how we will utilize this parti
ular map to de�ne a 
oloring on pairsof ω2.Theorem 1.3. There is g : ω<ω
1 → ω1 su
h that for every {τγ : γ ∈

ω1} ⊆ ω<ω
1 with γ ∈ ran(τγ) and every ξ ∈ ω1 there is γ < δ < ω1 su
hthat

g(σ⌢ϑ) = ξfor all σ ⊆ τγ, ϑ ⊆ τδ with γ ∈ ran(σ) and δ ∈ ran(ϑ).Proof. Pi
k a 1-1 sequen
e of reals R = {rα : α < ω1} ⊆ 2ω and let
∆(τ) = max{∆(rτ(i), rτ(j)) : i, j < n, τ(i) 6= τ(j)}for any non 
onstant τ ∈ ω<ω

1 , i.e. ∆ �nds the minimal distan
e ap-pearing in the set {rτ(i) : i < n}. In parti
ular, the reals {rτ(i) : i < |τ |}already di�er restri
ted to ∆(τ) + 1. We �x a 
oloring f as de�ned inStage I and let
g(τ) = f(τ(i), τ(j))where (i, j) = min{(p, q) ∈ |τ |2 : ∆(τ) = ∆(rτ(p), rτ(q))} and τ ∈ ω<ω

1is non 
onstant; otherwise g(τ) = 0 for 
onstant τ ∈ ω<ω
1 .We prove now that g works; pi
k a set {τγ : γ ∈ ω1} ⊆ ω<ω

1 as aboveand note that we 
an suppose that the sequen
es are non 
onstant.Otherwise, τγ is 
onstant γ and g(σ⌢ϑ) = f(γ, δ) for all σ ⊆ τγ , ϑ ⊆ τδwith γ ∈ ran(σ) and δ ∈ ran(ϑ). Thus ea
h 
olor ξ ∈ ω1 is realized bythe 
hoi
e of f .Now, we 
an thin out the sequen
e {τγ : γ ∈ ω1} so that there are
k, l,m ∈ ω and I ∈ [ω1]

ω1 :(i) |τγ| = l and ∆(τγ) = m for all γ ∈ I,(ii) (rτγ(i) ↾ m+ 1)i<l is 
onstant in γ ∈ I,(iii) {ran τγ : γ ∈ I} is a ∆-system with root c,(iv) τγ(k) = γ for all γ ∈ I and(v) ∆(rτγ(i), rτδ(i)) > m for all γ < δ ∈ I and i < l,(vi) τγ(i) = τγ(j) i� τζ(i) = τζ(j) for all γ < ζ ∈ I and i < l.Fix an arbitrary 
olor ξ ∈ ω1 whi
h we wish to realize; by the propertiesof f , we 
an �nd γ < δ ∈ I su
h that
f(τγ(i), τδ(i)) = ξfor all i < l and τγ(i) ∈ ran τγ \ c. We wish to show that γ, δ works for

g so �x σ ⊆ τγ , ϑ ⊆ τδ with γ ∈ ran(σ) and δ ∈ ran(ϑ). Note that γ



HITCHHIKER'S GUIDE TO COLORING PAIRS OF ℵ2 5and δ share the same position in ran τγ \ c and ran τδ \ c by (iv) thus
∆(γ, δ) > m by (v). Hen
e ∆(σ⌢ϑ) > m. Let g(σ⌢ϑ) = f(τ(i), τ(j))where (i, j) is the pair pi
ked by the de�nition of g. Let ζ = σ⌢ϑand note that ζ(i) and ζ(j) 
annot be both in ran τγ or ran τδ by (i).Also, i and j must share the same position in the running part of the
∆-system; otherwise (ii) implies that rζ(i) and rζ(j) already di�er below
m whi
h 
ontradi
ts ∆(ζ) = ∆(rζ(i), rζ(j)) > m . Hen
e, there is n < lsu
h that τγ(n) = ζ(i) and τδ(n) = ζ(j) (or vi
a versa τγ(n) = ζ(j)and τδ(n) = ζ(i)) and

g(ζ) = f(τγ(n), τδ(n)) = ξ.

