Partitioning bases of topological spaces

Dániel T. Soukup

University of Toronto

Fields Institute, 2013

Dániel Soukup (U of T) Partitioning bases of topological spaces

Given a topological space X and a base $\mathbb B$ of X is there a partition of $\mathbb B$ into two bases?

• space $X \sim$ topological space with **no isolated points**.

Definition

Given a topological space X and a base \mathbb{B} of X is there a partition of \mathbb{B} into two bases?

• space $X \sim$ topological space with **no isolated points**.

Definition

Given a topological space X and a base \mathbb{B} of X is there a partition of \mathbb{B} into two bases?

• space $X \sim$ topological space with **no isolated points**.

Definition

Given a topological space X and a base \mathbb{B} of X is there a partition of \mathbb{B} into two bases?

• space $X \sim$ topological space with **no isolated points**.

Definition

- (Hewitt) Is there a partition of X into disjoint dense sets?
- (Baumgartner) There is a coloring c : [Q]² → ω such that c" [A]² = ω for every A ⊆ Q with A ≃ Q.
- (Elekes, Mátrai, L. Soukup) There is an infinite fold cover A of ℝ with translates of a single compact set such that there are no disjoint subcovers of ℝ in A.
- (Lindgren, Nyikos) Order properties of bases, Noetherian bases.

• (Hewitt) Is there a partition of X into disjoint dense sets?

- (Baumgartner) There is a coloring $c : [\mathbb{Q}]^2 \to \omega$ such that $c''[A]^2 = \omega$ for every $A \subseteq \mathbb{Q}$ with $A \simeq \mathbb{Q}$.
- (Elekes, Mátrai, L. Soukup) There is an infinite fold cover A of ℝ with translates of a single compact set such that there are no disjoint subcovers of ℝ in A.
- (Lindgren, Nyikos) Order properties of bases, Noetherian bases.

- (Hewitt) Is there a partition of X into disjoint dense sets?
- (Baumgartner) There is a coloring $c : [\mathbb{Q}]^2 \to \omega$ such that $c''[A]^2 = \omega$ for every $A \subseteq \mathbb{Q}$ with $A \simeq \mathbb{Q}$.
- (Elekes, Mátrai, L. Soukup) There is an infinite fold cover A of ℝ with translates of a single compact set such that there are no disjoint subcovers of ℝ in A.
- (Lindgren, Nyikos) Order properties of bases, Noetherian bases.

- (Hewitt) Is there a partition of X into disjoint dense sets?
- (Baumgartner) There is a coloring $c : [\mathbb{Q}]^2 \to \omega$ such that $c''[A]^2 = \omega$ for every $A \subseteq \mathbb{Q}$ with $A \simeq \mathbb{Q}$.
- (Elekes, Mátrai, L. Soukup) There is an infinite fold cover A of ℝ with translates of a single compact set such that there are no disjoint subcovers of ℝ in A.
- (Lindgren, Nyikos) Order properties of bases, Noetherian bases.

- (Hewitt) Is there a partition of X into disjoint dense sets?
- (Baumgartner) There is a coloring $c : [\mathbb{Q}]^2 \to \omega$ such that $c''[A]^2 = \omega$ for every $A \subseteq \mathbb{Q}$ with $A \simeq \mathbb{Q}$.
- (Elekes, Mátrai, L. Soukup) There is an infinite fold cover A of ℝ with translates of a single compact set such that there are no disjoint subcovers of ℝ in A.
- (Lindgren, Nyikos) Order properties of bases, Noetherian bases.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

(Stone) If a partial order \mathbb{P} has **no maximal elements** then it admits a **partition to two cofinal sets**.

Observation

- Every neighborhood base can be partitioned to two neighborhood bases.
- Every π -base can be partitioned to two π -bases.
- Every base can be partitioned to a cover and a base.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

(Stone) If a partial order \mathbb{P} has no maximal elements then it admits a partition to two cofinal sets.

Observation

- Every neighborhood base can be partitioned to two neighborhood bases.
- Every π -base can be partitioned to two π -bases.
- Every base can be partitioned to a cover and a base.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

(Stone) If a partial order \mathbb{P} has no maximal elements then it admits a partition to two cofinal sets.

Observation

Every neighborhood base can be partitioned to two neighborhood bases.

2) Every π -base can be partitioned to two π -bases.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

(Stone) If a partial order \mathbb{P} has no maximal elements then it admits a partition to two cofinal sets.

Observation

Every neighborhood base can be partitioned to two neighborhood bases.

2) Every π -base can be partitioned to two π -bases.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

(Stone) If a partial order \mathbb{P} has no maximal elements then it admits a partition to two cofinal sets.

