Sum sets and wild colourings

Dániel T. Soukup

http://renyi.hu/~dsoukup/

UNIVERSITY OF CALGARY

The philosophy of Ramsey theory

> "There are numerous theorem in mathematics which assert, crudely speaking, that every system of a certain class possesses a large subsystem with a higher degree of organization than the original system."

The philosophy of Ramsey theory

"There are numerous theorem in mathematics which assert, crudely speaking, that every system of a certain class possesses a large subsystem with a higher degree of organization than the original system."

Outline

Goal: present a short introduction to Ramsey theory and a related additive problem.

- examples of Ramsey type theorems and certain limitations,
- tumning to additive Ramsey theory,
- recent results and open problems.

Joint work with W. Weiss (U of T) and Z. Vidnyánszky (Rényi).

Outline

Goal: present a short introduction to Ramsey theory and a related additive problem.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

Joint work with W. Weiss (U of T) and Z. Vidnyánszky (Rényi).

Outline

Goal: present a short introduction to Ramsey theory and a related additive problem.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

Joint work with W. Weiss (U of T) and Z. Vidnyánszky (Rényi).

Outline

Goal: present a short introduction to Ramsey theory and a related additive problem.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

Joint work with W. Weiss (U of T) and Z. Vidnyánszky (Rényi).

Outline

Goal: present a short introduction to Ramsey theory and a related additive problem.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

Joint work with W. Weiss (U of T) and Z. Vidnyánszky (Rényi).

Outline

Goal: present a short introduction to Ramsey theory and a related additive problem.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

Joint work with W. Weiss (U of T) and Z. Vidnyánszky (Rényi).

Pigeon hole principles

Pigeon hole principles: if a large set is divided into a small number of pieces then one piece is large again.

> [van der Waerden 1927] For any colouring of \mathbb{N} with finitely many colours, one can find arbitrary long (finite) monochromatic aritmethic progressions.

Pigeon hole principles

Pigeon hole principles: if a large set is divided into a small number of pieces then one piece is large again.
> [van der Waerden 1927] For any colouring of \mathbb{N} with finitely many colours, one can find arbitrary long (finite) monochromatic aritmethic progressions.

Pigeon hole principles

Pigeon hole principles: if a large set is divided into a small number of pieces then one piece is large again.
[van der Waerden 1927] For any colouring of \mathbb{N} with finitely many colours, one can find arbitrary long (finite) monochromatic aritmethic progressions.

Various Ramsey type results

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.
> [Erdős, Szekeres 1935] For any $n \in \mathbb{N}$, there is an $f(n) \in \mathbb{N}$ so that any $f(n)$ points in \mathbb{R}^{2} in general position contain a convex n-gon.

- The happy ending problem: determine the smallest value of $f(n)$!
- [Klein] $f(4)=5$.

Various Ramsey type results

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.
[Erdős, Szekeres 1935] For any $n \in \mathbb{N}$, there is an $f(n) \in \mathbb{N}$ so that any $f(n)$ points in \mathbb{R}^{2} in general position contain a convex n-gon.

Various Ramsey type results

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.
[Erdős, Szekeres 1935] For any $n \in \mathbb{N}$, there is an $f(n) \in \mathbb{N}$ so that any $f(n)$ points in \mathbb{R}^{2} in general position contain a convex n-gon.

- The happy ending problem: determine the smallest value of $f(n)$!
- [Klein] $f(4)=5$.

Various Ramsey type results

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.
[Erdős, Szekeres 1935] For any $n \in \mathbb{N}$, there is an $f(n) \in \mathbb{N}$ so that any $f(n)$ points in \mathbb{R}^{2} in general position contain a convex n-gon.

- The happy ending problem: determine the smallest value of $f(n)$!
- [Klein] $f(4)=5$.

Ramsey's theorem

[Ramsey 1928] For any colouring of the pairs of \mathbb{N} with finitely many colours, there is an infinite set $X \subseteq \mathbb{N}$ with all pairs coloured identically.