�Stage IIIBefore de�ning the 
oloring of this stage, we need some further no-tions.De�nition 1.4. A C-sequen
e on ω2 is a sequen
e {Cα : α ∈ ω2} su
hthat for all α ∈ ω2:(1) Cα is a 
losed unbounded subset of α with order type equal tothe 
o�nality of α,(2) if ζ ∈ Cα is a su

essor element of Cα then ζ is a su

essorordinal.We �x a C-sequen
e {Cα : α ∈ ω2} for the rest of the se
tion.The minimal walk (along the C-sequen
e) from β to α (where α <

β < ω2) is a �nite de
reasing sequen
e β = β0, β1, ..., βn = α de�nedre
ursively by
βi+1 = minCβi

\ αprovided βi 6= α.The set {β0...βn} is 
alled the upper tra
e of the walk and is denotedby Tr(α, β). Furthermore, let
λ(α, β) = max{max(Cβi

∩ α) : βi ∈ Tr(α, β) \ {α}}for α < β < ω2. Note that λ(α, β) < α andObservation 1.5. For every α < β < γ < ω2 su
h that λ(β, γ) < αthe minimal walk from γ to β is an initial segment of the walk from γto α.We are now ready to de�ne the 
oloring of this stage:



6 NOTES BY DÁNIEL T. SOUKUPTheorem 1.6. There is a c0 : [ω2]
2 → ω1 su
h that for every n ∈ ω,for every pairwise disjoint A ∈ [[ω2]

n]ω2 and every ξ < ω1 there is
a < b ∈ A su
h that

c0(a(i), b(j)) = ξfor all i, j ∈ n.Proof. Let δ 7→ δ∗ map ω2 to ω1 su
h that
∆ξ = {δ ∈ Sω2

ω1
: δ∗ = ξ} is stationaryfor all ξ ∈ ω1 where Sω2

ω1
= {δ ∈ ω2 : cf(δ) = ω1}. Now 
ompose thefun
tion ∗ with the tra
e fun
tion to obtain
ρ∗ : [ω2]

2 → ω<ω
1that is

ρ∗(α, β) = (β∗
i )i<nwhere α < β < ω2 and (β∗

i )i<n is the walk from β to α. Finally,
onsider the map g : ω<ω
1 → ω1 
onstru
ted in Stage II and de�ne

c0 : [ω2]
2 → ω1 by

c0(α, β) = g(ρ∗(α, β))for α < β < ω2.We 
laim that c0 works! Fix n ∈ ω and pairwise disjoint A ∈
[[ω2]

n]ω2 . We wish to set up a situation from ℵ1-many elements of
A so that the minimal walks between these element meet ea
h ∆ξ in ani
e way; in parti
ular, the sequen
es de�ned by ρ∗ will 
ontain everyelement of ω1.More pre
isely, let

C = {δ ∈ ω2 : ∀γ < δ∃a ∈ A : a ⊂ (γ, δ)}and note that C is a 
lub. Fix bδ ∈ A su
h that δ < bδ for all δ ∈ ω2.Claim 1.7. There is λ0 ∈ ω2 and stationary Σξ ⊂ ∆ξ ∩ C for ξ ∈ ω1su
h that
λ(δ, β) < λ0for all ξ ∈ ω1, δ ∈ Σξ and β ∈ bδ.Proof. Re
all that λ(δ, β) < δ if δ ∈ Sω2

ω1
and δ < β < ω2 and that

∆ξ ∩ C is stationary for ea
h ξ ∈ ω1; thus the 
laim follows from thePressing Down Lemma. �



HITCHHIKER'S GUIDE TO COLORING PAIRS OF ℵ2 7Fix ε ∈ Sω2

ω1
∩
⋂

{limΣξ : ξ < ω1}\λ0 and δξ ∈ Σξ \ (ε+1) for ξ ∈ ω1.Pi
k a 
o�nal sequen
e (γξ)ξ<ω1
in ε su
h that γξ ∈ Σξ and

⋃

{λ(ε, β) : β ∈ ∪η<ξbδη} < γξfor all ξ < ω1.Pi
k aξ ∈ A su
h that(i) sup{γη : η < ξ} < aξ < γξ,(ii) λ(γξ, ε) < aξ,(iii) ⋃

{λ(ε, β) : β ∈ ∪η<ξbδη} < aξfor ξ < ω1. We made the above 
hoi
es in order to ensure that
ρ∗(α, ε) = ρ∗(γξ, ε)

⌢ρ∗(α, γξ), (1.1)
ρ∗(ε, β) = ρ∗(δη, β)

⌢ρ∗(ε, δη), (1.2)and
ρ∗(α, β) = ρ∗(ε, β)

⌢ρ∗(α, ε) (1.3)if η < ξ < ω1, α ∈ aξ and β ∈ bδη . Most importantly, η ∈ ran ρ∗(ε, β)and ξ ∈ ran ρ∗(α, ε)!Now, let
τξ =

