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8.4 Lindelöf property, separability . . . . . . . . . . . . . . . . . . 32
8.5 Compactness, compact subspaces . . . . . . . . . . . . . . . . 34

9 A modification for first-countability 35

10 Open problems 36
10.1 Axioms of separation for XzY . . . . . . . . . . . . . . . . . 36
10.2 Differentiating the topologies . . . . . . . . . . . . . . . . . . . 36
10.3 Pathwise connectedness in R(S) . . . . . . . . . . . . . . . . . 37

1



1 Introduction

The main goal of this thesis is to investigate topologies which are originated
in the idea of separate continuity. Several constructions connected to the
topic are given and studied, classical topologies from the literature and new
ones.

The paper splits into two parts. First general constructions on the prod-
uct of two space are investigated. In the center, the most basic construction
is the cross topology : on the product X × Y let U ⊆ X × Y be open iff
every horizontal and vertical section of U is open in X and Y . Definitions
and essential theorems are stated, mainly from the early and comprehensive
paper of Knight, Moran and Pym [11] and Velleman [16]. Investigation of
separation axioms in the cross topology shows that it will not be regular even
in nice cases. In this topic the joint work of Hart and Kunen in [9] and the
second part of [11], cited as [12], is fundamental. In [12] the authors define
a space construction which is the completely regular analogue of the cross
topology. Motivated by this paper, in Section 5 we present a new topology
on X × Y , denoted by XzY , which is much more docile, however not every
time regular. The regularity of XzY is characterized by a simple property
for X and Y called DLP: a space X is DLP iff for every x ∈ X there is
a x ∈ U neighborhood such that cl(U) \ {x} is paracompact. Theorem 5.4
states:

• If (X, τX) and (Y, τY ) are T3 and DLP, then XzY is T3.

Higher separation axioms forXzY are also considered. Section 5 ends with a
few words about connections between DLP and local paracompactness prop-
erties and how X being DLP is related to separation axioms in X.

The second part of the thesis generalizes first in Section 6 the idea of the
radiolar topology by defining a class of spaces on R2. The radiolar topology,
mentioned in [9] and investigated in [15] and [7], will be a special case for
S = S1. The S-radiolar topology for a fix S ⊆ S1 is defined as follows: a
set U ⊆ R2 is open iff for any x ∈ U and direction s ∈ S there is a line
segment in direction s in U containing x. After listing basic properties the
main result in the brief investigation is Theorem 6.8, the calculation of the
character of S-radiolar topologies– by modifying a proof of Hart and Kunen.
As a partial result this theorem answers the conjecture of Popvassilev [15]
about the character of the radiolar topology.
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• If S ⊆ S1 and S contains more than one directions then the S-radiolar
topology has character 2c.

We have also managed to characterize the connectedness and pathwise con-
nectedness in the cases of S-radiolar topologies– with the aid of characterizing
compact subspaces. The set S ⊆ S1 is splayed whenever S cannot be covered
in S1 with a closed half circle. The summary of Theorem 6.15 and Corollary
6.18 is the following.

• The S-radiolar topology is connected iff S is splayed.

• The S-radiolar topology is pathwise connected iff S contains two full
directions–there are s 6= t ∈ S1 such that {s,−s, t,−t} ⊆ S

The section ends with a few words about weak bases and how one can show
that the S-radiolar topologies and the cross topology are non homeomorphic.

Our next goal is to keep the convergence properties of the S-radiolars
and regularize them. In Section 7 by merging the idea of the XzY and S-
radiolar topologies we define another class of spaces but these turn out to be
a dead end concerning regularization. A simple modification in the definition
leads us to the right class of spaces, the the uniform Sz-radiolar topologies
denoted by R(S). These are much more easy to handle and several topolog-
ical properties are characterized throughout Section 8. The regularization is
a success in some sense, by Proposition 8.4:

• The R(S) spaces are Tychonoff iff S ⊆ S1 is closed.

We will deal with these Tychonoff cases only. After the basic observations
and calculating χ(R(S)) = d we introduce the evident properties for S ⊆ S1:
there is no missing full direction in S and S contains a full direction. Proving
Lemma 8.10 shows how closely these spaces are related to the Euclidean
topology in the ”nice” cases.

• If in the R(S) topology there is no missing full direction in the defining
S, then every S-open set G and its Euclidean interior can only differ
in ℵ0 many points.

Further investigation has done concerning Lindelöf-property in Theorem 8.14
and separability in Theorem 8.16.
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• The R(S) spaces are hereditarily Lindelöf iff there is no missing full
direction in S.

• The R(S) spaces are hereditarily separable iff there is no missing full
direction in S.

Compact subspaces are characterized in Proposition 8.17 and in Proposition
8.18 we give necessary and sufficient conditions for the existence of uncount-
able compact subspaces. In Section 9 we present another modification in the
definition of R(S) and we obtain very similar but first-countable spaces.
At the end of the thesis some open questions are stated.

2 Notations

Let S1 denote the unit circle on the plane. We will usually mention an
element s ∈ S1 as a direction. A subset of R2 is called Euclidean open,
Euclidean closed, etc. iff it is open, closed, etc. in the usual Euclidean
topology of R2. For an x ∈ R2, s ∈ S1 and r > 0 let [x, x + rs) denote
the half closed, half open line segment in direction s with length r which
starts from x. Similar notation is used for intervals but this will not lead to
misunderstanding.

Definition 2.1 Let X, Y be arbitrary topological spaces. The sections of a
set U ⊆ X × Y are the sets Ea = {y ∈ Y : (a, y) ∈ U}, the vertical sections,
for any a ∈ X and Eb = {x ∈ X : (x, b) ∈ U}, the horizontal sections, for
any b ∈ Y .

Let X, Y be any spaces. As we will mainly talk about different topolo-
gies simultaneously on X × Y we introduce a notation, used in [11], for the
standard product: let XπY = (X×Y, τπ) denote the product space onX×Y .

Generally, for notions and notations which are used but undefined in the
thesis see Engelking’s General Topology [5].

3 The definition of the cross topology

Definition 3.1 Let X, Y be arbitrary topological spaces. We define the topol-
ogy τX⊗Y on X × Y as follows: U ⊆ X × Y is open iff Ua is open in Y for
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all a ∈ X and U b is open in X for every b ∈ Y . Let X ⊗ Y = 〈X × Y, τX⊗Y 〉
denote the above defined space, the cross topology on X × Y .

Notation, literature: the X ⊗ Y notation is from [11] and called the
tensor product of spaces X and Y . In [16] the space X ⊗ Y is called the plus
topology.

Several properties of these spaces has been investigated by many mathe-
maticians. We gather some of the main results concerning these spaces and
later on, we generalize some of them.

3.1 Basic properties of the cross topology

Evidently X ⊗Y is a refinement of the space XπY . This yields immediately
that X ⊗ Y is Hausdorff whenever X, Y are Hausdorff. Stronger separation
properties will be considered in the next section.

The basic properties of the above defined tensor product was investigated
in [11] and further on in [12] by Knight, Moran and Pym . Equivalent defi-
nition by categories was given, which shows us the meaning of the notation
⊗, like tensor products. Let i : X × Y → X ⊗ Y denote the identity.

Definition 3.2 The function f : X × Y → Z is separately continuous iff
for each a ∈ X the function y 7→ f(a, y) is continuous and for each b ∈ Y
the function x 7→ f(x, b) is continuous.

Proposition 3.3 ([11, Prop (1.2)]) If f : X × Y → Z then there is a

unique function f̂ : X ⊗ Y → Z such that f = f̂ i. Moreover f̂ is continuous
iff f is separately continuous. The pair (X ⊗ Y, i) is determined by these
properties, up to homeomorphism of X ⊗ Y .

As we will discuss closed discrete subspaces and density later, we cite two
easy theorems:

Proposition 3.4 ([11, Proposition (4.2)]) If D ⊆ X ⊗ Y and every sec-
tion of D is closed and discrete then D is closed and discrete.

Proposition 3.5 ([12, Proposition (8.1)]) If D ⊆ X×Y such that De is
a dense subset of Y for every e ∈ E where E is dense in X then D is dense
in X ⊗ Y .
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In the above mentioned paper [12], the following theorem is proved:

Theorem 3.6 ([12, Proposition (8.6)]) Let X and Y be Baire spaces and
suppose that X is locally second countable. Then X ⊗ Y is a Baire space.

These results are cited because they will be adequately rephrased and
proved in our cases.

3.2 Axioms of separation in the cross topology

It was early known- possibly first noted by J. Novák in [14]- that R ⊗ R is
not regular. This can be proved by several ways: using cardinal inequalities
or by Baire-category. The paper of J. E. Hart and K. Kunen [9] seems to be
the most comprehensive work about separation in the cross topology.

First, we recall a beautiful theorem from [9], which helps us to calculate
the character of the spaces X ⊗ Y in some cases.

Theorem 3.7 ([9, Lemma 2.1]) SupposeX, Y are T2. Suppose that w(X) ≤
c and each nonempty open subset of X has size at least c. Suppose that there
are disjoint countable dense subsets Dα ⊆ Y for α < c. Then χ((p, q), X ⊗
Y ) ≥ 2c for all (p, q) ∈ X × Y .