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis. . .

Ramsey's theorem

[Ramsey 1928] For any colouring of the pairs of \mathbb{N} with finitely many colours, there is an infinite set $X \subseteq \mathbb{N}$ with all pairs coloured identically.

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers.
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis.

Ramsey's theorem

[Ramsey 1928] For any colouring of the pairs of \mathbb{N} with finitely many colours, there is an infinite set $X \subseteq \mathbb{N}$ with all pairs coloured identically.

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers.
- Annlications in various fields: theoretical CS, general topology, number theory, harmonic analysis

Ramsey's theorem

[Ramsey 1928] For any colouring of the pairs of \mathbb{N} with finitely many colours, there is an infinite set $X \subseteq \mathbb{N}$ with all pairs coloured identically.

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis.

Ramsey's theorem

[Ramsey 1928] For any colouring of the pairs of \mathbb{N} with finitely many colours, there is an infinite set $X \subseteq \mathbb{N}$ with all pairs coloured identically.

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers. . .
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis...

Certain limitations

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?
[Sierpinski, 1933] There is a colouring $f:[\mathbb{R}]^{2} \rightarrow\{0,1\}$ such that $f \upharpoonright[X]^{2}$ is not constant whenever $X \subseteq \mathbb{R}$ is uncountable.

[Erdős 1942] For every number n there is a $R(n)$ so that if $|X|=R(n)$ and $f:[X]^{2} \rightarrow\{0,1\}$ then there will be a monochromatic $Y \subseteq X$ of size n.

- true for n infinite as well!
- if $n \in \mathbb{N}$ then $R^{\prime}(n) \leq\binom{2 n-2)}{n-1}$

Certain limitations

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?
[Sierpinski, 1933] There is a colouring $f:[\mathbb{R}]^{2} \rightarrow\{0,1\}$ such that $f \upharpoonright[X]^{2}$ is not constant whenever $X \subseteq \mathbb{R}$ is uncountable.

[Erdős 1942] For every number n there is a $R(n)$ so that if $|X|=R(n)$ and $f:[X]^{2} \rightarrow\{0,1\}$ then there will be a monochromatic $Y \subseteq X$ of size n.

- true for n infinite as well!
- if $n \in \mathbb{N}$ then $R(n) \leq\binom{ 2 n-2}{n-1}$

Certain limitations

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f:[\mathbb{R}]^{2} \rightarrow\{0,1\}$ such that $f \upharpoonright[X]^{2}$ is not constant whenever $X \subseteq \mathbb{R}$ is uncountable.

[Erdős 1942] For every number n there is a $R(n)$ so that if $|X|=R(n)$ and $f:[X]^{2} \rightarrow\{0,1\}$ then there will be a monochromatic $Y \subseteq X$ of size n.

- true for n infinite as well!
- if $n \in \mathbb{N}$ then $R(n) \leq\binom{ 2 n-2}{n-1}$

Certain limitations

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f:[\mathbb{R}]^{2} \rightarrow\{0,1\}$ such that $f \upharpoonright[X]^{2}$ is not constant whenever $X \subseteq \mathbb{R}$ is uncountable.

[Erdős 1942] For every number n there is a $R(n)$ so that if $|X|=R(n)$ and $f:[X]^{2} \rightarrow\{0,1\}$ then there will be a monochromatic $Y \subseteq X$ of size n.

- true for n infinite as well!

Certain limitations

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f:[\mathbb{R}]^{2} \rightarrow\{0,1\}$ such that $f \upharpoonright[X]^{2}$ is not constant whenever $X \subseteq \mathbb{R}$ is uncountable.

[Erdős 1942] For every number n there is a $R(n)$ so that if $|X|=R(n)$ and $f:[X]^{2} \rightarrow\{0,1\}$ then there will be a monochromatic $Y \subseteq X$ of size n.

- true for n infinite as well!
- if $n \in \mathbb{N}$ then $R(n) \leq\binom{ 2 n-2}{n-1}$.

