Sum sets and wild colourings

Dániel T. Soukup

http://renyi.hu/~dsoukup/

"There are numerous theorem in mathematics which assert, crudely speaking, that every system of a certain class possesses a large subsystem with a higher degree of organization than the original system."

L. Mirsky

"There are numerous theorem in mathematics which assert, crudely speaking, that every system of a certain class possesses a large subsystem with a higher degree of organization than the original system."

L. Mirsky

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

• examples of Ramsey type theorems and certain limitations,

- turning to additive Ramsey theory,
- recent results and open problems.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

- examples of Ramsey type theorems and certain limitations,
- turning to additive Ramsey theory,
- recent results and open problems.

Pigeon hole principles: if a large set is divided into a small number of pieces then one piece is large again.

[van der Waerden 1927] For any colouring of ℕ with finitely many colours, one can find arbitrary long (finite) monochromatic aritmethic progressions.

Pigeon hole principles: if a large set is divided into a small number of pieces then one piece is large again.

[van der Waerden 1927] For any colouring of ℕ with finitely many colours, one can find arbitrary long (finite) monochromatic aritmethic progressions.

Pigeon hole principles: if a large set is divided into a small number of pieces then one piece is large again.

[van der Waerden 1927] For any colouring of ℕ with finitely many colours, one can find arbitrary long (finite) monochromatic aritmethic progressions.

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.

- The happy ending problem: determine the smallest value of f(n)!
- [Klein] f(4) = 5.

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.

- The happy ending problem: determine the smallest value of f(n)!
- [Klein] f(4) = 5.

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.

- The happy ending problem: determine the smallest value of f(n)!
- [Klein] f(4) = 5.

Ramsey-type theorems can be though of as higher dimensional analogues of pigeon hole principles.

- The happy ending problem: determine the smallest value of f(n)!
- [Klein] f(4) = 5.

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of **structural extensions** follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis...

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of **structural extensions** follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis...

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of **structural extensions** follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis...

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis...

- Schur and Hilbert already published certain Ramsey-type results around the 1900s.
- A long list of structural extensions follow: Hindmann, Halpern-Lauchli, Hales-Jewitt, Gowers...
- Applications in various fields: theoretical CS, general topology, number theory, harmonic analysis...

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to \{0, 1\}$ such that $f \upharpoonright [X]^2$ is **not constant** whenever $X \subseteq \mathbb{R}$ is **uncountable**.

[Erdős 1942] For every number *n* there is a R(n) so that if |X| = R(n) and $f : [X]^2 \to \{0, 1\}$ then there will be a **monochromatic** $Y \subseteq X$ of size *n*.

• true for *n* infinite as well!

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to \{0, 1\}$ such that $f \upharpoonright [X]^2$ is **not constant** whenever $X \subseteq \mathbb{R}$ is **uncountable**.

[Erdős 1942] For every number *n* there is a R(n) so that if |X| = R(n) and $f : [X]^2 \to \{0, 1\}$ then there will be a **monochromatic** $Y \subseteq X$ of size *n*.

• true for *n* infinite as well!

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to \{0, 1\}$ such that $f \upharpoonright [X]^2$ is **not constant** whenever $X \subseteq \mathbb{R}$ is **uncountable**.

[Erdős 1942] For every number *n* there is a R(n) so that if |X| = R(n) and $f : [X]^2 \to \{0, 1\}$ then there will be a monochromatic $Y \subseteq X$ of size *n*.

• true for *n* infinite as well!

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to \{0, 1\}$ such that $f \upharpoonright [X]^2$ is **not constant** whenever $X \subseteq \mathbb{R}$ is **uncountable**.

[Erdős 1942] For every number *n* there is a R(n) so that if |X| = R(n) and $f : [X]^2 \to \{0, 1\}$ then there will be a monochromatic $Y \subseteq X$ of size *n*.

• true for *n* infinite as well!

Can we extend Ramsey's theorem to colouring pairs of \mathbb{R} ?

[Sierpinski, 1933] There is a colouring $f : [\mathbb{R}]^2 \to \{0, 1\}$ such that $f \upharpoonright [X]^2$ is **not constant** whenever $X \subseteq \mathbb{R}$ is **uncountable**.

[Erdős 1942] For every number *n* there is a R(n) so that if |X| = R(n) and $f : [X]^2 \to \{0, 1\}$ then there will be a monochromatic $Y \subseteq X$ of size *n*.

• true for *n* infinite as well!

• if
$$n \in \mathbb{N}$$
 then $R(n) \leq {\binom{2n-2}{n-1}}$.