This theorem immediately yields, that R ⊗ R cannot be regular; indeed
for any regular space X we have w(X) ≤ 2d(X) and the cross topology is
separable by 3.5, but has character 2c. We will later apply a modified version
of the proof of this theorem, to establish the character of some other spaces.

4 The complete regularization of the cross

topology

The main goal of [12] is to construct the X⊗̃Y completely regular version
of X ⊗ Y using a topological and a category theoretical approach. From the
paper we get the impression, that these constructions cannot be investigated
alone well as a topological object. The positive results are mainly about
cases, when X ⊗ Y = X⊗̃Y .

The topological approach of the definition uses the concept of the complete
regularization of a space X- we will not recall the definition of this, see [12]
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or [10]. The X⊗̃Y is defined as the complete regularization of X ⊗ Y . We
note that if the spaces X, Y are completely regular then the underlying set
of X⊗̃Y is X ×Y and we cite a category theoretical claim which is analogue
to 4.1. Let j : XπY → X⊗̃Y be the canonical map.

Proposition 4.1 ([12, Proposition (5.4)]) If f : X × Y → Z is sepa-
rately continuous and Z is a completely regular space, then there is a unique
continuous function f̂ : X⊗̃Y → Z such that f = f̃ j. The pair (X⊗̃Y, j)
consisting of a completely regular space X⊗̃Y and a separately continuous
function j : X × Y → X⊗̃Y is determined by this property up to homeomor-
phism.

In a paper of Henriksen and Woods [10], the authors investigate the con-
nections between four topologies on X × Y related to separate continuity-
such as the cross topology, denoted by (X × Y, γ) and the weak topology
defined by separately continuous functions, denoted by (X × Y, σ). Let us
cite partly the following theorem, which helps to imagine the space X⊗̃Y .

Proposition 4.2 ([10, Theorem 4.8]) SupposeX, Y are Tychonoff spaces.
Then (X × Y, σ) is the complete regularization of (X × Y, γ).

In the next section, we define a topology on X×Y which is closely related
to the cross topology, has a well described neighborhood base and regularity
can be guaranteed by simple assumptions on X and Y .

5 How to get regularity by the XzY topol-

ogy?

We will now define a topology on X×Y which refines XπY and coarser than
X ⊗ Y .

5.1 Defining the XzY topology

Definition 5.1 Let X and Y be arbitrary topological spaces. Define the space
XzY on the set X × Y with a neighborhood base for a z ∈ X × Y point:
{U ⊆ X × Y : U \ {z} is open in (X × Y ) \ {z} with the subspace topology
of XπY and U contains a τX⊗Y neighborhood of z}.
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From now on, if not stated otherwise open/closed/etc. means open/closed/etc.
in the z-topology.

Trivial observations about XzY :

• in a basic open U neighborhood of z every point has a basic product
neighborhood in U , except z,

• the X ⊗ Y topology is always finer than XzY ,

• the XzY topology is always finer than XπY ,

• D ⊆ X × Y is dense in XzY iff D is dense in XπY .

The practicality of the definition is that several properties of XπY will
hold also for XzY . As one can see, the density characters will coincide:
d(XπY ) = d(XzY ). Another remark can be made about Baire-property- it
is preserved by products in certain cases, for example if X is Baire and Y is
(locally) second-countable and Baire.

Proposition 5.2 If XπY is Baire then XzY is Baire either.

Proof: Let Gi ⊆ X × Y for i ∈ ω be dense open and denote G′
i = intπ(Gi)

the interior in τπ. It can be easily seen that G′
i is dense open in XπY , so

∩i∈ωG
′
i is dense in XπY . This immediately implies that ∩i∈ωG

′
i ⊆ ∩i∈ωGi is

dense in XπY either, which is enough to be dense in XzY .�

5.2 Axioms of separation for XzY

The tensor topology X ⊗ Y often fails to be regular and the characteriza-
tion of the T3 property is complicated. In our case the tight connection to
the product topology helps us to get a simple sufficient condition for being
regular.

Definition 5.3 The space (X, τ) is said to be DLP -Dotted Locally Paracom-
pact - iff every x ∈ X has an open neighborhood x ∈ U such that clτ (U)\{x}
is paracompact.

Now we can formulate our main theorem about regularity in XzY .
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Theorem 5.4 If (X, τX) and (Y, τY ) are T3 and DLP, then XzY is T3.

Proof: Let (a, b) ∈ X × Y and (a, b) ∈ U a basic open neighborhood–
meaning that U\{(a, b)} is open in the product topology. Using the regularity
in X and Y we get that there is a ”cross”, centered at (a, b) in U : {a} ×
clτY (W ′) ∪ clτX (V ′) × b ⊆ U , where a ∈ V ′ ∈ τX , b ∈ W ′ ∈ τY . If any
space (Z, τ) is T3 and DLP then for every W ∈ τ and x ∈ W there is a
x ∈ U ⊆ clτ (U) ⊆ W such that clτ (U) \ {x} is paracompact; provided by
the hereditary of paracompactness to closed subspaces. Thus we can suppose
that clτX (V ′) \ {a}, clτY (W ′) \ {b} are paracompact.
There are neighborhoods a ∈ V ∈ τX and b ∈ W ∈ τY such that clτX (V ) ⊆
V ′, clτY (W ) ⊆W ′. For every v ∈ clτX (V ) \ {a} there is a v ∈ Gv ∈ τX , Gv ⊆
V ′ \ {a} and b ∈ Hv ∈ τY such that the closure in the product topology
clπ(Gv × Hv) ⊆ U . This can be done, because (X × Y, τπ) is T3. We can
further suppose that Hv ⊆ W ′. Take G = {Gv : v ∈ clτX (V ) \ {a}}, then
the cover G ∪ {clτX (V ′) \ clτX (V )} of clτX (V ′) \ {a} has a locally finite open
refinement and let G′ denote the elements which are subsets of sets in G. For
every G ∈ G′ there is a ϕ(G) ∈ clτX (V ) \ {a} such that G ⊆ Gϕ(G). Then
{G×Hϕ(G) : G ∈ G′} covers V × b \ {(a, b)} and

⋃
{G×Hϕ(G) : G ∈ G′} ⊆

U ∩ (V ′ ×W ′) open in τπ.

a

b

x

y

(a, b)

(x, y)

X

Y
U

V
W

Similarly, for every w ∈ clτY (W ) \ {b} there is a w ∈ Kw ∈ τY , Kw ⊆
W ′ \ {b} and a ∈ Lw ∈ τX such that the closure in the product topology
clπ(Kw × Lw) ⊆ U . We can suppose that Lw ⊆ V ′. For K = {Kw : w ∈
clτY (W ) \ {b}}, the cover K ∪ {clτY (W ′) \ clτY (W )} of clτY (W ′) \ {b} has
a locally finite open refinement and let K′ denote the elements which are
subsets of sets in K. For every K ∈ K′ there is a ψ(K) ∈ clτY (W ) \ {b} such
that K ⊆ Kψ(K). Then {K ×Lψ(K) : K ∈ K′} covers W × {a} \ {(a, b)} and⋃
{K × Lψ(K) : K ∈ K′} ⊆ U ∩ (V ′ ×W ′) open in τπ.
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Let

Ũ = {(a, b)} ∪
⋃

{G×Hϕ(G) : G ∈ G′} ∪
⋃

{K × Lψ(K) : K ∈ K′},

clearly Ũ ⊆ U is an open neighborhood of (a, b).

We claim, that even clπ(Ũ) ⊆ U . Take any (x, y) /∈ U .
Case 1. If x /∈ clτX (V ′) or y /∈ clτY (W ′) then (x, y) /∈ clτX (V ′)×clτY (W ′) and

clπ(Ũ) ⊆ clτX (V ′) × clτY (W ′) gives us (x, y) /∈ clπ(Ũ).
Case 2. Suppose that x ∈ clτX (V ′) and y ∈ clτY (W ′). Than x 6= a, y 6= b and
there is an x ∈ M ∈ τX neighborhood such that M only intersects finitely
many elements of G′, these are G′′ = {G1, ..., Gm} ⊆ G′. We can suppose
that a /∈ M . Similarly there is a y ∈ N ∈ τY such that N only intersects
K′′ = {K1, ..., Kn} from K′. We will use the following notations:

A = clπ({(a, b)} ∪
⋃

{G×Hϕ(G) : G ∈ G′ \ G′′})

B = clπ(
⋃

{K × Lψ(K) : K ∈ K′ \ K′′})

C =
⋃

G∈G′′

clπ(G×Hϕ(G)) ∪
⋃

K∈K′′

clπ(K × Lψ(K)).

Clearly clπ(Ũ) = A ∪ B ∪ C. Evidently C ⊆ U , so (x, y) /∈ C. On the
other hand, A ⊆ (X \ M) × Y product closed, so (x, y) /∈ A. Similarly

B ⊆ X × (Y \N) product closed, so (x, y) /∈ B. Thus (x, y) /∈ clπ(Ũ) which

gives us: cl(Ũ) ⊆ clπ(Ũ) ⊆ U . �

Being DLP is not a necessary condition, because if X is discrete then
XzY = XπY . The next claim shows that this local property is needed,
meaning that even in the nice case of X being compact, XzX can fail to be
regular.