Additive Ramsey-type results

The main theme: given a colouring of an additive structure ($\mathbb{N}, \mathbb{Q}, \mathbb{R} \ldots$), find a large set with all sums coloured identically!
 If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x+y: x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!
[Hindmann 1974] For any colouring of \mathbb{N} with finitely many colours, one can find an infinite $X \subseteq \mathbb{N}$ with all finite sums coloured identically.

Additive Ramsey-type results

The main theme: given a colouring of an additive structure $(\mathbb{N}, \mathbb{Q}, \mathbb{R} \ldots)$, find a large set with all sums coloured identically!

> If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x+y: x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!

[Hindmann 1974] For any colouring of \mathbb{N} with finitely many colours, one can find an infinite $X \subseteq \mathbb{N}$ with all finite sums coloured identically.

Additive Ramsey-type results

The main theme: given a colouring of an additive structure $(\mathbb{N}, \mathbb{Q}, \mathbb{R} \ldots)$, find a large set with all sums coloured identically!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x+y: x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!
[Hindmann 1974] For any colouring of \mathbb{N} with finitely many colours, one can find an infinite $X \subseteq \mathbb{N}$ with all finite sums coloured

Additive Ramsey-type results

The main theme: given a colouring of an additive structure $(\mathbb{N}, \mathbb{Q}, \mathbb{R} \ldots)$, find a large set with all sums coloured identically!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x+y: x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!
> [Hindmann 1974] For any colouring of \mathbb{N} with finitely many colours, one can find an infinite $X \subseteq \mathbb{N}$ with all finite sums coloured

Additive Ramsey-type results

The main theme: given a colouring of an additive structure $(\mathbb{N}, \mathbb{Q}, \mathbb{R} \ldots)$, find a large set with all sums coloured identically!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x+y: x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!
[Hindmann 1974] For any colouring of \mathbb{N} with finitely many colours, one can find an infinite $X \subseteq \mathbb{N}$ with all finite sums coloured identically.

Sums with repetitions

Can we allow repetitions in the sums in the previous results?

If \mathbb{N} is coloured with finitely many colours then there are arbitrary large finite sets $X \subseteq \mathbb{N}$ so that $X+X$ is monochromatic.

- let $a, a+d, a+2 d, \ldots a+2 n d$ be a monochromatic arithmetic progression,
- if $x_{k}=\frac{a}{2}+k d$ then $x_{k}+x_{I}=a+(k+I) d$ is in the arithmethic progression for any $k, l<n$.

Sums with repetitions

Can we allow repetitions in the sums in the previous results?

If \mathbb{N} is coloured with finitely many colours then there are arbitrary large finite sets $X \subseteq \mathbb{N}$ so that $X+X$ is monochromatic.

- let $a, a+d, a+2 d, \ldots a+2 n d$ be a monochromatic arithmetic progression,
- if $x_{k}=\frac{a}{2}+k d$ then $x_{k}+x_{I}=a+(k+I) d$ is in the arithmethic progression for any $k, l<n$.

Sums with repetitions

Can we allow repetitions in the sums in the previous results?

If \mathbb{N} is coloured with finitely many colours then there are arbitrary large finite sets $X \subseteq \mathbb{N}$ so that $X+X$ is monochromatic.

- let $a, a+d, a+2 d, \ldots a+2 n d$ be a monochromatic arithmetic progression,
- if $x_{k}=\frac{a}{2}+k d$ then $x_{k}+x_{l}=a+(k+I) d$ is in the arithmethic progression for any $k, l<n$.

Sums with repetitions

Can we allow repetitions in the sums in the previous results?

If \mathbb{N} is coloured with finitely many colours then there are arbitrary large finite sets $X \subseteq \mathbb{N}$ so that $X+X$ is monochromatic.

- let $a, a+d, a+2 d, \ldots a+2 n d$ be a monochromatic arithmetic progression,
- if $x_{k}=\frac{a}{2}+k d$ then $x_{k}+x_{l}=a+(k+l) d$ is in the arithmethic progression for any $k, l<n$.