Observation

 Every neighborhood base can be partitioned to two neighborhood bases.

2 Every π -base can be partitioned to two π -bases.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

(Stone) If a partial order \mathbb{P} has no maximal elements then it admits a partition to two cofinal sets.

Observation

 Every neighborhood base can be partitioned to two neighborhood bases.

2 Every π -base can be partitioned to two π -bases.

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

Proposition

Every **metrizable** space is base resolvable.

Enough: having a σ -disjoint base.

Theorem

Every T₃ (locally) **Lindelöf** space is base resolvable.

In particular: compact spaces, powers of [0, 1].

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

Proposition

Every **metrizable** space is base resolvable.

Enough: having a σ -disjoint base.

Theorem

Every T_3 (locally) **Lindelöf** space is base resolvable.

In particular: compact spaces, powers of [0, 1].

< ∃ ►

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

Proposition

Every **metrizable** space is base resolvable.

Enough: having a σ -disjoint base.

Theorem

Every T_3 (locally) **Lindelöf** space is base resolvable.

In particular: compact spaces, powers of [0, 1].

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

Proposition

Every **metrizable** space is base resolvable.

Enough: having a σ -disjoint base.

Theorem

Every T_3 (locally) Lindelöf space is base resolvable.

In particular: compact spaces, powers of [0,1].

A base \mathbb{B} is **resolvable** \Leftrightarrow there is partition of \mathbb{B} to disjoint bases.

Proposition

Every **metrizable** space is base resolvable.

Enough: having a σ -disjoint base.

Theorem

Every T_3 (locally) Lindelöf space is base resolvable.

In particular: compact spaces, powers of [0, 1].

There is a (T_0) space X with a point countable, **non resolvable base** \mathbb{B} .

Remark: X admits a compact, 1st countable topology τ and the non resolvable base \mathbb{B} is a subfamily of τ .

Theorem (L. Soukup)

There is a (T_0) space X with a point countable, **non resolvable base** \mathbb{B} .

Remark: X admits a compact, 1st countable topology τ and the non resolvable base \mathbb{B} is a subfamily of τ .

Theorem (L. Soukup)

There is a (T_0) space X with a point countable, **non resolvable base** \mathbb{B} .

Remark: X admits a compact, 1st countable topology τ and the non resolvable base \mathbb{B} is a subfamily of τ .

Theorem (L. Soukup)

There is a (T_0) space X with a point countable, **non resolvable base** \mathbb{B} .

Remark: X admits a compact, 1st countable topology τ and the non resolvable base \mathbb{B} is a subfamily of τ .

Theorem (L. Soukup)

- Is every linearly ordered space base resolvable?
- Is every T₃ (hereditarily) separable space base resolvable?
- Is every homogeneous space base resolvable?
- Is every **power of** \mathbb{R} base resolvable?
- Is there a **non resolvable base** B for a topology on R such that every set in B is **Euclidean closed** (Borel)?

Access to paper: http://www.math.toronto.edu/ \sim dsoukup/

• Is every linearly ordered space base resolvable?

- Is every T₃ (hereditarily) separable space base resolvable?
- Is every homogeneous space base resolvable?
- Is every **power of** \mathbb{R} base resolvable?
- Is there a **non resolvable base** B for a topology on R such that every set in B is **Euclidean closed** (Borel)?

- Is every linearly ordered space base resolvable?
- Is every T₃ (hereditarily) separable space base resolvable?
- Is every homogeneous space base resolvable?
- Is every power of $\mathbb R$ base resolvable?
- Is there a **non resolvable base** B for a topology on R such that every set in B is **Euclidean closed** (Borel)?

- Is every linearly ordered space base resolvable?
- Is every T₃ (hereditarily) separable space base resolvable?
- Is every homogeneous space base resolvable?
- Is every power of $\mathbb R$ base resolvable?
- Is there a **non resolvable base** B for a topology on R such that every set in B is **Euclidean closed** (Borel)?

- Is every linearly ordered space base resolvable?
- Is every T₃ (hereditarily) separable space base resolvable?
- Is every homogeneous space base resolvable?
- Is every **power of** \mathbb{R} base resolvable?
- Is there a **non resolvable base** B for a topology on R such that every set in B is **Euclidean closed** (Borel)?

- Is every linearly ordered space base resolvable?
- Is every T₃ (hereditarily) separable space base resolvable?
- Is every homogeneous space base resolvable?
- Is every **power of** \mathbb{R} base resolvable?
- Is there a non resolvable base 𝔅 for a topology on 𝔅 such that every set in 𝔅 is Euclidean closed (Borel)?