Variations of (selective) separability

Dániel Soukup, Lajos Soukup and Santi Spadaro

University of Toronto, Rényi Alfréd Institute, York University

• *d*-separable (property *K*₀):

has a dense set which is the countable union of discrete subsets.

• *nwd*-separable:

• *d*-separable (property *K*₀):

has a dense set which is the countable union of discrete subsets.

nwd-separable:

• *d*-separable (property K_0):

has a dense set which is the countable union of discrete subsets.

• *nwd-separable*:

• *d*-separable (property K_0):

has a dense set which is the countable union of discrete subsets.

• *nwd*-separable:

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

Examples:

- $D(2)^{\kappa}$ is *d*-separable as $\sigma(D(2)^{\kappa})$ is σ -discrete.
- s(X) < d(X) then X is not d-separable; in particular, L-spaces are not d-separable.
- (Arhangel'skii) Products of *d*-separable spaces are *d*-separable.
- (Juhász-Szentmiklóssy) $X^{d(X)}$ is *d*-separable.
- (Juhász-Szentmiklóssy) If X is compact, then X^{ω} is d-separable.

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

Examples:

- $D(2)^{\kappa}$ is *d*-separable as $\sigma(D(2)^{\kappa})$ is σ -discrete.
- s(X) < d(X) then X is not d-separable; in particular, L-spaces are not d-separable.
- (Arhangel'skii) Products of *d*-separable spaces are *d*-separable.
- (Juhász-Szentmiklóssy) X^{d(X)} is d-separable.
- (Juhász-Szentmiklóssy) If X is compact, then X^{ω} is d-separable.

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

Examples:

- $D(2)^{\kappa}$ is *d*-separable as $\sigma(D(2)^{\kappa})$ is σ -discrete.
- s(X) < d(X) then X is not d-separable; in particular, L-spaces are not d-separable.

• (Arhangel'skii) Products of *d*-separable spaces are *d*-separable.

- (Juhász-Szentmiklóssy) X^{d(X)} is d-separable.
- (Juhász-Szentmiklóssy) If X is compact, then X^{ω} is d-separable.

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

Examples:

- $D(2)^{\kappa}$ is *d*-separable as $\sigma(D(2)^{\kappa})$ is σ -discrete.
- s(X) < d(X) then X is not d-separable; in particular, L-spaces are not d-separable.
- (Arhangel'skii) Products of *d*-separable spaces are *d*-separable.
- (Juhász-Szentmiklóssy) X^{d(X)} is *d*-separable.
- (Juhász-Szentmiklóssy) If X is compact, then X^{ω} is d-separable.

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

Examples:

- $D(2)^{\kappa}$ is *d*-separable as $\sigma(D(2)^{\kappa})$ is σ -discrete.
- s(X) < d(X) then X is not d-separable; in particular, L-spaces are not d-separable.
- (Arhangel'skii) Products of *d*-separable spaces are *d*-separable.
- (Juhász-Szentmiklóssy) X^{d(X)} is d-separable.
- (Juhász-Szentmiklóssy) If X is compact, then X^{ω} is *d*-separable.

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

Examples:

- $D(2)^{\kappa}$ is *d*-separable as $\sigma(D(2)^{\kappa})$ is σ -discrete.
- s(X) < d(X) then X is not d-separable; in particular, L-spaces are not d-separable.
- (Arhangel'skii) Products of *d*-separable spaces are *d*-separable.
- (Juhász-Szentmiklóssy) X^{d(X)} is d-separable.
- (Juhász-Szentmiklóssy) If X is compact, then X^{ω} is d-separable.

Easy analogues and questions

- Any product of nwd-separable spaces is nwd-separable.
- Infinite (non trivial) products are always nwd-separable; in particular, X^ω is always nwd-separable.

Example: there is a compact nwd-separable space which is not d-separable: $X = \omega^* \times 2^{\omega}$.

Easy analogues and questions

Any product of nwd-separable spaces is nwd-separable.

Infinite (non trivial) products are always nwd-separable; in particular, X^ω is always nwd-separable.

Example: there is a compact nwd-separable space which is not d-separable: $X = \omega^* \times 2^{\omega}$.

Easy analogues and questions

- Any product of nwd-separable spaces is nwd-separable.
- Infinite (non trivial) products are always nwd-separable; in particular, X^ω is always *nwd*-separable.

Example: there is a compact nwd-separable space which is not d-separable: $X = \omega^* \times 2^{\omega}$.