Our main motivation

Can we find an infinite X with $X+X$ is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f: \mathbb{N} \rightarrow 2$ such that $X+X$ is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using 3 colours by Hindman.

Our main motivation

Can we find an infinite X with $X+X$ is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f: \mathbb{N} \rightarrow 2$ such that $X+X$ is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using 3 colours by Hindman.

Our main motivation

Can we find an infinite X with $X+X$ is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f: \mathbb{N} \rightarrow 2$ such that $X+X$ is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using 3 colours by Hindman.

Our main motivation

Can we find an infinite X with $X+X$ is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f: \mathbb{N} \rightarrow 2$ such that $X+X$ is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using 3 colours by Hindman.

A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.
Proof: let $x \subseteq \mathbb{N}$ be infinite, note $f(2 y)=f(y)+2 \bmod 4$.

- We try to find $x, y \in X$ so that $f(x+y) \neq f(2 y)$;
- pick $x \ll y \in X$ such that $\log _{\sqrt{2}}(y+x)-\log _{\sqrt{2}}(y)<1$,
- so $f(2 y)=f(y)+2 \neq f(y) \pm 1=f(x+y)$.

A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor(\bmod 4)
$$

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

```
Proof: let }X\subseteq\mathbb{N}\mathrm{ be infinite, note f(2y)=f(y)+2 mod 4
    - We try to find }x,y\inX\mathrm{ so that }f(x+y)\not=f(2y)
    - nick}x<<y\inX\mathrm{ such that }\mp@subsup{\operatorname{log}}{\sqrt{}{2}}{}(y+x)-\mp@subsup{\operatorname{log}}{\sqrt{}{2}}{}(y)<
0 so }f(2y)=f(y)+2\not=f(y)\pm1=f(x+y)
```


A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor(\bmod 4) .
$$

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.
Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2 y)=f(y)+2 \bmod 4$.

- We try to find $x, y \in X$ so that $f(x+y) \neq f(2 y)$;
- pick $x \ll y \in X$ such that $\log _{\sqrt{2}}(y+x)-\log _{\sqrt{2}}(y)<1$
- so $f(2 y)=f(y)+2 \neq f(y) \pm 1=f(x+y)$.

A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor(\bmod 4)
$$

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.
Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2 y)=f(y)+2 \bmod 4$.

- We try to find $x, y \in X$ so that $f(x+y) \neq f(2 y)$;
- pick $x \ll y \in X$ such that $\log _{\sqrt{2}}(y+x)-\log _{\sqrt{2}}(y)<1$
- so $f(2 y)=f(y)+2 \neq f(y) \pm 1=f(x+y)$.

A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor(\bmod 4)
$$

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.
Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2 y)=f(y)+2 \bmod 4$.

- We try to find $x, y \in X$ so that $f(x+y) \neq f(2 y)$;
- pick $x \ll y \in X$ such that $\log _{\sqrt{2}}(y+x)-\log _{\sqrt{2}}(y)<1$,
- so $f(2 y)=f(y)+2 \neq f(y) \pm 1=f(x+y)$.

A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor(\bmod 4)
$$

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.
Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2 y)=f(y)+2 \bmod 4$.

- We try to find $x, y \in X$ so that $f(x+y) \neq f(2 y)$;
- pick $x \ll y \in X$ such that $\log _{\sqrt{2}}(y+x)-\log _{\sqrt{2}}(y)<1$,

$$
\Rightarrow\left|\left\lfloor\log _{\sqrt{2}}(y+x)\right\rfloor-\left\lfloor\log _{\sqrt{2}}(y)\right\rfloor\right| \leq 1, \text { so } f(y+x)=f(y) \pm 1
$$

A 4-colouring for the Owings problem

[Hindmann] Let $f: \mathbb{N} \rightarrow 4$ defined as

$$
f(x)=\left\lfloor\log _{\sqrt{2}}(x)\right\rfloor(\bmod 4)
$$

Then $X+X$ is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.
Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2 y)=f(y)+2 \bmod 4$.

