Coloring problems on infinite graphs

Dániel T. Soukup
University of Toronto

Miami University, January 232015

The outline of our problems

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic sulbgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

The outline of our problems

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic sulbgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

The outline of our problems

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would' like to solve.

The outline of our problems

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

The outline of our problems

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

Motivation

- anti-Ramsey theory:
- chromatic number problems:

Motivation

- anti-Ramsey theory:
- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:

Motivation

- anti-Ramsey theory:
- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:

Motivation

- anti-Ramsey theory:
- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;

Motivation

- anti-Ramsey theory:
- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
- theory of expanders,
- applications in computer science;

Motivation

- anti-Ramsey theory:
- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
- theory of expanders,
- applications in computer science;

Motivation

- anti-Ramsey theory:
- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
- theory of expanders,
- applications in computer science;

Edge-colored complete graphs

The origins

Theorem (R. Rado, 1978)

If the edges of the complete graph on N are colored with finitely many colors then the vertices can be covered by disjoint monochromatic paths of different color.

```
P. Erdős on Richard Rado:
"I was good at discovering perhaps
difficult and interesting special cases,
and Richard was good at generalizing
them and putting them in their proper
perspective."
```


Edge-colored complete graphs

The origins

Theorem (R. Rado, 1978)

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be covered by disjoint monochromatic paths of different color.

```
P. Erdős on Richard Rado:
"I was good at discovering perhaps
difficult and interesting special cases,
and Richard was good at generalizing
them and putting them in their proper
perspective."
```


Edge-colored complete graphs

The origins

Theorem (R. Rado, 1978)

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be covered by disjoint monochromatic paths of different color.

```
P. Erdős on Richard Rado:
"I was good at discovering perhaps
difficult and interesting special cases,
and Richard was good at generalizing
them and putting them in their proper
perspective."
```


Edge-colored complete graphs

The origins

Theorem (R. Rado, 1978)

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be covered by disjoint monochromatic paths of different color.
P. Erdős on Richard Rado:
"I was good at discovering perhaps difficult and interesting special cases, and Richard was good at generalizing them and putting them in their proper perspective."

Ideas of the proof

There is a non-trivial 0 -1-valued measure on \mathbb{N}, i.e. $m: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ such that:

- m is finitely additive,
- $m(\mathbb{N})=1$ and $m(\{n\})=0$ for all $n \in \mathbb{N}$.

Fact

- If $m(U \cup V)=1$ then either $m(U)=1$ or $m(V)=1$.
- If $m(U)=m(V)=1$ then $m(U \cap V)=1$.

Ideas of the proof

There is a non-trivial 0 -1-valued measure on \mathbb{N}, i.e. $m: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ such that:

- m is finitely additive,
- $m(\mathbb{N})=1$ and $m(\{n\})=0$ for all $n \in \mathbb{N}$.

Fact

- If $m(U \cup V)=1$ then either $m(U)=1$ or $m(V)=1$.
- If $m(U)=m(V)=1$ then $m(U \cap V)=1$.

Ideas of the proof

There is a non-trivial 0 - 1 -valued measure on \mathbb{N}, i.e. $m: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ such that:

- m is finitely additive,
- $m(\mathbb{N})=1$ and $m(\{n\})=0$ for all $n \in \mathbb{N}$.

Fact

- If $m(U \cup V)=1$ then either $m(U)=1$ or $m(V)=1$.
- If $m(U)=m(V)=1$ then $m(U \cap V)=1$.

Ideas of the proof

There is a non-trivial 0 -1-valued measure on \mathbb{N}, i.e. $m: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ such that:

- m is finitely additive,
- $m(\mathbb{N})=1$ and $m(\{n\})=0$ for all $n \in \mathbb{N}$.

Fact

- If $m(U \cup V)=1$ then either $m(U)=1$ or $m(V)=1$
- If $m(U)=m(V)=1$ then $m(U \cap V)=1$.

Ideas of the proof

There is a non-trivial 0 -1-valued measure on \mathbb{N}, i.e. $m: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ such that:

- m is finitely additive,
- $m(\mathbb{N})=1$ and $m(\{n\})=0$ for all $n \in \mathbb{N}$.