Proposition 5.5 (ω1 + 1)z(ω1 + 1) is not T3

Proof: We claim that x0 = (ω1, ω1) cannot be separated from the closed
set ∆ = {(α, α) : α < ω1}. Indeed ∆∪{x0} is closed in the product topology
and x0 ∈ (ω1+1)×(ω1+1)\∆ is an open neighborhood of x0 disjoint from ∆,
thus ∆ is closed. Take any open neighborhood U of ∆. For every limit ordi-
nal α < ω1 there is a f(α) < α such that (f(α), α]×{α} ⊆ U . By the Fodor
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Pressing Down Lemma, there is a α < ω1 and ordinals {αξ : ξ < ω1} such
that f(αξ) = α for all ξ < ω1. This means that

⋃
ξ<ω1

((f(α), αξ]×{αξ}) ⊆ U ,
thus the set (f(α), ω1]×{ω1} is in the closure of U , so x0 cannot be separated
from ∆. �

Regularity was deduced from simple separation-like axioms. However, T4

property will not hold in XzY without restrictions to cardinalities.

Lemma 5.6 Let X, Y arbitrary spaces, E ⊆ X × Y closed in τπ and Ex, E
y

discrete in the corresponding topology, for every x ∈ X, y ∈ Y . Then E is
closed discrete in XzY .

Proof: One readily checks that {(x, y)} ∪ ((X × Y ) \ E) is open and only
contains (x, y) from E. From Ex, E

y being discrete, the previous neighbor-
hood trivially contains a τX⊗Y neighborhood of (x, y).�

For example, for any Hausdorff X the set ∆ = {(x, x) : x ∈ X} ⊆ X ×X
is closed discrete in XzX with cardinality |X|. Thus we get the following
easy corollary.

Corollary 5.7 If the Hausdorff space X is separable and has cardinality c

then XzX cannot be normal.

Now it is natural to ask, when will the space XzY be Tychonoff? The
assumption made in the next proposition is rather strong and made for the
product, thus it is most desirable to be weakened.

Proposition 5.8 If XπY is hereditarily normal, then XzY is Tychonoff.

Proof: Let (a, b) ∈ U ⊆ XzY , an open neighborhood of (a, b). There
is a a ∈ Va ∈ τX such that clτX (Va) × {b} ⊆ U and b ∈ Vb ∈ τY such that
{a} × clτY (Vb) ⊆ U . Let F = clτX (Va) × {b} ∪ {a} × clτY (Vb). Then in
XπY \{(a, b)} the set F \{(a, b)} is closed and intπ(U)\{(a, b)} is a product
open neighborhood of it, so there is a F \{(a, b)} ⊆ U ′ ⊆ clπ(U

′) ⊆ U\{(a, b)}
π-open neighborhood. So there is an f continuous function XπY \{(a, b)} →
[0, 1] such that f |clπ(U ′) ≡ 0 and f |XπY \U ≡ 1. Let f((a, b)) = 0. This makes
f z-locally zero at (a, b), thus continuous on the whole XzY . �

Remark: By Morita [13] it is sufficient to assume that X is metrizable
and Y is perfectly normal, these assumptions imply the hereditary normality
of XπY .
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5.3 Shortly on DLP spaces

The assumption made in 5.4 on X and Y being T3 is needed, meaning that
even DLP and T2 does not imply regularity.

Example: Let X = [0, 1). The τ topology on X is defined by neigh-
borhood bases: every point in (0, 1) has Euclidean neighborhoods and 0 has
the next neighborhood base: {[0, a) \D : a ∈ (0, 1), D is a Euclidean closed
discrete set in (0, 1)}. These neighborhoods generate a topology. We claim
that this space is evidently T2 and a bit less evidently not regular but DLP.
Property DLP holds for every point in (0, 1) and a dotted neighborhood of 0
has the Euclidean topology as the subspace topology, so X is DLP. If F ⊆ X
is a Euclidean closed discrete set, which converges to 0 in the Euclidean sense,
then it is a closed set in τ but the closure of any neighborhood of 0 intersects
F , so X is not regular.

However, DLP spaces are ”almost” Tychonoff:

Proposition 5.9 If (X, τ) is a DLP space then there is a closed discrete
Z ⊆ X such that X \ Z is Tychonoff.

Proof: For any x ∈ X, let x ∈ Ux ∈ τX such that clτX (Ux) \ {x} is
paracompact. Then for U = ∪{Ux \ {x} : x ∈ X}, the set Z = X \ U is
closed and discrete, provided by the Ux neighborhoods. Let y ∈ Ux \ {x}
and V be an arbitrary neighborhood of y. There are W1,W2 ∈ τX such that
y ∈ W1 ⊆ clτX (W1) ⊆ W2 ⊆ clτX (W2) ⊆ V ∩ Ux \ {x}. clτX (W2) is paracom-
pact, so Tychonoff, so there is a f : clτX (W2) → [0, 1] such that f(y) = 0 and
f is 1 at clτX (W2) \W1. Define f to be 1 on X \ clτX (W2). The extended f
is continuous and separates y and X \ V . �

The space ω1 + 1 with the order topology shows, that not even compact-
ness implies DLP. How DLP is related to other basic local paracompactness
properties?

Definition 5.10 • The space (X, τ) is LP- Locally Paracompact- iff for
every x ∈ X there is a X ∈ U ∈ τ such that clτ (U) is paracompact.

• The space (X, τ) is LHP- Locally Hereditarily Paracompact- iff for
every x ∈ X there is a x ∈ U ∈ τ such that clτ (U) is hereditarily
paracompact.
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Proposition 5.11 If the space 〈X, τ〉 is LHP then it is DLP. Conversely, if
X is DLP and T3 then X is LP either.

Proof: The first state is trivial. For the second claim, suppose that for an
x ∈ X and a neighborhood x ∈ U ∈ τ the set clτ (U) \ {x} is paracompact.
Then clτ (U) is paracompact either. Indeed, suppose G is an open cover of

clτ (U). Let G̃ ∈ G with x ∈ G̃ then there is a x ∈ V ⊆ clτ (V ) ⊆ G̃ neighbor-

hood either. Then G′ = {G \ clτ (V ) : G ∈ G} ∪ {G̃ \ {x}} is an open cover

of clτ (U) \ {x} so G′ has a locally finite open refinement G′′. Then G′′ ∪ {G̃}
is a locally finite open cover of clτ (U) which refines G.�

6 The S-radiolar topologies

From now on, we will consider spaces which has the underlying set R2. Using
the next construction of Brown [4], we can define some further topologies:

Definition 6.1 Let (Z, τ) be a topological space and E any family of subsets
of X. Then τE is the family of all U ⊆ Z such that U ∩ E is open in E in
the subspace topology, for every E ∈ E .

For example, if (Z, τ) = XπY and E = {{x}×Y,X×{y} : x ∈ X, y ∈ Y }
then the τE topology is the above defined τX⊗Y tensor. Another example,
which is mentioned in [9], if we take R2 with the Euclidean topology and E
to be all the lines in R2. This topology was called the radiolar topology and
investigated by Popvassilev [15], Roman Fric in [7]. Fric proved that every
topology between the cross and radiolar topology has sequential order ω1.
For the cross topology, this fact was showed by G. H. Greco in [8].

The goal of this section is to introduce and investigate a bit more general
family of topological spaces.

Definition 6.2 Let S ⊆ S1. An S-star at x is a set ϕx ⊆ R2 where x ∈ R2,
ϕ : S → R+ and ϕx =

⋃
{[x, x+ ϕ(s)s) : s ∈ S}.

Let St(x, S) denote all the S-stars at a point x.

Definition 6.3 For every S ⊆ S1 we will define the S-radiolar topology
on R2 as follows: U ⊆ R2 is said to be S-radiolar open iff for every point
x ∈ U there is an S-star at x in U . The S-radiolar topology is the set of all
S-radiolar open sets and noted by τS.
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6.1 Basic properties of the S-radiolar topologies

The analogy of the cross topology and the S-radiolar topology is trivial, the
cross topology on R2 is a special case of the S-radiolar topologies.

Convergence: Take a sequence in R2: (xn), which converges to a point
x in the S-radiolar topology. It can easily be checked that this means ex-
actly, that (xn) converges to x from finitely many directions which are in
S. Precisely, there is an N ∈ ω such that the directions {−−→xxn}n≥N is a fi-
nite subset of S. In some sense this topology generalizes the Sorgenfrey-line,
where xn → x iff xn converges to x from the right side (or left side, depends
on the definition).

Trivial observations about special cases:

• when S = S1 we get back the above mentioned radiolar-topology,

• when S is the adequate four point set we get R ⊗ R as the S-radiolar
topology,

• when |S| = 1 the S-radiolar topology is c many disjoint Sorgenfrey-
lines.

• when S = {s,−s} the S-radiolar topology is c many disjoint Euclidean
lines.

Proposition 6.4 For S ⊆ T ⊆ S1, τS refines τT . If S 6= T then we obtain
a proper refinement.