- We try to find $x, y \in X$ so that $f(x+y) \neq f(2 y)$;
- pick $x \ll y \in X$ such that $\log _{\sqrt{2}}(y+x)-\log _{\sqrt{2}}(y)<1$, $\Rightarrow\left|\left\lfloor\log _{\sqrt{2}}(y+x)\right\rfloor-\left\lfloor\log _{\sqrt{2}}(y)\right\rfloor\right| \leq 1$, so $f(y+x)=f(y) \pm 1$,
- so $f(2 y)=f(y)+2 \neq f(y) \pm 1=f(x+y)$.

Additive Ramsey type results on \mathbb{R}

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R}. Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?
['ILS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

Additive Ramsey type results on \mathbb{R}

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R}. Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

Additive Ramsey type results on \mathbb{R}

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R}. Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?
[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then 'here is a sei \times or size continuum such that $X+X$ is monochromatic.

Additive Ramsey type results on \mathbb{R}

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R}. Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?
[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that $X+X$ is monochromatic.

Additive Ramsey type results on \mathbb{R}

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R}.
Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?
[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that $X+X$ is monochromatic.

Additive Ramsey type results on \mathbb{R}

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R}.
Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?
[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that $X+X$ is monochromatic.

Additive Ramsey type results on \mathbb{R}

What if there are no analytic assumptions on the colouring?

[SWZ, Komjáth] There is a colouring $f: \mathbb{R} \rightarrow 2$ such that $f \upharpoonright\{x+y: x \neq y \in X\}$ is
 not constant for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in).

Additive Ramsey type results on \mathbb{R}

What if there are no analytic assumptions on the colouring?
[SWZ, Komjáth] There is a colouring $f: \mathbb{R} \rightarrow 2$ such that $f \upharpoonright\{x+y: x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in)

Additive Ramsey type results on \mathbb{R}

What if there are no analytic assumptions on the colouring?
[SWZ, Komjáth] There is a colouring $f: \mathbb{R} \rightarrow 2$ such that $f \upharpoonright\{x+y: x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in)

Additive Ramsey type results on \mathbb{R}

What if there are no analytic assumptions on the colouring?
[SWZ, Komjáth] There is a colouring $f: \mathbb{R} \rightarrow 2$ such that $f \upharpoonright\{x+y: x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in).

Sums with repetitions

How about finding an infinite $X \subseteq \mathbb{R}$ with $X+X$ monochromatic?

[HLS] The CH implies that there is a colouring $f: \mathbb{R} \rightarrow 288$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\left\{x_{i}: i \in I\right\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

Sums with repetitions

How about finding an infinite $X \subseteq \mathbb{R}$ with $X+X$ monochromatic?
[HLS] The CH implies that there is a colouring $f: \mathbb{R} \rightarrow 288$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\left\{x_{i}: i \in I\right\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

Sums with repetitions

How about finding an infinite $X \subseteq \mathbb{R}$ with $X+X$ monochromatic?
[HLS] The CH implies that there is a colouring $f: \mathbb{R} \rightarrow 288$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\left\{x_{i}: i \in /\right\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

Sums with repetitions

How about finding an infinite $X \subseteq \mathbb{R}$ with $X+X$ monochromatic?
[HLS] The CH implies that there is a colouring $f: \mathbb{R} \rightarrow 288$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\left\{x_{i}: i \in I\right\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$
x=\sum_{i \in F} c_{i} x_{i} \text { with } c_{i} \in \mathbb{Q}, F \subseteq I \text { finite. }
$$

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

Sums with repetitions

How about finding an infinite $X \subseteq \mathbb{R}$ with $X+X$ monochromatic?
[HLS] The CH implies that there is a colouring $f: \mathbb{R} \rightarrow 288$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\left\{x_{i}: i \in I\right\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$
x=\sum_{i \in F} c_{i} x_{i} \text { with } c_{i} \in \mathbb{Q}, F \subseteq I \text { finite. }
$$

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

. . . and why on earth 288 ?