Easy analogues and questions

- Any product of nwd-separable spaces is nwd-separable.
- Infinite (non trivial) products are always nwd-separable; in particular, X^ω is always *nwd*-separable.

Example: there is a compact nwd-separable space which is not d-separable: $X = \omega^* \times 2^{\omega}$.

Easy analogues and questions

- Any product of nwd-separable spaces is nwd-separable.
- Infinite (non trivial) products are always nwd-separable; in particular, X^ω is always *nwd*-separable.

Example: there is a compact nwd-separable space which is not d-separable: $X = \omega^* \times 2^{\omega}$.

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

- a small dense set can be obtained by diagonalizing over a countable sequence of dense sets.
- a selective strengthening of properties:
 - D-separable:
 - $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists \text{ discrete } F_n \subseteq D_n \text{ such that } \bigcup \{F_n : n \in \omega\} \in \mathcal{D};$
 - NWD-separable:

 $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists nowhere dense F_n \subseteq D_n \text{ such that} \\ \bigcup \{F_n : n \in \omega\} \in \mathcal{D}$

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

- a small dense set can be obtained by diagonalizing over a countable sequence of dense sets.
- a selective strengthening of properties:
 - D-separable:
 - $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists$ discrete $F_n \subseteq D_n$ such that $\bigcup \{F_n : n \in \omega\} \in \mathcal{D};$
 - NWD-separable:

 $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists nowhere dense F_n \subseteq D_n \text{ such that } \bigcup \{F_n : n \in \omega\} \in \mathcal{D}$

d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

- a small dense set can be obtained by diagonalizing over a countable sequence of dense sets.
- a selective strengthening of properties:
 - **D**-separable: $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists$ discrete $F_n \subseteq D_n$ such that $\bigcup \{F_n : n \in \omega\} \in \mathcal{D};$
 - NWD-separable:

 $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists \text{ nowhere dense } F_n \subseteq D_n \text{ such that } \\ \bigcup \{F_n : n \in \omega\} \in \mathcal{D}$

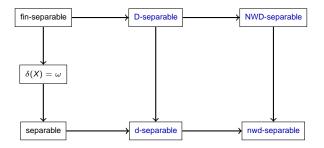
d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

- a small dense set can be obtained by diagonalizing over a countable sequence of dense sets.
- a selective strengthening of properties:
 - D-separable: $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists \text{ discrete } F_n \subseteq D_n \text{ such that } \bigcup \{F_n : n \in \omega\} \in \mathcal{D};$
 - NWD-separable: $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists$ nowhere dense $F_n \subseteq D_n$ such that $\bigcup \{F_n : n \in \omega\} \in \mathcal{D}$

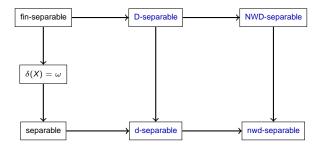
d-separable: has a σ -discrete dense set nwd-separable: has a meager dense set

- a small dense set can be obtained by diagonalizing over a countable sequence of dense sets.
- a selective strengthening of properties:
 - D-separable: $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists \text{ discrete } F_n \subseteq D_n \text{ such that } \bigcup \{F_n : n \in \omega\} \in \mathcal{D};$
 - NWD-separable:

 $\forall \{D_n\}_{n \in \omega} \subset \mathcal{D} \exists \text{ nowhere dense } F_n \subseteq D_n \text{ such that } \\ \bigcup \{F_n : n \in \omega\} \in \mathcal{D}$



How can we separate these properties?



How can we separate these properties?

A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of D(2)^c which is not NWD-separable.

• (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.

- X can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
- X is *D*-forced, i.e. if D ⊂ X is somewhere dense then D_n ∩ U ⊆ D for some n ∈ ω and non-empty open set U.
- Then X is not NWD-separable:
 - if E_n ⊂ D_n is nowhere dense then E = U_{n∈w} E_n is not dense, because it cannot contain any D_n ∩ U.

A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of $D(2)^{c}$ which is not NWD-separable.

• (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.

- X can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
- X is *D*-forced, i.e. if D ⊂ X is somewhere dense then D_n ∩ U ⊆ D for some n ∈ ω and non-empty open set U.
- Then X is not NWD-separable:
 - if E_n ⊂ D_n is nowhere dense then E = U_{n∈ω} E_n is not dense, because it cannot contain any D_n ∩ U.

A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of $D(2)^{c}$ which is not NWD-separable.