7 / 19

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x + y : x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x + y : x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x + y : x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x + y : x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!

If \mathbb{N} is coloured with finitely many colours then there is an infinite set X so that $\{x + y : x \neq y \in X\}$ is monochromatic.

Just apply Ramsey's theorem!

Can we allow **repetitions** in the sums in the previous results?

- let a, a + d, a + 2d, ...a + 2nd be a monochromatic arithmetic progression,
- if $x_k = \frac{a}{2} + kd$ then $x_k + x_l = a + (k + l)d$ is in the arithmethic progression for any k, l < n.

Can we allow **repetitions** in the sums in the previous results?

- let a, a + d, a + 2d, ...a + 2nd be a monochromatic arithmetic progression,
- if $x_k = \frac{a}{2} + kd$ then $x_k + x_l = a + (k + l)d$ is in the arithmethic progression for any k, l < n.

Can we allow **repetitions** in the sums in the previous results?

- let a, a + d, a + 2d, ...a + 2nd be a monochromatic arithmetic progression,
- if $x_k = \frac{a}{2} + kd$ then $x_k + x_l = a + (k + l)d$ is in the arithmethic progression for any k, l < n.

Can we allow **repetitions** in the sums in the previous results?

- let a, a + d, a + 2d, ...a + 2nd be a monochromatic arithmetic progression,
- if $x_k = \frac{a}{2} + kd$ then $x_k + x_l = a + (k + l)d$ is in the arithmethic progression for any k, l < n.

Our main motivation

Can we find an infinite X with X + X is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f : \mathbb{N} \to 2$ such that X + X is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using **3** colours by **Hindman**.

Our main motivation

Can we find an infinite X with X + X is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f : \mathbb{N} \to 2$ such that X + X is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using **3** colours by **Hindman**.

Our main motivation

Can we find an infinite X with X + X is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f : \mathbb{N} \to 2$ such that X + X is not monochromatic whenever X is infinite?

still open!

• there is a colouring using **3** colours by **Hindman**.

Our main motivation

Can we find an infinite X with X + X is monochromatic?

Problem [J.C. Owings]: Is there a colouring $f : \mathbb{N} \to 2$ such that X + X is not monochromatic whenever X is infinite?

- still open!
- there is a colouring using 3 colours by Hindman.

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick $x \ll y \in X$ such that $\log_{\sqrt{2}}(y + x) \log_{\sqrt{2}}(y) \ll 1$, $\Rightarrow |[\log_{\sqrt{2}}(y + x)] - [\log_{\sqrt{2}}(y)]| \le 1$, so $f(y + x) = f(y) \pm 1$,
- so $f(2y) = f(y) + 2 \neq f(y) \pm 1 = f(x + y)$.

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick $x \ll y \in X$ such that $\log_{\sqrt{2}}(y + x) \log_{\sqrt{2}}(y) < 1$, $\Rightarrow |[\log_{\sqrt{2}}(y + x)] - [\log_{\sqrt{2}}(y)]| \le 1$, so $f(y + x) = f(y) \pm 1$
- so $f(2y) = f(y) + 2 \neq f(y) \pm 1 = f(x + y)$.

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick $x \ll y \in X$ such that $\log_{\sqrt{2}}(y + x) \log_{\sqrt{2}}(y) < 1$, $\Rightarrow |[\log_{\sqrt{2}}(y + x)] - [\log_{\sqrt{2}}(y)]| \le 1$, so $f(y + x) = f(y) \pm 1$
- so $f(2y) = f(y) + 2 \neq f(y) \pm 1 = f(x + y)$.

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick $x \ll y \in X$ such that $\log_{\sqrt{2}}(y + x) \log_{\sqrt{2}}(y) < 1$, $\Rightarrow |[\log_{\sqrt{2}}(y + x)] - [\log_{\sqrt{2}}(y)]| \le 1$, so $f(y + x) = f(y) \pm 1$,

• so $f(2y) = f(y) + 2 \neq f(y) \pm 1 = f(x + y)$.

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick x << y ∈ X such that log_{√2}(y + x) log_{√2}(y) < 1,
 ⇒ |[log_{√2}(y + x)] [log_{√2}(y)]| ≤ 1, so f(y + x) = f(y) ± 1,
 so f(2y) = f(y) + 2 ≠ f(y) ± 1 = f(x + y).

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick $x \ll y \in X$ such that $\log_{\sqrt{2}}(y+x) \log_{\sqrt{2}}(y) \ll 1$, $\Rightarrow |\lfloor \log_{\sqrt{2}}(y+x) \rfloor - \lfloor \log_{\sqrt{2}}(y) \rfloor| \leq 1$, so $f(y+x) = f(y) \pm 1$,

• so $f(2y) = f(y) + 2 \neq f(y) \pm 1 = f(x + y)$.