From [Hindman, Leader, Strauss]:

e there is $f:(\mathbb{O} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;

- For any $m \in \mathbb{N}$, there is $f: \bigoplus_{m} \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \bigoplus_{m} \mathbb{Q}$;
- Step up lemma: if $N \in \mathbb{N}$ fixed and $\bigoplus_{\kappa} \mathbb{Q}$ has a good N-colouring for every $\kappa<\lambda$ then $\bigoplus_{\lambda} \mathbb{Q}$ has a good $2 N$-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

. . . and why on earth 288?

From [Hindman, Leader, Strauss]:

- there is $f: \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;
o For any $m \in \mathbb{N}$, there is $f: \circlearrowleft m Q 72$ such that $f \| X+X$ is not constant for any infinite $X \subseteq \bigoplus_{m} \mathbb{Q}$;
- Step up lemma: if $N \in \mathbb{N}$ fixed and $\bigoplus_{\kappa} \mathbb{Q}$ has a good N-colouring for every $\kappa<\lambda$ then $\bigoplus_{\lambda} \mathbb{Q}$ has a good $2 N$-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

. . . and why on earth 288?

From [Hindman, Leader, Strauss]:

- there is $f: \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;
- For any $m \in \mathbb{N}$, there is $f: \Theta_{m} \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \bigoplus_{m} \mathbb{Q}$;
- Sten un lemma: if $N \in \mathbb{N}$ fixed and $\mathscr{Q} \mathbb{Q}$ has a good N-colouring for every $\kappa<\lambda$ then $\bigoplus_{\lambda} \mathbb{Q}$ has a good $2 N$-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up..
. . . and why on earth 288?

From [Hindman, Leader, Strauss]:

- there is $f: \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;
- For any $m \in \mathbb{N}$, there is $f: \bigoplus_{m} \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \bigoplus_{m} \mathbb{Q}$;
- Step up lemma: if $N \in \mathbb{N}$ fixed and $\bigoplus_{\kappa} \mathbb{Q}$ has a good N-colouring for every $\kappa<\lambda$ then $\bigoplus_{\lambda} \mathbb{Q}$ has a good $2 N$-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up.

. . . and why on earth 288 ?

From [Hindman, Leader, Strauss]:

- there is $f: \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;
- For any $m \in \mathbb{N}$, there is $f: \bigoplus_{m} \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \bigoplus_{m} \mathbb{Q}$;
- Step up lemma: if $N \in \mathbb{N}$ fixed and $\bigoplus_{\kappa} \mathbb{Q}$ has a good N-colouring for every $\kappa<\lambda$ then $\bigoplus_{\lambda} \mathbb{Q}$ has a good $2 N$-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up.

and why on earth 288?

From [Hindman, Leader, Strauss]:

- there is $f: \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;
- For any $m \in \mathbb{N}$, there is $f: \bigoplus_{m} \mathbb{Q} \rightarrow 72$ such that $f \upharpoonright X+X$ is not constant for any infinite $X \subseteq \bigoplus_{m} \mathbb{Q}$;
- Step up lemma: if $N \in \mathbb{N}$ fixed and $\bigoplus_{\kappa} \mathbb{Q}$ has a good N-colouring for every $\kappa<\lambda$ then $\bigoplus_{\lambda} \mathbb{Q}$ has a good $2 N$-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

Final remarks

- [Leader-Russell] proved that if the direct sum is large enough then there is no finite colouring like before.

[SWV] For every finite r there is a $\kappa(r)$ so that if $f: \bigoplus_{\kappa(r)} \mathbb{N} \rightarrow r$ then there is an infinite X with $f \upharpoonright X+X$ constant.

- Still open if we can colour \mathbb{R} without the CH .

Final remarks

- [Leader-Russell] proved that if the direct sum is large enough then there is no finite colouring like before.