Fact

- If $m(U \cup V)=1$ then either $m(U)=1$ or $m(V)=1$.
- If $m(U)=m(V)=1$ then $m(U \cap V)=1$.

Ideas of the proof

$m(U \cup V)=1 \Rightarrow m(U)=1$ or $m(V)=1$;
$m(U)=m(V)=1 \Rightarrow m(U \cap V)=1$.

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$,
- note that $\mathbb{N}=A_{r} \cup A_{b}$.

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2),
$\Rightarrow A_{r}$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously.

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $\Lambda_{b}=\{u \subset \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$
- note that $\mathbb{N}=A_{r} \cup A_{b}$

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2), $\Rightarrow A$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously.

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$
- note that $\mathbb{N}=A_{r} \cup A_{b}$

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2),
$\Rightarrow A_{r}$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously.

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$,
- note that $\mathbb{N}=A_{r} \cup A_{b}$.

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2),
$\Rightarrow A_{r}$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously.

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$,
- note that $\mathbb{N}=A_{r} \cup A_{b}$.

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2),
$\Rightarrow A_{r}$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$,
- note that $\mathbb{N}=A_{r} \cup A_{b}$.

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2),
$\Rightarrow A_{r}$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously.

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$,
- note that $\mathbb{N}=A_{r} \cup A_{b}$.

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_{r}$ is covered by a red path, \Rightarrow repeat the same for A_{b} simultaneously

Ideas of the proof

$$
\begin{aligned}
& m(U \cup V)=1 \Rightarrow m(U)=1 \text { or } m(V)=1 \\
& m(U)=m(V)=1 \Rightarrow m(U \cap V)=1
\end{aligned}
$$

Consider a complete graph on \mathbb{N} with red and blue edges.

- let $A_{r}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is red $\})=1\}$,
- let $A_{b}=\{u \in \mathbb{N}: m(\{v \in \mathbb{N}:\{u, v\}$ is blue $\})=1\}$,
- note that $\mathbb{N}=A_{r} \cup A_{b}$.

Any $u, u^{\prime} \in A_{r}$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_{r}$ is covered by a red path,
\Rightarrow repeat the same for A_{b} simultaneously.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that r is small:

(9) ("easy") Every 2-edge colored K_{n} can be partitioned into 2 monochromatic paths of different color.
(2) [K. Heinrich, ??] There are r-edge colored copies of K_{n} for $r \geq 3$ so that there is no partition into r paths of different color.
(3) [A. Pokrovskiy, 2013] Every 3-edge colored K_{n} can be partitioned into 3 monochromatic paths.

Completely open: $r=1$ or larger.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that r is small:
(3) ("easy") Every 2-edge colored K_{n} can be partitioned into 2 monochromatic paths of different color.
(a $\left[\mathrm{K}\right.$. Heinrich, ??! There are r-edge colored copies of K_{n} for $r \geq 3$ so that there is no partition into r paths of different color.
(3) [A. Pokrovskiy, 2013] Every 3-edge colored K_{n} can be partitioned into 3 monochromatic paths.

Completely open: $r=4$ or larger.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that r is small:
(1) ("easy") Every 2-edge colored K_{n} can be partitioned into 2 monochromatic paths of different color.
(2) [K. Heinrich, ??] There are r-edge colored copies of K_{n} for $r \geq 3$ so that there is no partition into r paths of different color.
(3) [A. Pokrovskiy, 2013] Every 3-edge colored K_{n} can be partitioned into 3 monochromatic paths.

Completely open: $r=4$ or larger.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that r is small:
(1) ("easy") Every 2-edge colored K_{n} can be partitioned into 2 monochromatic paths of different color.
(2) [K. Heinrich, ??] There are r-edge colored copies of K_{n} for $r \geq 3$ so that there is no partition into r paths of different color.
(3) [A. Pokrovskiy, 2013] Every 3-edge colored K_{n} can be partitioned into 3 monochromatic paths.

Completely open: $r=1$ or larger

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that r is small:
(1) ("easy") Every 2-edge colored K_{n} can be partitioned into 2 monochromatic paths of different color.
(2) [K. Heinrich, ??] There are r-edge colored copies of K_{n} for $r \geq 3$ so that there is no partition into r paths of different color.
(3) [A. Pokrovskiy, 2013] Every 3-edge colored K_{n} can be partitioned into 3 monochromatic paths.