Proof: The first claim is trivial, every T -radiolar open is S-radiolar open.
If t ∈ T \ S, then the set we get if we leave out a half line in direction t from
the plane, is S-radiolar open but not T -radiolar open. �

Further on we will assume that for all defining S ⊆ S1 sets S " {s,−s}
for any s ∈ S1 and we need to make an other assumption for the sake of
simplicity. Namely, we can suppose that every time there are some directions
in S which are parallel to the standard axis’ of the plane. This helps us to
benefit further on from the Ea and Eb notions, because if E is S-radiolar
open then these sets will have nonempty Euclidean interior.
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Separation properties: As we refined the Euclidean topology, the S-
radiolars are Hausdorff. However, they will not be regular. For proving this,
we will prove an analogue to the following statement of Velleman:

Theorem 6.5 ([16, Theorem 6]) Suppose that U is nonempty and cross
open, U = ∪n∈ωUn. Then for some n, the cross closure of Un has nonempty
Euclidean interior.

We modify this and get the following stronger property for the S-radiolars
than being Baire:

Proposition 6.6 Suppose that U is nonempty and S-radiolar open, U =
∪n∈ωUn. Then for some n, the S-radiolar closure of Un has nonempty Eu-
clidean interior.

Proof: Take a point (a, b) ∈ U and an ε > 0 such that [a, a+ ε) ⊆ U b and
[b, b + ε) ⊆ Ua. This can be done according to our assumption on S from
the beginning of the section. For x ∈ [a, a+ ε) the set Ux = ∪n∈ω(Un)x must
contain an interval, so there is an nx for which cl((Unx

)x) contains an inter-
val by the Baire Category Theorem. Thus there are px, qx rational numbers
such that the interval (px, qx) ⊆ cl((Unx

)x). For each n ∈ ω and p, q rational
numbers Xn,p,q = {x ∈ [a, a + ε) : n = nx, p = px, q = qx}. By the Baire
Category Theorem again, there must be some n, p, q such that cl(Xn,p,q) has
nonempty interior, there are c < d such that the interval (c, d) ⊆ cl(Xn,p,q).
It follows immediately that (c, d) × (p, q) ⊆ cl(Un). �

Thus we are able to prove the statements about regularity:

Proposition 6.7 Every S-radiolar topology is not regular.

Proof: Take a set F on the plane which is dense in the Euclidean sense
and has only two points on each line. Such a set can be constructed easily
by transfinite induction. Then F is S-radiolar closed, take any x /∈ F . If U
is an S-radiolar neighborhood of x then it has a nonempty S-radiolar closure
in R2 so it contains a point of F . This shows that the S-radiolar topology
cannot be regular. �
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6.2 The character of the S-radiolar topologies

Here we present the modified proof of Lemma 2.1 from [9], which was stated
above as 3.7 and which helps us to calculate the exact character of the S-
radiolar topologies. S. G. Popvassilev in [15] conjectured that the cross and
radiolar topology has character and weight 2c. This more general result to
S-radiolar topologies answers this question.
As it will help to follow the proof, we will use the notation R1 for the real
line which is the horizontal axis and R2 for the vertical axis.

Theorem 6.8 For S ⊆ S1 the S-radiolar topology has character 2c.

Proof: If not stated otherwise, we mean open/closed/etc. sets S-radiolar
open/closed/etc.
It is sufficient to find Fδ ⊆ R2, δ < 2c closed discrete subsets such that every
countable union ∪n∈ωFδn is dense, for distinct δn. In fact, if a (p, q) would
have character less than 2c then we could find a W neighborhood of (p, q)
and distinct δn such that W ∩ (Fδn \ {(p, q)}) = ∅. Since ∪n∈ωFδn is dense,
(p, q) would be isolated, which is a contradiction.
We construct disjoint sets {Bα: α < c} in R1 such that each |Bα| = c and for
all nonempty Euclidean open set U there is an α such that Bα ⊆ U . Indeed,
take an enumeration of all open sets {Uα : α < c}. Take the pairs 〈Uα, β〉 for
α, β < c and by transfinite induction choose an xαβ ∈ Uα distinct from the
ones we have choosen before. The sets Bα = {xαβ : β < c} will satisfy our
conditions.
The following lemma will be needed, which can be found in the paper of
Engelking and Karlowicz [6].

Lemma 6.9 If the sets {Bα ⊆ R : α < c} are disjoint and have size c

then there are gδ : R → ω, δ < 2c such that for each α < c the sequence
〈gδ|Bα : δ < 2c〉 is σ-independent: for n ∈ ω given distinct δn < 2c and
kn ∈ ω there is a x ∈ Bα such that gδn(x) = kn.

Next we construct Dx disjoint, countable, Euclidean dense subsets of R2

for each x ∈ B = ∪α<cBα. By using a similar transfinite induction to the
one in the Mazurkiewich theorem, one can assure that the set D = {(x, y) :
x ∈ B, y ∈ Dx} has at most two points on each non vertical line.

Index each Dx as {dnx}n∈ω. Define Fδ : B → R2 by Fδ(x) = d
gδ(x)
x . We will use

the notation Fδ for the graph of this function as well. Since the Dx sets are

16



disjoint, Fδ is 1-1 and by the construction of D the graph of Fδ is S-radiolar
closed and discrete.
Now fix distinct δn for n ∈ ω, and take the set H = ∪n∈ωFδn . To show that H
is dense, fix a nonempty N ⊆ R2 open set and we show that N ∩ cl(H) 6= ∅.
Fix y ∈ R2 such that Ny 6= ∅. Then Ny has a nonempty Euclidean in-
terior, which contains a Bα. There is a x ∈ Bα such that gδn(x) = n for
all n ∈ ω. Thus Fδn(x) = dnx, so {x} × D ⊆ H , so {x} × R2 ⊆ cl(H), so
(x, y) ∈ N ∩ cl(H).�

6.3 Connectedness in the S-radiolar topologies

In the cross topology, the question of connectedness is nearly trivial:

Theorem 6.10 ([11, Theorem (4.1)]) The components and path-wise com-
ponents of X ⊗ Y are the same sets as those of XπY .

However, in our case with S-radiolars, we might have problems. The
sections of a set as subspaces- Sorgenfrey-line, discrete space- are totally
disconnected several times. As we will see, the characterization of connected
S-radiolar topologies can be nicely done and we will obtain a similar result
in these cases to the previously cited one.

Definition 6.11 Take three line segments starting from one point-the center
- on the plane, with the same length. Fix one segment, which we will call the
main one. If the angles between the main and the other segments are greater
than π/2 but less than π than we call this set a λ-scheme.

As a Λ0 λ-scheme is a special S0-star determined by a three point set
S0 ⊆ S1, we will use the notation (R2, τΛ0

) for the corresponding S0-radiolar
topology. For any x ∈ R2 and r > 0 let Λ0(x, r) denote the Λ0 λ-scheme
centered at x with radius r.

Definition 6.12 An S ⊆ S1 set is ”splayed” iff no closed half-circle contains
it.

For example every λ-scheme is splayed, meaning that the defining three
point subset from S1 is splayed. It can easily be seen, that if S is not splayed
then the S-radiolar topology is not connected- one can make a partition of
R2 into a Euclidean open and a closed half plane, which are both open in the
S-radiolar topology.
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Theorem 6.13 For an arbitrary Λ0 λ-scheme, in the (R2, τΛ0
) topology any

Euclidean connected, Euclidean open set is Λ0-radiolar connected.

Proof: Let T = G ∪ H be an Euclidean open, Euclidean connected set,
where G,H are nonempty radiolar open sets, we want to get a contradiction.
Define G∗ = G \ int(G) and H∗ = H \ int(H) as described, the points which
have no Euclidean neighborhood in G and H .
(1) We prove, that G∗ ⊆ (H∗)′ and H∗ ⊆ (G∗)′: the two cases are symmetric,
we will deal with G∗ ⊆ (H∗)′. From the definition we get G∗ ⊆ (H)′ but
suppose that only int(H) accumulates to a point: g ∈ G∗. So there is a r > 0
such that B(g, r) ∩ H∗ = ∅. One can suppose that for this r: B(g, r) ⊆ T
and Λ0(g, r) ⊆ G. It can easily be seen that there is a x ∈ int(H) ∩ B(g, r),
so close to g that there is a line passing x in a direction which is in Λ0,
intersecting Λ0(g, r) ⊆ G in a y ∈ G point. This can be made in a way, that
the subspace appearing on the line is a Sorgenfrey-line, with the open set
[y, x). For this, we used the property of being splayed.