[SWV] For every finite r there is a $\kappa(r)$ so that if $f: \bigoplus_{\kappa(r)} \mathbb{N} \rightarrow r$ then there is an infinite X with $f \upharpoonright X+X$ constant.

- Still open if we can colour \mathbb{R} without the CH .

Final remarks

- [Leader-Russell] proved that if the direct sum is large enough then there is no finite colouring like before.
[SWV] For every finite r there is a $\kappa(r)$ so that if $f: \bigoplus_{\kappa(r)} \mathbb{N} \rightarrow r$ then there is an infinite X with $f \upharpoonright X+X$ constant.
- Still open if we can colour \mathbb{R} without the CH .

Final remarks

- [Leader-Russell] proved that if the direct sum is large enough then there is no finite colouring like before.
[SWV] For every finite r there is a $\kappa(r)$ so that if $f: \bigoplus_{\kappa(r)} \mathbb{N} \rightarrow r$ then there is an infinite X with $f \upharpoonright X+X$ constant.
- Still open if we can colour \mathbb{R} without the CH .

Famous open problems I

... the hard way of getting rich.

[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?
[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6 \ldots$

Famous open problems I

... the hard way of getting rich.
[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?

[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6$.

Famous open problems I

... the hard way of getting rich.
[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?

[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6$.

Famous open problems I

... the hard way of getting rich.
[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?
[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth, Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6$

Famous open problems I

the hard way of getting rich.
[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?
[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6 \ldots$

Famous open problems I

the hard way of getting rich.
[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?
[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6 \ldots$.

Famous open problems I

the hard way of getting rich.
[Erdős-Szekeres] $f(n)$ points in \mathbb{R}^{2} always contains a convex n-gon.

How large is $f(n)$?
[Graham \$1000] $f(n)=2^{n-2}+1$ points suffice.

- best upper bound is $\binom{2 n-5}{n-2}+5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6 \ldots$

Famous open problems II

... the hard way of getting rich.

[van der Waerden] If $1,2, \ldots W(n)$ are 2 -coloured then there is an n term monochromatic AP.

[Graham \$1000]

- the currently known best bound is $2^{2^{2^{2^{2^{n+9}}}}}$ by Gowers,
- the best lower bound is $1 /(n+1) \geq n 2^{n}$ for n prime Berlekamp.

Famous open problems II

... the hard way of getting rich.
[van der Waerden] If $1,2, \ldots W(n)$ are 2 -coloured then there is an n term monochromatic AP.

[Graham \$1000]

- the currently known best bound is $2^{2^{2^{2^{2}}}}$ by Gowers,
- the best lower bound is $W(n+1) \geq n 2^{n}$ for n prime Berlekamp.

Famous open problems II

... the hard way of getting rich.
[van der Waerden] If $1,2, \ldots W(n)$ are 2-coloured then there is an n term monochromatic AP.
[Graham \$1000] $W(n)<2^{n^{2}}$.

- the currently known best bound is $2^{2^{2^{2^{2}}}}$ by Gowers,
- the best lower bound is $W(n+1) \geq n 2^{n}$ for n prime Berlekamp.

Famous open problems II

the hard way of getting rich.
[van der Waerden] If $1,2, \ldots W(n)$ are 2 -coloured then there is an n term monochromatic AP.
[Graham \$1000] $W(n)<2^{n^{2}}$.

- the currently known best bound is $2^{2^{2^{2^{2^{n+9}}}}}$ by Gowers,
- the best lower bound is $W(n+1) \geq n 2^{n}$ for n prime Berlekamp.

Famous open problems II

the hard way of getting rich.
[van der Waerden] If $1,2, \ldots W(n)$ are 2 -coloured then there is an n term monochromatic AP.
[Graham \$1000] $W(n)<2^{n^{2}}$.

- the currently known best bound is $2^{2^{2^{2^{2^{n+9}}}}}$ by Gowers,
- the best lower bound is $W(n+1) \geq n 2^{n}$ for n prime Berlekamp.

Thank you for your attention.

Any questions?

