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The outline of our problems
we work with in�nite graphs: ountably or unountably manyverties;edge-oloring problems: Ramsey-type results and partitions intomonohromati subgraphs;vertex-oloring problems: strutural properties of graphs with largehromati number,some problems I would like to solve.
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Motivation
anti-Ramsey theory:appliations in general topology: L-spaes,appliations in funtional analysis: Banah-spaes and free sequenes;hromati number problems:theory of expanders,appliations in omputer siene;
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Edge-olored omplete graphsThe originsTheorem (R. Rado, 1978)If the edges of the omplete graph on N are olored with �nitely manyolors then the verties an be overed by disjoint monohromatipaths of di�erent olor.P. Erd®s on Rihard Rado:"I was good at disovering perhapsdi�ult and interesting speial ases,and Rihard was good at generalizingthem and putting them in their properperspetive."Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 4 / 28
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Ideas of the proofThere is a non-trivial 0-1-valued measure on N, i.e. m : P(N) → {0, 1}suh that:m is �nitely additive,m(N) = 1 and m({n}) = 0 for all n ∈ N.FatIf m(U ∪ V ) = 1 then either m(U) = 1 or m(V ) = 1.If m(U) = m(V ) = 1 then m(U ∩ V ) = 1.
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Ideas of the proofm(U ∪ V ) = 1 ⇒ m(U) = 1 or m(V ) = 1;m(U) = m(V ) = 1 ⇒ m(U ∩ V ) = 1.Consider a omplete graph on N with red and blue edges.let Ar = {u ∈ N : m({v ∈ N : {u, v} is red}) = 1},let Ab = {u ∈ N : m({v ∈ N : {u, v} is blue}) = 1},note that N = Ar ∪ Ab.Any u, u′ ∈ Ar are onneted by in�nitely many red paths (of length 2),
⇒ Ar is overed by a red path,
⇒ repeat the same for Ab simultaneously.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 6 / 28
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Developments on the �nite aseGeneral problem (Gyárfás): given an r -edge oloring of Kn is there a over by(disjoint) monohromati paths (of di�erent olor)?Suppose that r is small:1 ("easy") Every 2-edge olored Kn an be partitioned into 2monohromati paths of di�erent olor.2 [K. Heinrih, ??℄ There are r -edge olored opies of Kn for r ≥ 3 sothat there is no partition into r paths of di�erent olor.3 [A. Pokrovskiy, 2013℄ Every 3-edge olored Kn an be partitionedinto 3 monohromati paths.Completely open: r = 4 or larger.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 7 / 28
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Developments on the �nite aseGeneral problem (Gyárfás): given an r -edge oloring of Kn is there a over by(disjoint) monohromati paths (of di�erent olor)?For arbitrary number of olors:1 [Gyárfás, 1989℄ Every r -edge olored Kn is overed by ≤ C · r4monohromati paths (for some small onstant C ).2 [Gyárfás et al., 1998℄ Every r -edge olored opy of Kn an bepartitioned into ≈ 100r log(r) monohromati yles.Signi�ant work done on monohromati yle partitions; Lehel'sonjeture and Erd®s-Gyárfás-Pyber onjeture.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 8 / 28
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Stronger versions of Rado's theoremCovers by powers of pathsDe�nitionSuppose that G is a graph and k ∈ N. The k th power of G is the graphG k = (V ,E k ) where {v ,w} ∈ E k i� there is a �nite path of length ≤ kfrom v to w.What is a power of a path?
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Stronger versions of Rado's theoremCovers by powers of pathsDe�nitionSuppose that G is a graph and k ∈ N. The k th power of G is the graphG k = (V ,E k ) where {v ,w} ∈ E k i� there is a �nite path of length ≤ kfrom v to w.What is a power of a path?
I.e. the graph is loally omplete.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 9 / 28



Motivation
Theorem (In�nite Ramsey)In every �nite edge olored omplete graph on N there is an in�nitemonohromati omplete subgraph.one annot always partition into monohromati ompletesubgraphs,how about partitions into monohromati loally ompletesubgraphs?
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Partitions into powers of pathsA k th-power of a path is {xi : i < n} so that xi , xj is an edge if |i − j | ≤ k .Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:TheoremFix natural numbers k , r and an r-edge oloring of the omplete graph on
N. Then the verties an be overed by ≤ r (k−1)r+1 disjoint in�nitemonohromati k th powers of paths apart from a �nite set.For k = r = 2 we atually have a partition into 4 monohromati seondpowers of paths and this result is sharp.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 11 / 28
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The tools of our proofintrodue a game on edge olored graphs with parameter W (subsetof verties),Adam and Bob hooses disjoint �nite sets turn by turn,a winning strategy for Bob overs W by a power of a path,�nd su�ient onditions on W for the existene of a winning strategy,use the measure on N from before to �nd N =
⋃
{Wi : i < N} withwinning strategies on eah Wi ,let Bob win simultaneously on eah Wi .Open problem: what is the preise bound? what about �nite graphs?Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 12 / 28
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In�nite paths of arbitrary lengthDe�nition (Rado, 1978)For a graph P = (V ,E ), we say that P is a path i� there is a wellordering ≺ on V suh that any two points v ,w ∈ V are onneted by a
≺-monotone �nite path.How to imagine paths longer than the type of N? Type N+ 1?