Completely open: $r=4$ or larger.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that r is small:
(1) ("easy") Every 2-edge colored K_{n} can be partitioned into 2 monochromatic paths of different color.
(2) [K. Heinrich, ??] There are r-edge colored copies of K_{n} for $r \geq 3$ so that there is no partition into r paths of different color.
(3) [A. Pokrovskiy, 2013] Every 3-edge colored K_{n} can be partitioned into 3 monochromatic paths.

Completely open: $r=4$ or larger.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:
(3 [Gyárfás, 1980] Every r-edge colored K_{n} is covered by $\leq C \cdot r^{2}$ monochromatic paths (for some small constant C).
(2) [Gyárfás et al., 1998] Every r-edge colored copy of K_{n} can be partitioned into $\approx 100 r \log (r)$ monochromatic cycles.

Significant work done on monochromatic cycle partitions; Lehel's conjecture and Erdős-Gyárfás-Pyber conjecture.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:
(1) [Gyárfás, 1989] Every r-edge colored K_{n} is covered by $\leq C \cdot r^{4}$ monochromatic paths (for some small constant C)
(3) [Gyárfás et al., 1998] Every r-edge colored copy of K_{n} can be partitioned into $\approx 100 r \log (r)$ monochromatic cycles.

Significant work done on monochromatic cycle partitions; Lehel's conjecture and Erdős-Gyárfás-Pyber conjecture.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:
(1) [Gyárfás, 1989] Every r-edge colored K_{n} is covered by $\leq C \cdot r^{4}$ monochromatic paths (for some small constant C).
(2) [Gyárfás et al., 1998] Every r-edge colored copy of K_{n} can be partitioned into $\approx 100 r \log (r)$ monochromatic cycles.

Significant work done on monochromatic cycle partitions; Lehel's conjecture and Erdős-Gyárfás-Pyber conjecture.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:
(1) [Gyárfás, 1989] Every r-edge colored K_{n} is covered by $\leq C \cdot r^{4}$ monochromatic paths (for some small constant C).
(2) [Gyárfás et al., 1998] Every r-edge colored copy of K_{n} can be partitioned into $\approx 100 r \log (r)$ monochromatic cycles.

Significant work done on monochromatic cycle partitions; Lehel's conjecture and Erdős-Gyárfás-Pyber conjecture.

Developments on the finite case

General problem (Gyárfás): given an r-edge coloring of K_{n} is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:
(1) [Gyárfás, 1989] Every r-edge colored K_{n} is covered by $\leq C \cdot r^{4}$ monochromatic paths (for some small constant C).
(2) [Gyárfás et al., 1998] Every r-edge colored copy of K_{n} can be partitioned into $\approx 100 r \log (r)$ monochromatic cycles.

Significant work done on monochromatic cycle partitions; Lehel's conjecture and Erdős-Gyárfás-Pyber conjecture.

Stronger versions of Rado's theorem

Covers by powers of paths

Definition

Suppose that G is a graph and $k \in \mathbb{N}$. The $k^{\text {th }}$ power of G is the graph $G^{k}=\left(V, E^{k}\right)$ where $\{v, w\} \in E^{k}$ iff there is a finite path of length $\leq k$ from v to w.

What is a power of a path?

Stronger versions of Rado's theorem

Covers by powers of paths

Definition

Suppose that G is a graph and $k \in \mathbb{N}$. The $k^{\text {th }}$ power of G is the graph $G^{k}=\left(V, E^{k}\right)$ where $\{v, w\} \in E^{k}$ iff there is a finite path of length $\leq k$ from v to w.

What is a power of a path?

Stronger versions of Rado's theorem

Covers by powers of paths

Definition

Suppose that G is a graph and $k \in \mathbb{N}$. The $k^{\text {th }}$ power of G is the graph $G^{k}=\left(V, E^{k}\right)$ where $\{v, w\} \in E^{k}$ iff there is a finite path of length $\leq k$ from v to w.

What is a power of a path?

Stronger versions of Rado's theorem

Covers by powers of paths

Definition

Suppose that G is a graph and $k \in \mathbb{N}$. The $k^{\text {th }}$ power of G is the graph $G^{k}=\left(V, E^{k}\right)$ where $\{v, w\} \in E^{k}$ iff there is a finite path of length $\leq k$ from v to w.