 $f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \pmod{4}.$

Then X + X is not monochromatic whenever $X \subseteq \mathbb{N}$ is infinite.

Proof: let $X \subseteq \mathbb{N}$ be infinite, note $f(2y) = f(y) + 2 \mod 4$.

- We try to find $x, y \in X$ so that $f(x + y) \neq f(2y)$;
- pick $x \ll y \in X$ such that $\log_{\sqrt{2}}(y+x) \log_{\sqrt{2}}(y) \ll 1$, $\Rightarrow |\lfloor \log_{\sqrt{2}}(y+x) \rfloor - \lfloor \log_{\sqrt{2}}(y) \rfloor| \leq 1$, so $f(y+x) = f(y) \pm 1$,

• so $f(2y) = f(y) + 2 \neq f(y) \pm 1 = f(x + y)$.

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R} . Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that X + X is monochromatic.

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R} . Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that X + X is monochromatic.

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R} . Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that X + X is monochromatic.

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R} . Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that X + X is monochromatic.

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R} . Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that X + X is monochromatic.

[Hindman, Leader, Strauss] Suppose that f is a finite colouring of \mathbb{R} . Can we find large monochromatic sum sets?

What if we suppose that the colouring is nice?

[HLS 2015] Suppose that f is a colouring of \mathbb{R} with countably many colours. Suppose that

- f is measurable, or
- f has the Baire property.

Then there is a set X of size continuum such that X + X is monochromatic.

What if there are no analytic assumptions on the colouring?

[SWZ, Komjáth] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is **not constant** for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in).

What if there are no analytic assumptions on the colouring?

[SWZ, Komjáth] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in).

What if there are no analytic assumptions on the colouring?

[SWZ, Komjáth] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is **not constant** for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in).

What if there are no analytic assumptions on the colouring?

[SWZ, Komjáth] There is a colouring $f : \mathbb{R} \to 2$ such that $f \upharpoonright \{x + y : x \neq y \in X\}$ is not constant for any uncountable $X \subseteq \mathbb{R}$.

- [HLS] proved this using the Continuum Hypothesis.
- We can't realize 3 or more colours on every uncountable sum set (even more set theory comes in).

How about finding an infinite $X \subseteq \mathbb{R}$ with X + X monochromatic?

[HLS] The CH implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\{x_i : i \in I\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$x = \sum_{i \in F} c_i x_i$$
 with $c_i \in \mathbb{Q}, F \subseteq I$ finite.

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

How about finding an infinite $X \subseteq \mathbb{R}$ with X + X monochromatic?

[HLS] The CH implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\{x_i : i \in I\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$x = \sum_{i \in F} c_i x_i$$
 with $c_i \in \mathbb{Q}, F \subseteq I$ finite.

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

How about finding an infinite $X \subseteq \mathbb{R}$ with X + X monochromatic?

[HLS] The CH implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\{x_i : i \in I\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$x = \sum_{i \in F} c_i x_i$$
 with $c_i \in \mathbb{Q}, F \subseteq I$ finite.

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

How about finding an infinite $X \subseteq \mathbb{R}$ with X + X monochromatic?

[HLS] The CH implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\{x_i : i \in I\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$x = \sum_{i \in F} c_i x_i$$
 with $c_i \in \mathbb{Q}, F \subseteq I$ finite.

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

How about finding an infinite $X \subseteq \mathbb{R}$ with X + X monochromatic?

[HLS] The CH implies that there is a colouring $f : \mathbb{R} \to 288$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{R}$

Recall that \mathbb{R} is a direct sum of copies of \mathbb{Q} : there is $\{x_i : i \in I\} \subseteq \mathbb{R}$ so that every $x \in \mathbb{R}$ can be written uniquely as

$$x = \sum_{i \in F} c_i x_i$$
 with $c_i \in \mathbb{Q}, F \subseteq I$ finite.

What can we say about colouring \mathbb{Q} or finite/countable direct sums?