x ∈ int(H)

y
z

g ∈ G∗

⊆ T

Consider the supreme of points in G towards x on the [y, x) half line, let
this be: z ∈ T . Now z cannot be in H , because than it would be in int(H),
but z is also an accumulation point ofG. If z is in G, than there is a λ-scheme
in G with center z, and that would intersect the [y, x) half line in a half open
interval which would indicate- because of the criteria towards the subspace
topology- that there would be more points in G towards x. This contradicts
to the fact, that z was a supreme point. Thus, we proved: G∗ ⊆ (H∗)′.
(2) G∗, H∗ 6= ∅ and G∗ ∪ H∗ is Euclidean closed: they cannot be both
empty, because T is Euclidean connected, but from (1) then the other one is
nonempty either. Being Euclidean closed is trivial.
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(3) The contradiction. Choose an x1 ∈ G∗, which exists because of (2).
Λ0(x1; r1) ⊆ G and for this r1 we can suppose that B(x1, r1) ⊆ T . There
exists a r1 > s1 > 0 such that for any x ∈ B(x1; s1) ∩ H∗ the maximal
λ-scheme in H with center x has radius at most r1/2, or else this λ-scheme
would intersect the λ-scheme in G with center x1- we have again used the
property of being splayed. Take an x2 ∈ B(x1; s1) ∩ H∗, which exists be-
cause of (1) and take a neighborhood Λ0(x2; r2) ⊆ H ∩ B(x1; s1) where we
get r2 < r1/2, because of our assumptions on s1. There is an r2 > s2 > 0
such that for every x ∈ B(x2; s2) ∩ G∗ every λ-scheme in G with center x
has radius at most r2/2 or else this would intersect the λ-scheme in H with
center x2. The following is straightforward: take x3 ∈ B(x2; s2) ∩ G∗ and
Λ0(x3; r3) ⊆ G ∩ B(x2; s2), r3 < r2/2 < r1/4. We continue with induction
and this way we construct a Cauchy-sequence. So there is a limit point:
x ∈ G∗ ∪ H∗, because G∗ ∪ H∗ is Euclidean closed. However, x cannot be
in G∗ nor in H∗. This is because, there is no λ-scheme in H nor in G with
center x with positive radius, because x ∈ B(xi, si) which forbids that this
radius could be greater than r1/2

i.�

Lemma 6.14 If S is splayed and contains no full direction then S contains
a λ-scheme (a three point subset that determines a λ-scheme as a star).

Proof: Take a v ∈ S and the half circle bounded by the vector orthogonal
to v. It has to contain a u ∈ S, without loss of generality we can suppose
that the ûv arc is shorter then v̂u. Take the supreme of the directions in S
from u towards −v- in negative direction, let this be w. w 6= −v because S
contains no full direction.

v

−v

u
u′

−u
−w

s

w
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S intersects the open half circle which is bounded by w and in negative
direction from w, so there is a s ∈ S as the figure shows. One can easily see,
that if we choose a u′ ∈ S close to w-as it is a supreme, this will exist- we
will have a λ-scheme with u′, v, s, where the position of s decides that which
segment is the main one.�

Theorem 6.15 The S-radiolar topology is connected iff S is splayed. If S
is splayed then every Euclidean open, Euclidean connected set is S-radiolar
connected.

Proof: If S is not splayed then as the previous remark shows the S-radiolar
topology is not connected.
If S is splayed and contains a full direction then every G ⊆ R2 Euclidean
open, Euclidean connected set is S-radiolar connected. Let G = R ∪ T be
any partition to S-radiolar open sets where R 6= ∅, let s ∈ S be any full
direction. Then no line in direction s can be cut into two parts by R and T ,
so if x ∈ R then the whole line passing x in direction s is in R. Combining
this with the fact that R is S-radiolar open, where S is splayed one can see
that there is a Euclidean neighborhood of x ∈ R in R. Similarly arguing
about T , it is Euclidean open either. Thus one of them is empty- provided
by G being connected.
If S is splayed and contains no full direction then by the previous lemma
there is a λ-scheme in S, so the S-radiolar topology eventually can be re-
fined to a connected topology, thus by Theorem 6.13 every Euclidean open,
Euclidean connected set is S-radiolar connected.�

Remark: One can imagine easily an S, which contains no full directions
however splayed– λ-schemes for example. For that, the S-radiolar topology
is connected but all the lines as subspaces are totally disconnected.

Our next goal is to deal with pathwise connectedness. The following
lemma is the analogue of Theorem (4.3) from [11] for S-radiolar topologies.

Lemma 6.16 If K ⊆ R2 is S-radiolar compact then K can be covered by
finitely many lines.

Proof: Suppose on the contrary that there are no finite family of lines that
contain the compact K. By induction one can easily construct an infinite
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D ⊆ K such that every line intersects D in at most two points. Such a set is
S-radiolar closed and discrete which contradicts the fact that K is compact.
�

Corollary 6.17 The S-radiolar topology contains an uncountable compact
subset iff S contains a full direction– there is an s ∈ S1 such that s,−s ∈ S.

Proof: If S contains a full direction the Euclidean line appears as a sub-
space. The other part follows easily from the previous lemma and from the
fact that in the Sorgenfrey-line or in the discrete topology the compact sub-
sets are countable– and these topologies appear on lines as subspaces if there
is no full direction in S.�

Corollary 6.18 The S-radiolar topology is pathwise connected iff there are
two full directions in S– there are s 6= t ∈ S1 such that {s,−s, t,−t} ⊆ S.

Proof: If there are two full directions s, t ∈ S1 in S then the S-radiolar
topology is pathwise connected; the Euclidean continuous function f : I →
R2 is S-radiolar continuous if f(I) is a subset of the union of a line in di-
rection s and in direction t. Any two points can be connected with such
functions.
Suppose that the S-radiolar topology is pathwise connected, this yields that
there is at least one full direction s ∈ S because f(I) is compact with car-
dinality c. Let f : I → R2 be S-radiolar continuous connecting two differ-
ent points– which are not on a line in direction s. We claim that if s is
the only full direction in S then f(I) can be covered by finitely many lines
f(I) ⊆ ∪i=1...nLi and Li is in direction s, which is a contradiction– the in-
verse images of the sets f(I)∩Li would be a partition of I to open-and-closed
sets. If f(I) cannot be covered in such way then in any cover from Lemma
6.16 there is a line L which is not in direction s and contains infinitely many
points of f(I). The subspace topology on L indicates that |f(I) ∩ L| = ω.
Thus there would be an isolated point x ∈ f(I) and ∅ 6= f−1{x} 6= I would
be an open-and-closed set in I which is a contradiction.�
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6.4 Weak bases

As mentioned above, the cross topology is a special case of the S-radiolar
topologies. Also, from the previous claims about connectedness one can
easily deduce that there are sets S ⊆ S1 such that the S-radiolar topology
and the cross topology are not homeomorphic. The next definition is due to
A. V. Arhangelskii– can be found in [1]– and will be needed in the further
investigation.

Definition 6.19 For a space (X, τ) and a point x ∈ X a family of sets B
from X is a weak base at x iff

• x ∈
⋂
B,

• for every x ∈ U ⊆ X the set U is open iff U \ {x} is open and there
exists a B ∈ B such that B ⊆ U .

Now it is straightforward to generalize first-countability. While [1] deals
with this local concept, we also need the global definition of a weak base–
the first appearance of the following definition is probably in [2].

Definition 6.20 The space (X, τ) is weakly first-countable iff for every x ∈
X there is a countable family of closed sets Bx such that:

• x ∈
⋂
Bx,

• U ⊆ X is open iff for every x ∈ U there is a B ∈ Bx such that B ⊆ U .

Clearly for any first-countable space X, Y the space X ⊗ Y is weakly
first-countable.
In the introduction of [7] the author claims that the cross topology on R2 is
weakly first-countable while the radiolar topology is not- thus they cannot
be homeomorphic. The following lemma is easy to prove and leads us to this
result.

Lemma 6.21 If {Bi}i∈I is a weak base at x ∈ R2 for the S-radiolar topology
then there is weak base at x consisting of stars {Ci}i∈I ⊆ St(x, S) such that
Ci ⊆ Bi.

Informally the S-stars at x form ”the smallest” weak base at x in the
S-radiolar topology. Using this lemma and an easy diagonal argument we
have the following:
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Proposition 6.22 For any infinite S ⊆ S1, the S-radiolar topology and the
cross topology on R2 are not homeomorphic.

Remark: There are several definitions in the literature for weak bases
and weak first-countability, even the same authors use different definitions
in different papers.

As we have seen, every weak base at a point for an S-radiolar topology
can be refined to a weak base consisting of S-stars. It would be interesting
to see exactly how many S-stars are needed? Namely, consider the following
cardinal function.

Definition 6.23 Let X be any space, x ∈ X. The weak base character of x
in X is χw(x,X) = min{|B| : B is a weak base at x}.

We will not use the name weak character because it was used by Arhangel-
skii and Buzyakova for another definition in [3]. Let χw(x, (R2, τS)) = χw(S)
as the S-radiolar topologies are homogeneous. We have seen that χw(S) is
greater than ω if S is infinite– conversely if S is finite, the weak base char-
acter is ω trivially and 2c is an upper bound of course for all cases. Easy to
see that another upper bound is if we take dominating families. Let us recall
some definitions, notions.

• For any cardinal κ let κω denote the set of all functions f : κ→ ω.

• A family of functions F ⊆ κω is dominating in κω iff for every g ∈ κω
there is a f ∈ F such that g(α) < f(α) for all α < κ.

• d(κ) = min{|F| : F is dominating in κω}.