• (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.

- *X* can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
- *X* is \mathcal{D} -forced, i.e. if $D \subset X$ is somewhere dense then $D_n \cap U \subseteq D$ for some $n \in \omega$ and non-empty open set *U*.
- Then X is not NWD-separable:
 - if E_n ⊂ D_n is nowhere dense then E = U_{n∈ω} E_n is not dense, because it cannot contain any D_n ∩ U.

A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of $D(2)^{c}$ which is not NWD-separable.

- (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.
 - X can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
 - X is \mathcal{D} -forced, i.e. if $D \subset X$ is somewhere dense then $D_n \cap U \subseteq D$ for some $n \in \omega$ and non-empty open set U.
- Then X is not NWD-separable:
 - if E_n ⊂ D_n is nowhere dense then E = ⋃_{n∈ω} E_n is not dense, because it cannot contain any D_n ∩ U.

A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of $D(2)^{c}$ which is not NWD-separable.

• (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.

- *X* can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
- X is \mathcal{D} -forced, i.e. if $D \subset X$ is somewhere dense then $D_n \cap U \subseteq D$ for some $n \in \omega$ and non-empty open set U.

• Then X is not NWD-separable:

 if E_n ⊂ D_n is nowhere dense then E = ⋃_{n∈ω} E_n is not dense, because it cannot contain any D_n ∩ U.

A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of $D(2)^{c}$ which is not NWD-separable.

- (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.
 - X can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
 - X is \mathcal{D} -forced, i.e. if $D \subset X$ is somewhere dense then $D_n \cap U \subseteq D$ for some $n \in \omega$ and non-empty open set U.
- Then X is not NWD-separable:
 - if E_n ⊂ D_n is nowhere dense then E = U_{n∈ω} E_n is not dense, because it cannot contain any D_n ∩ U.

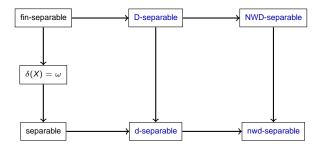
A method of Juhász-L.Soukup-Szentmiklóssy

Theorem

There is a countable dense subspace of $D(2)^{c}$ which is not NWD-separable.

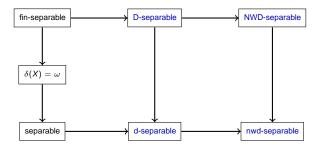
- (J-S-Sz): there is a countable, dense subspace X of $D(2)^{c}$ s. t.
 - X can be partitioned into dense subspaces $\mathcal{D} = \{D_n : n \in \omega\}$
 - X is \mathcal{D} -forced, i.e. if $D \subset X$ is somewhere dense then $D_n \cap U \subseteq D$ for some $n \in \omega$ and non-empty open set U.
- Then X is not NWD-separable:
 - if E_n ⊂ D_n is nowhere dense then E = U_{n∈ω} E_n is not dense, because it cannot contain any D_n ∩ U.

Selective separability and convergence



(Barma, Dow) Every separable, Frechét space is fin-separable.
How about d-separability (nwd) and D-separability (NWD)?

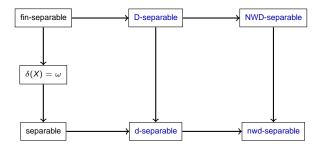
Selective separability and convergence



• (Barma, Dow) Every separable, Frechét space is fin-separable.

• How about d-separability (nwd) and D-separability (NWD)?

Selective separability and convergence



- (Barma, Dow) Every separable, Frechét space is fin-separable.
- How about d-separability (nwd) and D-separability (NWD)?

Forcing firstcountable counterexamples

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

The forcing:

- finite approximations of countable neighborhood bases then adding ω₂ Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

Forcing firstcountable counterexamples

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

The forcing:

- finite approximations of countable neighborhood bases then adding ω_2 Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

Forcing firstcountable counterexamples

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

The forcing:

- finite approximations of countable neighborhood bases then adding ω₂ Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

- finite approximations of countable neighborhood bases then adding ω₂ Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

- finite approximations of countable neighborhood bases then adding ω₂ Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

- finite approximations of countable neighborhood bases then adding ω₂ Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

A complete separation theorem

Theorem

It is consistent that there is a first countable, 0-dimensional space X which is left-separated in type ω_1 such that X is NWD-separable but not d-separable.