What is a power of a path?

I.e. the graph is locally complete.

Motivation

Theorem (Infinite Ramsey)

In every finite edge colored complete graph on \mathbb{N} there is an infinite monochromatic complete subgraph.

- one cannot always partition into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

Motivation

Theorem (Infinite Ramsey)

In every finite edge colored complete graph on \mathbb{N} there is an infinite monochromatic complete subgraph.

- one cannot always partition into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

Motivation

Theorem (Infinite Ramsey)

In every finite edge colored complete graph on \mathbb{N} there is an infinite monochromatic complete subgraph.

- one cannot always partition into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

Motivation

Theorem (Infinite Ramsey)

In every finite edge colored complete graph on \mathbb{N} there is an infinite monochromatic complete subgraph.

- one cannot always partition into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

Partitions into powers of paths

A $k^{t h}$-power of a path is $\left\{x_{i}: i<n\right\}$ so that x_{i}, x_{j} is an edge if $|i-j| \leq k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on Then the vertices can be covered by $\leq r^{(k-1) r+1}$ disjoint infinite
monochromatic $k^{\text {th }}$ powers of paths apart from a finite set.

For $k=r=2$ we actually have a partition into 4 monochromatic second powers of paths and this result is sharp.

Partitions into powers of paths

A $k^{t h}$-power of a path is $\left\{x_{i}: i<n\right\}$ so that x_{i}, x_{j} is an edge if $|i-j| \leq k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:
Theorem
Fix natural numbers k, r and an r-edge coloring of the complete graph on Then the vertices can be covered by $\leq r^{(k-1) r+1}$ disjoint infinite monochromatic $k^{\text {th }}$ powers of paths apart from a finite set.

For $k=r=2$ we actually have a partition into 4 monochromatic second powers of paths and this result is sharp.

Partitions into powers of paths

A $k^{t h}$-power of a path is $\left\{x_{i}: i<n\right\}$ so that x_{i}, x_{j} is an edge if $|i-j| \leq k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on \mathbb{N}. Then the vertices can be covered by $\leq r^{(k-1) r+1}$ disjoint infinite monochromatic $k^{t h}$ powers of paths apart from a finite set.

For $k=r=2$ we actually have a partition into 4 monochromatic second powers of paths and this result is sharp.

Partitions into powers of paths

A $k^{\text {th }}$-power of a path is $\left\{x_{i}: i<n\right\}$ so that x_{i}, x_{j} is an edge if $|i-j| \leq k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on \mathbb{N}. Then the vertices can be covered by $\leq r^{(k-1) r+1}$ disjoint infinite monochromatic $k^{\text {th }}$ powers of paths apart from a finite set.

For $k=r=2$ we actually have a partition into 4 monochromatic second powers of paths and this result is sharp.

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- use the measure on \mathbb{N} from before to find $\mathbb{N}=\bigcup\left\{W_{i}\right.$ winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}.

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W/ for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on $\mathbb{N T}^{T}$ from before to find winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find winning strategies on each W_{i},
- let Bob win simultameously on each W_{i}

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N}=\bigcup\left\{W_{i}: i<N\right\}$ with winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N}=\bigcup\left\{W_{i}: i<N\right\}$ with winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}.

Open problem: what is the precise bound? what about finite graphs?

The tools of our proof

- introduce a game on edge colored graphs with parameter W (subset of vertices),
- Adam and Bob chooses disjoint finite sets turn by turn,
- a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N}=\bigcup\left\{W_{i}: i<N\right\}$ with winning strategies on each W_{i},
- let Bob win simultaneously on each W_{i}.

Open problem: what is the precise bound? what about finite graphs?

Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph $P=(V, E)$, we say that P is a path iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec-monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N}+1$?

Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph $P=(V, E)$, we say that P is a path iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec-monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N}+1$?

Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph $P=(V, E)$, we say that P is a path iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec-monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N}+1$?

Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph $P=(V, E)$, we say that P is a path iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec-monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N}+1$?

Arbitrary infinite complete graphs

A path is a graph P with w.o. \prec so that any two points are connected by a finite \prec-monotone path.

Problem (Rado, 1978)

Is every 2-edge colored infinite complete graph covered by two disjoint monochromatic paths of different color?