It is straightforward that d(n) = ω for all n ∈ ω and d(ω) = d is the well
known dominating number. For all κ we have κ < d(κ) ≤ 2κ. By using the
previously cited result Lemma 6.9 of Engelking and Karlowicz one can show,
that d(c) = 2c. These cardinalities will not change if we take R or R+ to be
the range of the dominated functions.
Using these notions we can formulate the following equality.

Proposition 6.24 For any S ⊆ S1 we have χw(S) = d(|S|).
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Proof: Suppose that the set {ϕi : S → R+}i∈I is dominating for all func-
tions ϕ : S → R. Then the set of S-stars {( 1

ϕi
)x}i∈I is a weak base at x

because every set of S-stars can be refined by this set. Thus χw(S) ≤ d(|S|).
Suppose we have a weak base of stars at x, let this denote {( 1

ϕi
)x}i∈I where

ϕi : S → R+. We will show that this is a dominating family, thus d(|S|) ≤
χw(S). Take any function ϕ : S → R+ and enumerate S = {sα : α < κ =
|S|}. By transfinite induction construct the set F = {xα : α < κ} such that
xα ∈ (x, x+ 1

2ϕ(sα)
sα) and every line intersects F in at least two points. F is

closed discrete and x ∈ U = R2\F thus there is an i ∈ I such that ( 1
ϕi

)x ⊆ U .

So we have 1
ϕi(sα)

< 1
2ϕ(sα)

for all α < κ meaning that ϕ < ϕi everywhere on
S.�

As a stronger version of Proposition 6.22 we get the following corollary.

Corollary 6.25 If Si ⊆ S1 for i = 1, 2, 3, where |S1| < ω, |S| = ω and
|S| = c then the Si-radiolar topologies are non homeomorphic.

Proof: The weak base characters are

χw(S1) = ω < χw(S2) = d < χw(S3) = 2c.

Thus they cannot be homeomorphic.�

6.5 Symmetrizability

We were able to make differences between S-radiolar topologies when the
defining S sets have entirely different cardinalities. In this section we will
show that even for quite ”similar” S sets the S-radiolar topologies can be
non homeomorphic. This will be done by using the following weakening of
metrizability.

Definition 6.26 The space X is symmetrizable iff there is a d : X×X → R
symmetric on X, meaning that

1. for all x, y ∈ X: d(x, y) = d(y, x) ≥ 0,

2. d(x, y) = 0 iff x = y,
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3. the set U ⊆ X is open iff for every x ∈ U there is a ε > 0 such that
B(x, ε) = {y : d(x, y) < ε} ⊆ U .

Not surprising that this property will appear in cases when the defining
set S of the S-radiolar topology is symmetric: s ∈ S iff −s ∈ S.

Proposition 6.27 For an S ⊆ S1 the S-radiolar topology is symmetrizable
iff the set S is finite and symmetric.

Proof: Suppose S is symmetric. For any x, y ∈ R2 define d(x, y) = |x − y|
the Euclidean distance if x and y are on a line in a direction s ∈ S, otherwise
let d(x, y) = 1. This is clearly a symmetric and the sets B(x, ε) for ε > 0
are stars at x forming a weak base at x for finite S. Thus the S-radiolar
topology is symmetrizable.
Suppose the S-radiolar topology is symmetrizable. Every symmetrizable
space is weakly first-countable thus |S| < ω. It suffices to prove the following:

1. Let (X, τ) be symmetrizable with a d symmetric, C ⊆ X a closed
subspace. Then (C, τ |C) is a symmetrizable space with the symmetric
d|C×C.

2. The Sorgenfrey-line is not symmetrizable.

If 1. and 2. holds then S must be symmetric or else there is a Sorgenfrey-line
as a closed subspace.
Proof of 1.: straightforward.
Proof of 2.: suppose that d is a symmetric on the Sorgenfrey-line L; the
topology is generated by the [a, b) intervals. Then there is a rational εx > 0
for all x ∈ L such that B(x, ε) ⊆ [x,∞). There is a set L′ ⊆ L with |L′| = ℵ1

such that εx = ε for all x ∈ L′. Then for all x, y ∈ L′ we have x /∈ B(y, ε).
There is a decreasing sequence {xn}n∈ω ⊆ L′ such that xn → x ∈ L′. Then
the set A = L\{xn}n∈ω is not open however B(x, ε) ⊆ A and the other points
have Euclidean neighborhoods in A thus it should be open by the definition
of a symmetric.�

This proposition allows us to make difference between S-radiolar topolo-
gies which only have a slight difference in the defining S sets. The next
proposition shows that the number of full directions in finite S defining sets
(thus in the symmetrizable cases the cardinality of the defining S sets) is a
further invariant.
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Proposition 6.28 Let S, T ⊆ S1 be finite and σ = |{s ∈ S : −s ∈ S}| and
τ = |{t ∈ T : −t ∈ T}| such that σ 6= τ . Then the S-radiolar and T -radiolar
topology are not homeomorphic.

Proof: Suppose σ < τ . It suffices to prove the following:

1. for all x ∈ R2 the S-stars at x form a weak base for the S-radiolar
topology such that for all y ∈ B ∈ St(x, S) the set B \ {y} has at most
2σ connected components which has cardinality c,

2. for all x ∈ R2 and Cx weak base at x for the T -radiolar topology there
is a C ∈ Cx such that C \ {x} has 2τ connected components with
cardinality c.

We omit the proof as it is straightforward.�

When S is finite, the symmetrizability of the S-radiolar topology char-
acterized the existence of Sorgenfrey-lines as closed subspaces. For arbitrary
S ⊆ S1 sets to see the difference between symmetric and not symmetric cases
one shall investigate ”minimal” weak bases.

Proposition 6.29 Let S ⊆ S1 be symmetric, T ⊆ S1 not symmetric. Then
the S-radiolar and T -radiolar topology are not homeomorphic.

Proof: It suffices to show the following:

1. for every x ∈ R2 and weak base at x Bx for the S-radiolar topology,
there is a refinement B′

x of Bx (take S-stars by Lemma 6.21) such that
every element of B′

x is connected,

2. for every x ∈ R2 there is a weak base at x Cx for the T -radiolar topology
(take T -stars by Lemma 6.21) such that for every refinement C′

x of Cx
there is a C ∈ C′

x which is not connected.

Proofs can be carried out easily, so we will not present it here. �
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7 The Sz-radiolars

The next definition adjoins the idea of the S-radiolars with the above inves-
tigated z-topology in favor of getting regular spaces.

Definition 7.1 The Sz-radiolar topology: fix a S ⊆ S1. A U ⊆ R2 is said
to be Sz-radiolar open iff for every point x ∈ U there is a V S-radiolar
neighborhood of x in U such that V \ {x} is Euclidean open.

Such V sets will be called basic Sz-radiolar neighborhoods.

In some cases the Sz-radiolar topology must be regular, moreover Ty-
chonoff. For example, when we get back the original z-topology from the
specific four point S– proposition 5.8 gives us this result. Our investigation
shows two things. First a positive result.

Proposition 7.2 If S ⊆ S1 is countable then the Sz-radiolar topology is
regular.

Proof: Let x ∈ U be a basic open neighborhood. Let S = {sn}n∈ω. For
every direction sn ∈ S there is rn > 0 and a Euclidean open Un neighbor-
hood of the segment (x, x + rnsn) in U . Let r′n = min{ 1

n
, rn

2
}. There is a

Vn Euclidean open such that (x, x + r′nsn) ⊆ Vn ⊆ cl(Vn) ⊆ Un ∩ B(x, 2
n
).

Then V = {x} ∪
⋃
n∈ω Vn is Sz-radiolar open and it is easy to check that

cl(V ) ⊆ U .�

This second proposition shows, why we will not go into any further details
about these topologies, but investigate some nicer ones- which will be defined
in the upcoming section. We will locally use the following notation: if a, b ∈
S1 let â, b denote the closed arc between a and b, the open arc int(â, b).

Proposition 7.3 If S ⊆ S1 contains a nonempty perfect set P ⊆ S then the
Sz-radiolar topology is not regular.

Proof: Let x ∈ R2 be any point. Suppose that the distinct points
{sn}n∈ω ⊆ P are dense in P . Let U = R2 \ {xn = x + 1

n
sn : n ∈ ω}

then x ∈ U and U is Sz-radiolar open. Let xn ∈ Gn be any open neighbor-
hood. We claim that if x ∈ H and for G = ∪n∈ωGn we have G∩H = ∅ then
H cannot be open.
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Let n0 ≥ 2. There are a0, b0 ∈ S1 such that sn0
∈ int(â0, b0) and for all

s ∈ â0, b0 the line segment [x, x + 1
n0−1

s) ∩ Gn0
6= ∅. Straightforward to

construct by induction n0 < n1 < ... < nk < ... and ak 6= bk such that

for j < k : snj
6= snk

∈ int(âk, bk) and [x, x + 1
nk−1

s) ∩ Gnk
6= ∅ for all

s ∈ âk, bk and the arcs form a decreasing system. We can further suppose

that ∩k∈ωâk, bk = {p}. By P being perfect and snk
∈ P ∩ âk, bk we have

p ∈ P ⊆ S. However by the definition of âk, bk arcs there is no line segment
from x in direction p which would not intersect the appropriate Gnk

set.�

The claim is about a fairly huge class of S sets. Thus not even for S = S1,
the Sz-radiolar topology is not going to be regular.