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Arbitrary in�nite omplete graphsA path is a graph P with w.o. ≺ so that any two points are onneted by a �nite
≺-monotone path.
Problem (Rado, 1978)Is every 2-edge olored in�nite omplete graph overed by two disjointmonohromati paths of di�erent olor?How about more olors?
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Arbitrary in�nite omplete graphsAnswers
Theorem (D.S.)Every 2-edge olored in�nite omplete graph an be overed by twodisjoint monohromati paths of di�erent olor.Open: Is it true that the number of paths needed only depends on thenumber of olors? The number of olors and the size of the graph?
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How to build unountable paths?... and what are the di�ulties?Our approah:1 �nd the limit points of the path �rst,2 �nd the o�nal sets witnessing thelimit position,3 provided that the green verties areonneted (by �nite paths), build thetrans�nite path around thesepoints...
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Vertex oloring problemsDe�nitionThe hromati number of a graph G, denoted by Chr(G ), is the least(ardinal) number κ suh that the verties of G an be overed by κmany independent sets. How does large hromati numbera�et the subgraph struture?
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The �rst resultsTutte, 1954: There are △-freegraphs of arbitrary large �nitehromati number.Erd®s, 1959: There are graphswith arbitrary large girth andarbitrary large �nitehromati number.the probability method;de-randomized onstrutions:expanders.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 18 / 28
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Unountable hromati numberWhat graphs must our as subgraphs of unountably hromati graphs?
Erd®s-Rado, 1959: There are
△-free graphs with size andhromati number κ for eahin�nite κ.Erd®s-Hajnal, 1966:If Chr(G ) > ω then Kn,ω1embeds into G for eah n ∈ ω.In partiular, yles of length 4embed into G .Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 19 / 28
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Degrees of onnetivityDe�nitionG is n-onneted (in�nitely onneted) i� given verties v ,w and n − 1points (�nitely many points) F there is a path whih onnets v and wand avoids F .E.g: Kn,ω1 is n-onneted. Does having large hromati numberimply the existene of highly onneted subgraphs?re�et to some highly onneted subgraphs?Note: the hromati number re�ets to onneted subgraphs.Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 20 / 28
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Chromati number and onnetivity
Does every graph G with unountable hromati number ontainan n-onneted unountably hromati subgraph?an in�nitely onneted unountably hromati subgraph?[Erd®s-Hajnal, 1966℄ Suppose |G | = Chr(G ) = ω1. Is there anin�nitely onneted unountably hromati subgraph of G?[Erd®s-Hajnal, 1985℄ Suppose Chr(G ) = ω1. Is there an in�nitelyonneted unountably hromati subgraph of G?
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The answers[Komjáth, 1986℄If Chr(G ) > ω then there is ann-onneted unountablyhromati subgraph of Gfor eah n ∈ ω.[Komjáth, 1988℄ Under PFA, if |G | = Chr(G ) = ω1 thenG has an in�nitely onneted unountably hromati subgraph.[Komjáth, 1988-2013℄ Consistently, there is a graph
|G | = Chr(G ) = ω1 suh that there is no in�nitely onnetedunountably hromati subgraphs of G .Dániel Soukup (U of T) Coloring problems on in�nite graphs MU 2015 22 / 28
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The answers - ontinuedQuestion from [Erd®s-Hajnal, 1966℄: independent. XQuestion from [Erd®s-Hajnal, 1985℄: onsistently no.Theorem (D.S. 2014)There is a graph of hromati number ω1 and size ontinuum withoutunountable in�nitely onneted subgraphs.Question from [Erd®s-Hajnal, 1985℄: no in ZFC. X
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Problems I would like to solve I.... or see solved.
[Komjáth, ??℄ Is there a graph with unountable hromati numberwhih ontains no in�nitely onneted subgraphs?Reall: there are G with Chr(G ) > ω where every in�nitely onnetedsubgraph is ountable.Question: how to eliminate the ountable in�nitely onnetedsubgraphs?Not even a onsisteny result...
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Problems I would like to solve II.... or see solved.
[Erd®s, Hajnal 1975℄ Is there a graph with unountable hromatinumber whih ontains no triangle free subgraphs withunountable hromati number?Reall: ∃ ∆-free graph G with Chr(G ) > ω.Question: is there a graph with large hromati number without suha subgraph?[Shelah, 1988℄ Consistently yes.
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Problems I would like to solve III.... or see solved.[Erd®s, Hajnal 1975℄ Suppose that f : N → N is inreasing. Is therea graph G with unountable hromati number suh that everyn-hromati subgraph of G has at least f (n) verties (for alln ≥ 3)?Reall: If Chr(G ) is in�nite then sup{Chr(H) : H ⊆ G �nite} isin�nite as well.Question: how fast are the �nitely hromati subgraphs growing?[Shelah, 2005℄ Consistently yes.
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Thank you for your attention.
�The in�nite we do now, the �nitewill have to wait a little.�P. Erd®s
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