- How about more colors?

Arbitrary infinite complete graphs

A path is a graph P with w.o. \prec so that any two points are connected by a finite \prec-monotone path.

Problem (Rado, 1978)

Is every 2-edge colored infinite complete graph covered by two disjoint monochromatic paths of different color?

- How about more colors?

Arbitrary infinite complete graphs

A path is a graph P with w.o. \prec so that any two points are connected by a finite \prec-monotone path.

Problem (Rado, 1978)

Is every 2-edge colored infinite complete graph covered by two disjoint monochromatic paths of different color?

- How about more colors?

Arbitrary infinite complete graphs

Answers

Theorem (D.S.)
 Every 2-edge colored infinite complete graph can be covered by two disjoint monochromatic paths of different color.

Open: Is it true that the number of paths needed only depends on the number of colors? The number of colors and the size of the graph?

Arbitrary infinite complete graphs

Theorem (D.S.)

Every 2-edge colored infinite complete graph can be covered by two disjoint monochromatic paths of different color.

Open: Is it true that the number of paths needed only depends on the number of colors? The number of colors and the size of the graph?

Arbitrary infinite complete graphs

Theorem (D.S.)

Every finite edge colored infinite complete graph can be covered by finitely many disjoint monochromatic paths.

Open: Is it true that the number of paths needed only depends on the number of colors? The number of colors and the size of the graph?

Arbitrary infinite complete graphs

Theorem (D.S.)

Every finite edge colored infinite complete graph can be covered by finitely many disjoint monochromatic paths.

Open: Is it true that the number of paths needed only depends on the number of colors? The number of colors and the size of the graph?

How to build uncountable paths?

... and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

... and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points..

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the
limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the
limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the
limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the
limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these
points.

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

How to build uncountable paths?

and what are the difficulties?

Our approach:
(1) find the limit points of the path first,
(2) find the cofinal sets witnessing the limit position,
(3) provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by k many independent sets.

> How does large chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does llarge chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does llarge chromatic number affect the subgraph structure?

Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by $\operatorname{Chr}(G)$, is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

The first results

- Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

The first results

- Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdös and William T. Tutte play "Go" at Tutte's home in Westmontrose. Ontario. 1985. Another favorite game of Erdos's was Ping-Pong.

The first results

- Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.

Two giants of combinatorics share a passion: Erdós and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdos's was Ping-Pong.

The first results

- Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
- the probability method;

Two giants of combinatorics share a passion: Erdös and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario. 1985. Another favorite game of Erdos's was Ping-Pong.

- de-randomized constructions: expanders.

The first results

- Tutte, 1954: There are \triangle-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
- the probability method;
- de-randomized constructions: expanders.

Two giants of combinatorics share a passion: Erdös and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdos's was Ping-Pong.

Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are \triangle-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966:

If $\operatorname{Chr}(G)>\omega$ then $K_{n, \omega}$
embeds into G for each $n \in \omega$.
In particular, cyles of length 4
embed into G.

Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are \triangle-free graphs with size and chromatic number κ for each infinite κ.

- Erdős-Hajnal, 1966: If $\operatorname{Chr}(G)>\omega$ then $K_{n, \omega}$ embeds into G for each $n \in \omega$.

In particular, cyles of length 4
embed into G

Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are \triangle-free graphs with size and chromatic number κ for each infinite κ.

In particular, cyles of length 4
embed into G.

- Erdős-Hajnal, 1966: If $\operatorname{Chr}(G)>\omega$ then $K_{n, \omega_{1}}$ embeds into G for each $n \in \omega$.

Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are \triangle-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $\operatorname{Chr}(G)>\omega$ then $K_{n, \omega_{1}}$ embeds into G for each $n \in \omega$.

In particular, cyles of length 4 embed into G.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v, w and $n-1$ points (finitely many points) F there is a path which connects v and w and avoids F.
E.g: $K_{n, \omega_{1}}$ is n-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

- an n-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?

Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain - an n-connected uncountably chromatic subgraph?

- an infinitely connected uncountably chromatic subgraph?

Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

- an n-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?

Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

- an n-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
- [Erdős-Hajnal, 1966] Suppose $|G|=\operatorname{Chr}(G)=\omega_{1}$. Is there an infinitely connected uncountably chromatic subgraph of G ?
- [Frdős-Hainal 1985] Sunpose $\operatorname{Chr}(G)=\omega_{1}$. Is there an infinitely connected uncountably chromatic subgraph of G ?

Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

- an n-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
- [Erdős-Hajnal, 1966] Suppose $|G|=\operatorname{Chr}(G)=\omega_{1}$. Is there an infinitely connected uncountably chromatic subgraph of G ?
- [Erdős-Hajnal, 1985] Suppose $\operatorname{Chr}(G)=\omega_{1}$. Is there an infinitely connected uncountably chromatic subgraph of G ?

Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

- an n-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
- [Erdős-Hajnal, 1966] Suppose $|G|=\operatorname{Chr}(G)=\omega_{1}$. Is there an infinitely connected uncountably chromatic subgraph of G ?
- [Erdős-Hajnal, 1985] Suppose $\operatorname{Chr}(G)=\omega_{1}$. Is there an infinitely connected uncountably chromatic subgraph of G ?

The answers

- [Komjáth, 1986] If $\operatorname{Chr}(G)>\omega$ then there is an n-connected uncountably chromatic subgraph of G for each $n \in \omega$.
- [Komjáth, 1988] Under PFA, if $|G|=\operatorname{Chr}(G)=\omega_{1}$ then G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph $G \mid=\operatorname{Chr}(G)=\omega_{1}$ such that there is no infinitely connected uncountably chromatic subgraphs of G.

The answers

- [Komjáth, 1986]

If $\operatorname{Chr}(G)>\omega$ then there is an n-connected uncountably chromatic subgraph of G for each $n \in \omega$.

- [Komjáth, 1988] Under PFA, if $|G|=\operatorname{Chr}(G)=\omega_{1}$ then G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1980-2013] Consistently, there is a graph
such that there is no infinitely connected
uncountably chromatic subgraphs of G

The answers

- [Komjáth, 1986] If $\operatorname{Chr}(G)>\omega$ then there is an n-connected uncountably chromatic subgraph of G for each $n \in \omega$.

- [Komjáth, 1988] Under PFA, if $|G|=\operatorname{Chr}(G)=\omega_{1}$ then G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph such that there is no infinitely connected uncountably chromatic subgraphs of G.

The answers

- [Komjáth, 1986] If $\operatorname{Chr}(G)>\omega$ then there is an n-connected uncountably chromatic subgraph of G for each $n \in \omega$.

- [Komjáth, 1988] Under PFA, if $|G|=\operatorname{Chr}(G)=\omega_{1}$ then G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph $|G|=\operatorname{Chr}(G)=\omega_{1}$ such that there is no infinitely connected uncountably chromatic subgraphs of G.

The answers - continued

- Question from [Erdős-Hajnal, 1966]: independent.
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number w_{1} and size continuum without uncountable infinitely connected subgraphs.

- Question from [Erdős-Hajnal, 1985]: no in ZFC.

The answers - continued

- Question from [Erdős-Hajnal, 1966]: independent. \checkmark
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chrom natic number wi and size continuum without uncountable infinitely connected subgraphs.

- Question from [Erdős-Hajnal, 1985]:

The answers - continued

- Question from [Erdős-Hajnal, 1966]: independent. \checkmark
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)
 There is a graph of chromatic number w_{1} and size continuum without uncountable infinitely connected subgraphs.

- Question from [Erdős-Hajnal, 1985]: no in ZFC.

The answers - continued

- Question from [Erdős-Hajnal, 1966]: independent. \checkmark
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_{1} and size continuum without uncountable infinitely connected subgraphs.

- Question from [Erdős-Hajnal, 1985]:

The answers - continued

- Question from [Erdős-Hajnal, 1966]: independent. \checkmark
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_{1} and size continuum without uncountable infinitely connected subgraphs.

- Question from [Erdős-Hajnal, 1985]: no in ZFC. \checkmark

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- thin out the edges to have no uncountable infinitely connected subgraph:
- how to make sure that the chromatic number is still large?

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- how to make sure that the chromatic number is still large?

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- how to make sure that the chromatic number is still large?

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- how to make sure that the chromatic

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;
- how to make sure that the chromatic

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;
- how to make sure that the chromatic

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;
- how to make sure that the chromatic

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;
- how to make sure that the chromatic
 number is still large?