8 The uniform S-radiolars and Sz-radiolars

These last modifications in the definitions lead us to one of the main interest
of this paper. This way, we obtain such topologies which are in some sense-
and some cases- near to the Euclidean topology however they have similar
convergence properties as the S-radiolars.

Definition 8.1 Fix a S ⊆ S1, x ∈ R2, r > 0. Let us consider the following
special S-stars:

S(x, r) =
⋃

{[x, x+ rs) : s ∈ S}.

Definition 8.2 Let S ⊆ S1. The uniform S-radiolar topology is defined
as follows: an U ⊆ R2 is said to be uniform S-radiolar open iff for every
point x ∈ U there is a r > 0 such that S(x, r) ⊆ U . The uniform S-radiolar
topology is the collection of all uniform S-radiolar open sets.

Definition 8.3 Let S ⊆ S1. The uniform Sz-radiolar topology is defined
as follows: an U ⊆ R2 is said to be uniform Sz-radiolar open iff for every
point x ∈ U there is a x ∈ V ⊆ U such that S(x, r) ⊆ V for some r > 0 and
V \ {x} is Euclidean open. The collection of all uniform Sz-radiolar open
sets form the uniform Sz-radiolar topology.

For example, for finite S sets the uniform S-radiolar is simply the S-
radiolar topology. For open S sets, the uniform S-radiolars and uniform
Sz-radiolars coincide. As we will mainly talk about uniform Sz-radiolars we
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will use the short notation R for this space. From now on S-open, S-closed
sets are the open, closed sets in the R(S) topology.

8.1 Basic properties of R(S)

Convergence: Take a sequence in R2: (xn), which converges to a point
x in the R(S) topology. It can easily be checked that this means that the
sequence is almost covered by any S(x, r).

Separation axioms: The R(S) spaces are Hausdorff but not every time
regular- however characterization of regularity is simple.

Proposition 8.4 The R(S) spaces are Tychonoff iff S ⊆ S1 is closed. If S
is not closed then R(S) is not even regular.

Proof: Suppose si ∈ S and si → s /∈ S. For S ′ = S1 \ {s}, the set S ′(x, r)
is S-open but for every x ∈ U S-open neighborhood, the S-closure of U has
a line segment in it in direction s.
If S is closed we will use the hereditary normality of R2 with the Euclidean
topology. Let x ∈ U be any S-open neighborhood of x. There is an r > 0
such that F = cl(S(x, r)) \ {x} ⊆ U \ {x}. F is Euclidean closed in R2 \ {x}.
There is a V Euclidean open such that F ⊆ V ⊆ cl(V ) ⊆ U and a Euclidean
continuous function f : R2\{x} → [0, 1] such that f |cl(V ) ≡ 0 and f |R2\U ≡ 1.
If f(x) = 0, then the new function is S-locally zero at x, so continuous.�

In the following theorems, we will concentrate on these nice cases, when
the R(S) topologies are Tychonoff.

Lines as subspaces: We make some easy observations on lines as sub-
spaces of R(S): for a fixed s ∈ S1 direction there can be one of the following
three kinds of topologies on a line in direction s:

• the Euclidean topology iff s,−s ∈ S,

• the Sorgenfrey-line iff only one of s and −s is in S,

• the discrete topology iff s,−s /∈ S.

Corollary 8.5 The Sorgenfrey-line or the c-discrete space is a subspace be-
sides the trivial cases of S = ∅ or S = S1 so the R(S) spaces are not
metrizable.
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Corollary 8.6 If S 6= ∅ then R(S) is separable, so cannot be normal when
there is a missing full direction in S because then there is a closed discrete
space with cardinality c.

Remark: These observations on lines as subspaces also hold for S-
radiolar topologies of course.

Connectedness: As the S-radiolar topology refines the R(S) space for
every S, the question of connectedness is clear by Theorem 6.15.

Corollary 8.7 Let S ⊆ S1 be closed. The R(S) space is connected iff S is
splayed. If S is splayed then every Euclidean open, Euclidean connected set
is connected in R(S) either.

8.2 The character of R(S)

The character of the R(S) spaces is more closely related to a certain domi-
nating number than the character or weak base character of the S-radiolar
topologies.

Proposition 8.8 For every nonempty closed S $ S1: χ(R(S)) = d.

Proof: The space is homogeneous so we just have to determine the char-
acter in an arbitrary point. From the definition of the neighborhoods, it is
sufficient to determine the character of the set S(x, r)\{x} in R2 \{x} in the
Euclidean topology. Applying a homeomorphism- moving x to ”infinity”-
one can see that our task is to determine the character of an F closed subset
of the Euclidean plane, where bd(F ) is unbounded. We claim that this is d.
Let D be a dominating family in ωω, consisting of non zero functions. Take
Kn compact subsets of F such that: F = ∪n∈ωKn and every x ∈ F is just
in finitely many Kn. We define a family of open sets: B = {Bf : f ∈ D}
such that Bf = ∪{B(x, 1

f(n)
) : x ∈ F, n = min{m ∈ ω : x ∈ Km}}. We prove

that this is a neighborhood base for F , for this let F ⊆ U be an arbitrary
open set. Then for every Kn there is a g(n) ∈ ω such that B(Kn,

1
g(n)

) ⊆ U .

Than there is a f ∈ D such that g(n) ≤ f(n). In this case F ⊆ Bf ⊆ U : if
y ∈ Bf than there is a x ∈ F such that y ∈ B(x, 1

f(n)
) where x ∈ Kn. So

y ∈ B(x, 1
f(n)

) ⊆ B(x, 1
g(n)

) ⊆ B(Kn,
1

g(n)
) ⊆ U .

Suppose that B = {Bα : α < κ} is a neighborhood base for F . We will
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show that κ ≥ d and for this, we will construct a dominating family. Let
{xn}n∈ω be a closed discrete subset of bd(F ) with disjoint neighborhoods
xn ∈ Un. For each n ∈ ω there is a sequence {ynk}k∈ω ⊆ Un \ F converging
to xn. We define a family of functions: D = {fα ∈ ωω : α < κ} such that
for each α < κ and n ∈ ω: fα(n) = max{m ∈ ω : ∀k ≤ m : ynk /∈ Bα}.
Let g ∈ ωω be an arbitrary function. Consider the xn ∈ Vn ⊆ Un open
neighborhoods for each n ∈ ω, such that ynk /∈ Vn for every k ≤ g(n). The
open set U = R2 \ {xn, y

n
k : n, k ∈ ω} ∪

⋃
n∈ω Vn is a neighborhood of F , so

there is a α < κ: Bα ⊆ U . For this α we have g(n) ≤ fα(n) for every n ∈ ω. �

8.3 R(S) and the Euclidean topology

It is time to define two basic properties which will help us to make the
connections between S and topological properties of R(S).

Definition 8.9 For an S ⊆ S1 we say, that there is no missing full direction
in S, iff x /∈ S ⇒ −x ∈ S and there is a full direction in S iff there is a
x ∈ S1 such that −x ∈ S1 either.

We will say, that x ∈ U is a S-neighborhood of x with radius r if U is
S-open and S(x, r) ⊆ U .

Lemma 8.10 If in the R(S) topology there is no missing full direction in
the defining S, than every S-open set G and its Euclidean interior can only
differ in ℵ0 many points.

Proof: For every S-open G let G∗ = G \ int(G). We prove that G∗ is
countable, that is only countable many points do not have Euclidean neigh-
borhoods in G. Every point in G has an S-neighborhood in G, fix one for
every point with rational radius. These only intersect G∗ in their center,
every other point of an S-neighborhood is part of the Euclidean interior. If
|G∗| > ℵ0 than there are more than countably many points in G∗ with S-
neighborhoods in G with a fix r > 0 rational radius. These points have an
Euclidean accumulation point, we only use the fact that there are x, y ∈ G∗

such that |x − y| < r/10. There are no missing full directions in S, so the
xy or the yx direction is in S. This implies that y ∈ BS(x, ε, r) ⊆ G or
x ∈ BS(y, ε, r) ⊆ G, which is a contradiction.�

We get the following easy statement:
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Proposition 8.11 In R(S) the number of open sets is c iff there is no miss-
ing direction in the defining set S. If there is a missing direction there are
2c open sets.

Proof: If there is a missing direction then in such a direction the lines as
subspaces have the discrete topology. If there is no missing direction in S,
then we can use the 8.10 Lemma.�

Proposition 8.12 If there is no missing full direction in S ⊆ S1 Euclidean
closed then

• if s ∈ S and −s /∈ S then s ∈ int(S),

• there is a full direction in S.

Proof: Suppose that s ∈ S \ int(S). Then there is a sequence si ∈ S1 \ S
such that si → s. Then −si ∈ S and −si → −s so provided by S being
closed, −s ∈ S.
By the previous claim, if there is no full direction in the closed S then
S = int(S) would be a clopen set. �

Corollary 8.13 If there is no discrete subspace on any line in R(S) then
there are lines which have the Euclidean topology on them.