(

ρ∗(α, ε)
)

α∈aξ

⌢
(

ρ∗(ε, β)
)

β∈bδξfor ξ ∈ ω1. Note that ξ ∈ ran τξFix ν ∈ ω1 and to �nish the proof we will �nd η < ξ < ω1 su
h that
c0(α, β) = νfor all α ∈ aξ and β ∈ bδη . By the 
hoi
e of g, we know that there is

η < ξ < ω1 su
h that
g(σ⌢ϑ) = νfor all σ ⊆ τη, ϑ ⊆ τξ with η ∈ ran(σ) and ξ ∈ ran(ϑ). Thus, if α ∈ aξand β ∈ bδη then

c0(α, β) = g(ρ∗(α, β)) = g(ρ∗(ε, β)
⌢ρ∗(α, ε));�nally observing that η ∈ ran ρ∗(ε, β) and ξ ∈ ran ρ∗(ε, α) implies that

c0(α, β) = ν.

�



8 NOTES BY DÁNIEL T. SOUKUPStage IVIn this �nal stage, we improve the 
oloring of Stage III in two steps.The �rst modi�
ation will make it possible to realize arbitrary pat-terns and the se
ond modi�
ation will yield the 
oloring of our MainTheorem.Theorem 1.8. There is a c1 : [ω2]
2 → ω1 su
h that for every n ∈ ω,for every pairwise disjoint A ∈ [[ω2]
n]ω2 and every h : n×n → ω1 thereis a < b ∈ A su
h that

c1(a(i), b(j)) = h(i, j)for all i, j ∈ n.Proof. Fix a 1-1 sequen
e {tα : α < ω2} ⊆ 2ω1 and let
G = {h : 2d × 2d → ω1 : d ∈ [ω1]

<ω}.Fix an arbitrary bije
tion π : ω1 → G and de�ne c1 : [ω2]
2 → ω1 by

c1(α, β) = h
(

tα ↾ d, tβ ↾ d
)where h = π(c0(α, β)) and domh = 2d × 2d .We wish to prove that c1 works so �x n ∈ ω, pairwise disjoint A ∈

[[ω2]
n]ω2 and h : n×n → ω1. Note that there is a B ∈ [A]ω2 , d ∈ [ω1]

<ωand {si : i < n} ∈ [2d]n su
h that
tb(i) ↾ d = sifor all b ∈ B and i < n. Now de�ne h̄ : 2d × 2d → ω1 so that

h̄(si, sj) = h(i, j) for all i, j < n; note that si 6= sj if i 6= j so thede�nition is valid.By the de�nition of c0, there is a < b ∈ B su
h that
π(c0(a(i), b(j))) = h̄for all i, j < n. Hen
e

c1(a(i), b(j)) = h̄(ta(i) ↾ d, tb(j) ↾ d) = h̄(si, sj) = h(i, j)for i, j < n. �Main Theorem. There is a c : [ω2]
2 → ω2 su
h that for every n ∈ ω,for every pairwise disjoint A ∈ [[ω2]

n]ω2 and every h : n×n → ω2 thereis a < b ∈ A su
h that
c(a(i), b(j)) = h(i, j)for all i, j ∈ n.



HITCHHIKER'S GUIDE TO COLORING PAIRS OF ℵ2 9Proof. Fix a bije
tion eα : α → ω1 for ea
h α < ω2 and let c1 be as inTheorem 1.8. De�ne c : [ω2]
2 → ω2 by

c(α, β) = e−1
β (c1(α, β))for all α < β ∈ ω2.We wish to prove that c works so �x n ∈ ω, pairwise disjoint A ∈

[[ω2]
n]ω2 and h : n × n → ω2. Let H = ranh and note that there is

B ∈ [A]ω2, Ji ∈ [ω1]
|H| and ēi : H → ω1 for i < n su
h that

ēi = eb(i) ↾ H : H → Jifor all b ∈ B and i < n.Now let h̄ : n× n → ω1 so that
h̄(i, j) = ēj(h(i, j))for i, j < n. By the de�nition of c1 we 
an �nd a < b ∈ B su
h that

c1(a(i), b(j)) = h̄(i, j)for i, j < n. Thus
c(a(i), b(j)) = e−1

b(j)(h̄(i, j)) = ē−1
j (h̄(i, j)) = h(i, j)for all i, j < n. �Referen
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