- there is f : Q → 72 such that f ↾ X + X is not constant for any infinite X ⊆ Q;
- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

- there is f : Q → 72 such that f ↾ X + X is not constant for any infinite X ⊆ Q;
- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

- there is $f : \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \mathbb{Q}$;
- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

- there is f : Q → 72 such that f ↾ X + X is not constant for any infinite X ⊆ Q;
- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

- there is f : Q → 72 such that f ↾ X + X is not constant for any infinite X ⊆ Q;
- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

- there is f : Q → 72 such that f ↾ X + X is not constant for any infinite X ⊆ Q;
- For any $m \in \mathbb{N}$, there is $f : \bigoplus_m \mathbb{Q} \to 72$ such that $f \upharpoonright X + X$ is not constant for any infinite $X \subseteq \bigoplus_m \mathbb{Q}$;
- Step up lemma: if N ∈ N fixed and ⊕_κ Q has a good N-colouring for every κ < λ then ⊕_λ Q has a good 2N-colouring.
- Corollary: we can find good colourings for the first countably many cardinalities before the number of colours blows up...

[SWV] For every finite *r* there is a $\kappa(r)$ so that if $f : \bigoplus_{\kappa(r)} \mathbb{N} \to r$ then there is an infinite *X* with $f \upharpoonright X + X$ constant.

[SWV] For every finite *r* there is a $\kappa(r)$ so that if $f : \bigoplus_{\kappa(r)} \mathbb{N} \to r$ then there is an infinite *X* with $f \upharpoonright X + X$ constant.

[SWV] For every finite r there is a $\kappa(r)$ so that if $f : \bigoplus_{\kappa(r)} \mathbb{N} \to r$ then there is an infinite X with $f \upharpoonright X + X$ constant.

[SWV] For every finite r there is a $\kappa(r)$ so that if $f : \bigoplus_{\kappa(r)} \mathbb{N} \to r$ then there is an infinite X with $f \upharpoonright X + X$ constant.

Famous open problems I

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

[Graham \$1000] $f(n) = 2^{n-2} + 1$ points suffice.

- best upper bound is $\binom{2n-5}{n-2} + 5$ by **[Tóth,Valtr]**
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

- best upper bound is $\binom{2n-5}{n-2} + 5$ by **[Tóth,Valtr]**
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

- best upper bound is $\binom{2n-5}{n-2} + 5$ by **[Tóth,Valtr]**
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

- best upper bound is $\binom{2n-5}{n-2} + 5$ by **[Tóth,Valtr]**
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

- best upper bound is $\binom{2n-5}{n-2} + 5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

- best upper bound is $\binom{2n-5}{n-2} + 5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[Erdős-Szekeres] f(n) points in \mathbb{R}^2 always contains a convex *n*-gon.

How large is f(n)?

- best upper bound is $\binom{2n-5}{n-2} + 5$ by [Tóth,Valtr]
- 2^{n-2} points do not suffice,
- the conjecture is only proved for $n \leq 6...$

... the hard way of getting rich.

[van der Waerden] If 1, 2, ..., W(n) are 2-coloured then there is an *n* term monochromatic AP.

[Graham \$1000] $W(n) < 2^{n^2}$.

- the currently known best bound is 2^{22^{22ⁿ⁺⁹}} by **Gowers**,
- the best lower bound is $W(n+1) \ge n2^n$ for *n* prime **Berlekamp**.

... the hard way of getting rich.

[van der Waerden] If 1, 2, ..., W(n) are 2-coloured then there is an n term monochromatic AP.

[Graham \$1000] $W(n) < 2^{n^2}$.

- the currently known best bound is $2^{2^{2^{2^{n+9}}}}$ by Gowers,
- the best lower bound is $W(n+1) \ge n2^n$ for *n* prime **Berlekamp**.

... the hard way of getting rich.

[van der Waerden] If 1, 2, ..., W(n) are 2-coloured then there is an n term monochromatic AP.

[Graham \$1000] $W(n) < 2^{n^2}$.

• the currently known best bound is $2^{2^{2^{2^{n+9}}}}$ by **Gowers**,

• the best lower bound is $W(n+1) \ge n2^n$ for *n* prime **Berlekamp**.

... the hard way of getting rich.

[van der Waerden] If 1, 2, ..., W(n) are 2-coloured then there is an n term monochromatic AP.

[Graham \$1000] $W(n) < 2^{n^2}$.

• the currently known best bound is $2^{2^{2^{2^{n+9}}}}$ by Gowers,

• the best lower bound is $W(n+1) \ge n2^n$ for *n* prime **Berlekamp**.

... the hard way of getting rich.

[van der Waerden] If 1, 2, ..., W(n) are 2-coloured then there is an n term monochromatic AP.

[Graham \$1000] $W(n) < 2^{n^2}$.

- the currently known best bound is $2^{2^{2^{2^{n+9}}}}$ by Gowers,
- the best lower bound is $W(n+1) \ge n2^n$ for *n* prime Berlekamp.

Any questions?

э