8.4 Lindelöf property, separability

Theorem 8.14 The R(S) spaces are hereditarily Lindelöf iff there is no
missing full direction in S.

Proof: If there is a missing full direction, than we have a discrete subspace
with cardinality c.
For the other implication let X ⊂ R2 be an arbitrary set, X ⊆

⋃
{Gi : i ∈ I}

S-open cover. By using 8.10 Lemma for ∪i∈IGi, we obtain that there are only
countably many points in X, which are not covered by any Gi’s interior: let
these points be H . For the X \ H ⊆

⋃
{int(Gi) : i ∈ I}, Euclidean open

cover we can use the Lindelöf-theorem. So we have a countable subcover:
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X \H ⊆
⋃
{Gj}j∈ω. For every h ∈ H there is a Gh from the original cover

such that h ∈ Gh. H is countable, so {Gj}j∈ω ∪ {Gh}h∈H is a countable
subcover for X. �

Corollary 8.15 The R(S) spaces are normal iff there is no missing full
direction in S, indeed T3+Lindelöf ⇒ T4.

While the R(S) spaces are trivially separable, a stronger claim can be
made.

Theorem 8.16 The R(S) spaces are hereditarily separable iff there is no
missing full direction in S.

Proof: If there is a missing full direction then we have a discrete subspace
with cardinality c.
Let X ⊆ R2 be an arbitrary subspace. Take one point x1 ∈ X. We can
suppose that this is not a dense subspace. With transfinite recursion we
define H : if H is still not dense in X, take a new point from an open set
in X, which is disjoint from H-,for limit ordinals just take unions. Now,
for every xα ∈ H there is a Gα S-neighborhood- with rational radius- such
that β < α-ra xβ /∈ Gα. If we choosed ω1 many points this way then there
are more than countable many points with S-neighborhoods with a fixed r
radius. These points form a set Ĥ . This set has two condensation points:
xα, xβ ∈ Ĥ, closer than r/10, where we can suppose that: α > β.

xα

xβ

In this case xβ /∈ Gα, but xα ∈ Gβ, because they are close to each
other and there is no missing full direction. In this case, the direction
s = (xβxα) ∈ S is eventually in the interior of S, because of Proposition
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8.12. xβ is a condensation point either, so there is an xγ ∈ Ĥ , γ > α,
such that xα ∈ Gγ because Gγ is just a translate of Gβ , closely to direction
s ∈ int(S). This contradicts to the choice of Gγ .�

8.5 Compactness, compact subspaces

While trivially the whole space will not be compact– nor sequentially, count-
ably compact– from the previous section it is straightforward that R(S) will
be paracompact iff there is no missing full direction in S.

First, we would like to characterize the compact subspaces with some
easy conditions. As it can be seen on the Sorgenfrey-line, being bounded
and (S-)closed is not enough for compactness.

Proposition 8.17 A K ⊆ R2 subspace is S-compact iff it is Euclidean com-
pact and for every x ∈ K there is a r > 0 such that K ∩ B(x, r) ⊆ S(x, r).

Proof: Let K be an S-compact subspace. Trivially K is Euclidean compact
either. Suppose that there is an x ∈ K such that for every n ∈ ω there is an
xn ∈ K such that xn ∈ B(x, 1

n
) \ S(x, 1

n
). Then {x, xn : n ∈ ω} is S-closed

and a subspace of K, so it should be S-compact. Though, it has the discrete
topology.
Now suppose that K satisfy the conditions from above and K =

⋃
i∈ΓGi

is an arbitrary S-open cover, we can suppose that the open sets are S-
neighborhoods. Let G∗ be the points, which are only covered by centers. If
|G∗| is infinite, than it has an Euclidean accumulation point: k ∈ K. There
is an r > 0, that the points closer to k than r are in an S-neighborhood of k
which is part of the Gi covering k. So these points cannot be in G∗, so G∗ is
finite. These points can be covered by finitely many Gi’s. After this, we just
need to choose a finite subcover for this covering: K \ G∗ =

⋃
i∈Γ int(Gi).

This can be done, because this is a Euclidean open cover of a Euclidean
compact set.�

Interesting fact, that on the Sorgenfrey-line there are no uncountable
compact subspaces. There are certain R(S) spaces where one can trivially
find uncountable compact spaces- if S contains a full direction, Euclidean
lines appear.
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Proposition 8.18 There exists an uncountable K ⊆ R2 S-compact subspace
iff there is a full direction in S

Proof: If there is a full direction in S then there are Euclidean lines as
subspaces.
Now suppose, that K is an S-compact subspace such that |K| > ℵ0. Be-
cause of 8.17 Proposition, for every x ∈ K there is an r(x) ∈ Q such that
K∩B(x, r(x)) ⊂ S(x, r(x)). There are more than countably many points with
the same rational r, their set is H ⊂ K. There are two accumulation points
in H : x, y such that they are closer than r/10. Thus directions xy and yx
are both in S. �

This proposition gives us a partial result concerning pathwise connected-
ness in R(S) spaces: if the R(S) is path-wise connected then the defining
S ⊆ S1 must contain a full direction.

9 A modification for first-countability

We will give a definition of a topology on R2 which nearly coincides with
R(S), but has the advantage of being first-countable. Let B(S, ε) note the ε
radius Euclidean neighborhood of the set S in S1.

Definition 9.1 Let S ⊆ S1. For every x ∈ R2 and ε, r > 0:

BS(x, ε, r) =
⋃

{[x, x+ rs) : s ∈ B(S, ε)}

is the S-neighborhood of x with radius r and width ε.

r

ε
BS(x, ε, r)

Definition 9.2 For any S ⊆ S1 Euclidean-closed let R̂(S) = (R2, τ̂S) be the
following topology: G ⊆ R2 is open iff for every x ∈ G there are ε, r > 0 such
that BS(x, ε, r) ⊆ G.
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By this modification we trivially get a first-countable space. The price is
that the convergence in R̂(S)- as convergence from directions in S- will be
a little less ”sharp”: (xn) → x iff for every ε, r > 0 the sequence is almost
in BS(x, ε, r)- this allows a convergent sequence to avoid S(x, r) completely.
Besides these two differences the propositions, theorems and remarks made
for R(S) will hold for R̂(S) either- only minor changes are needed.

10 Open problems

In this last section, we would like to pose some open questions concerning
these topics.

10.1 Axioms of separation for XzY

We have gave sufficient conditions for X and Y which made the space XzY
regular. The hereditary normality of the product space XπY makes XzY
Tychonoff. Our main interest is that do we need such strong properties of
the product to get stronger separation axioms for XzY ?

Question 10.1 Are there any ”reasonable” conditions for X and Y that
makes the space XzY Tychonoff?

10.2 Differentiating the topologies

We have defined several classes of spaces and investigated in detail two main
classes, the S-radiolar and R(S) topologies. We have seen that for finite and
infinite S sets, the S-radiolars cannot be homeomorphic. It is natural to ask:

Question 10.2 How many non homeomorphic S-radiolar topologies have we
defined?

Another, maybe more ambitious task is to answer the following question.

Question 10.3 For S, S ′ ⊆ S1 when will the S-radiolar and S ′-radiolar
topologies coincide?

Lindelöf property, compact subspaces or connectedness in R(S) spaces
shows that there are non homeomorphic spaces among these, but such prop-
erties separate just finitely many cases. However, in this case we have the
following partial result.
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Proposition 10.4 Let S, T ⊆ S1 be closed sets. Suppose S and T are
splayed and have different finite number of connected components. Then
R(S) and R(T ) are not homeomorphic.

Proof: Suppose S has s and T has t many connected components, s < t.
The assumptions yield that S and T are just finite union of closed intervals.
It suffices to show the following:

1. there is a base B for R(S) such that there is a unique point x in
every U ∈ B such that U \ {x} is the union of s many Euclidean
open, connected sets thus by 8.7 it has exactly s many S-connected
components– and leaving other points will not increase the number of
connected components,

2. in every base C for R(T ) there is set C ∈ C and a point y ∈ C such
that C \ {y} has at least t connected components.

As there is no theoretical difficulty in proving these claims– just technical
problems, describing precisely the neighborhoods– we omit the proof.�

Thus, there are at least countably infinitely many different R(S) spaces–
choosing Si to be a set with i points (i ∈ ω), the R(Si) spaces are non
homeomorphic. However there are c closed subsets in S1, so the analogue
problems to the previous ones are still open.

Question 10.5 How many non homeomorphic R(S) topologies have we de-
fined?

Question 10.6 For closed S, S ′ ⊆ S1 when will the R(S) and R(S ′) spaces
coincide?

10.3 Pathwise connectedness in R(S)

Similarly to S-radiolar topologies if S contains two full directions then R(S)
will be pathwise connected. This was a necessary condition in the case of
S-radiolars. However, that proof cannot be applied here, because compact
subspaces of R(S) are cannot be covered always by finitely many lines– just
consider the case S = S1.

Question 10.7 Is it necessary to S contain at least two full directions to the
space R(S) be pathwise connected?
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