- finite approximations of countable neighborhood bases then adding ω₂ Cohen reals;
- X is an L-space \Rightarrow X is not d-separable;
- X is σ -nowhere dense and $MA_{\omega_1}(ctbl)$ holds \Rightarrow X is NWD-separable.
- Are there any firstcountable ZFC examples? Compact?

Theorem

Every MN, nwd-separable space is D-separable.

 A space X is DDG iff for every A ⊆ X and discrete E ⊂ A there is a discrete D ⊆ A such that E ⊆ D.

Theorem (Aurichi, Dias, Ju<u>nqueira)</u>

Every d-separable, DDG space is D-separable.

Every MN, d-separable space is D-separable.

Theorem

Every MN, nwd-separable space is D-separable.

 A space X is DDG iff for every A ⊆ X and discrete E ⊂ A there is a discrete D ⊆ A such that E ⊆ D.

Theorem (Aurichi, Dias, Ju<u>nqueira)</u>

Every d-separable, DDG space is D-separable.

Every MN, d-separable space is D-separable.

Theore<u>m</u>

Every MN, nwd-separable space is D-separable.

 A space X is DDG iff for every A ⊆ X and discrete E ⊂ A there is a discrete D ⊆ A such that E ⊆ D.

Theorem (Aurichi, Dias, Junqueira)

Every d-separable, DDG space is D-separable.

Every MN, d-separable space is D-separable.

Theorem

Every MN, nwd-separable space is D-separable.

 A space X is DDG iff for every A ⊆ X and discrete E ⊂ A there is a discrete D ⊆ A such that E ⊆ D.

Theorem (Aurichi, Dias, Junqueira)

Every d-separable, DDG space is D-separable.

• Every MN, d-separable space is D-separable.

Theorem

Every MN, nwd-separable space is D-separable.

 A space X is DDG iff for every A ⊆ X and discrete E ⊂ A there is a discrete D ⊆ A such that E ⊆ D.

Theorem (Aurichi, Dias, Junqueira)

• Every d-separable, DDG space is D-separable.

• Every MN, d-separable space is D-separable.

Theorem

Every MN, nwd-separable space is D-separable.

 A space X is DDG iff for every A ⊆ X and discrete E ⊂ A there is a discrete D ⊆ A such that E ⊆ D.

Theorem (Aurichi, Dias, Junqueira)

- Every d-separable, DDG space is D-separable.
- Every MN, d-separable space is D-separable.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

- MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.
- \Diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

- MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.
- \Diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

- MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.
- \diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

- MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.
- \Diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

• MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.

• \diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

• MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.

• \diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

- MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.
- \diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- $\sigma(2^{\omega_1})$ is d-separable (even σ -discrete).
- Is $\sigma(2^{\omega_1})$ D-separable?

Theorem

It is independent of ZFC whether $\sigma(2^{\omega_1})$ is DDG:

- MA_{ω_1} implies that $\sigma(2^{\omega_1})$ is DDG hence D-separable.
- \diamond implies that $\sigma(2^{\omega_1})$ is not DDG.

- Construct in ZFC a d-separable X such that X has no dense σ -discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

- Conjecture: X^{d(X)+} is never D-separable! This is true for separable space!
- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

- Construct in ZFC a d-separable X such that X has no dense σ-discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

- Conjecture: X^{d(X)+} is never D-separable! This is true for separable space!
- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

- Construct in ZFC a d-separable X such that X has no dense σ-discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

- Conjecture: X^{d(X)+} is never D-separable! This is true for separable space!
- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

- Construct in ZFC a d-separable X such that X has no dense σ-discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

- Conjecture: X^{d(X)+} is never D-separable! This is true for separable space!
- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

- Construct in ZFC a d-separable X such that X has no dense σ-discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

 $X^{2^{d(X)}}$ is not D-separable for any Tychonoff space X.

 Conjecture: X^{d(X)⁺} is never D-separable! This is true for separable space!

- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

- Construct in ZFC a d-separable X such that X has no dense σ-discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

- Conjecture: X^{d(X)⁺} is never D-separable! This is true for separable space!
- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

- Construct in ZFC a d-separable X such that X has no dense σ-discrete set of size d(X)!
- Is there a non D-separable space X (or even an L-space) such that X² is D-separable? There is an L-space with d-separable square!

Theorem (Bella-Matveev-Spadaro)

- Conjecture: X^{d(X)+} is never D-separable! This is true for separable space!
- Is there a P-space which is not discretely generated?
- Is it consistent that all first countable, d-separable spaces are D-separable?

Thank you for your attention!