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
- a smart diagonalization of length continuum.

A few words about the proof

- find a rather disconnected graph with large chromatic number:
- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
- use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
- a smart diagonalization of length continuum.

Problems I would like to solve I.

... or see solved.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?

Problems I would like to solve I.

or see solved.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
- Recall: there are G with $\operatorname{Chr}(G)>\omega$ where every infinitely connected subgraph is countable
- Question: how to aliminate the countable infinitely connected subgraphs?
- Not even a consistency result...

Problems I would like to solve I.

or see solved.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
- Recall: there are G with $\operatorname{Chr}(G)>\omega$ where every infinitely connected subgraph is countable.
- Question: how to eliminate the countable infinitely connected subgraphs?
- Not even a consistency result...

Problems I would like to solve I.

or see solved.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
- Recall: there are G with $\operatorname{Chr}(G)>\omega$ where every infinitely connected subgraph is countable.
- Question: how to eliminate the countable infinitely connected subgraphs?
- Not even a consistency result...

Problems I would like to solve I.

or see solved.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
- Recall: there are G with $\operatorname{Chr}(G)>\omega$ where every infinitely connected subgraph is countable.
- Question: how to eliminate the countable infinitely connected subgraphs?
- Not even a consistency result...

Problems I would like to solve II.

... or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?

Problems I would like to solve II.

or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
- Recall: $\exists \triangle$-free graph G with $\operatorname{Chr}(G)$
- Question: is there a graph with large chromatic number without such a sulbgraph?
- [Shelah, 1988] Consistently yes.

Problems I would like to solve II.

or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
- Recall: $\exists \Delta$-free graph G with $\operatorname{Chr}(G)>\omega$.
- Question: is there a graph with large chromatic number without such a subgraph?
- [Shelah, 1988] Consistently yes.

Problems I would like to solve II.

or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
- Recall: $\exists \Delta$-free graph G with $\operatorname{Chr}(G)>\omega$.
- Question: is there a graph with large chromatic number without such a subgraph?
- [Shelah, 1988] Consistently yes.

Problems I would like to solve II.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
- Recall: $\exists \Delta$-free graph G with $\operatorname{Chr}(G)>\omega$.
- Question: is there a graph with large chromatic number without such a subgraph?
- [Shelah, 1988] Consistently yes.

Problems I would like to solve III.

... or see solved.

- [Erdős, Hajnal 1975] Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every n-chromatic subgraph of G has at least $f^{\prime}(n)$ vertices (for all $n \geq 3)$?

Problems I would like to solve III.

or see solved.

- [Erdős, Hajnal 1975] Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every n-chromatic subgraph of G has at least $f(n)$ vertices (for all $n \geq 3)$?
- Recall: If $\operatorname{Chr}(G)$ is infinite then $\sup \{\operatorname{Chr}(H): H \subseteq G$ finite $\}$ is infinite as well.
- Question: how fast are the finitely chromatic subgraphs growing?
- [Shelah, 2005] Consistently yes.

Problems I would like to solve III.

or see solved.

- [Erdős, Hajnal 1975] Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every n-chromatic subgraph of G has at least $f(n)$ vertices (for all $n \geq 3)$?
- Recall: If $\operatorname{Chr}(G)$ is infinite then $\sup \{\operatorname{Chr}(H): H \subseteq G$ finite $\}$ is infinite as well.
- Question: how fast are the finitely chromatic subgraphs growing?
- [Shelah, 2005] Consistently yes.

Problems I would like to solve III.

or see solved.

- [Erdős, Hajnal 1975] Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every n-chromatic subgraph of G has at least $f(n)$ vertices (for all $n \geq 3$)?
- Recall: If $\operatorname{Chr}(G)$ is infinite then $\sup \{\operatorname{Chr}(H): H \subseteq G$ finite $\}$ is infinite as well.
- Question: how fast are the finitely chromatic subgraphs growing?
- [Shelah, 2005] Consistently yes.

Problems I would like to solve III.

or see solved.

- [Erdős, Hajnal 1975] Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every n-chromatic subgraph of G has at least $f(n)$ vertices (for all $n \geq 3)$?
- Recall: If $\operatorname{Chr}(G)$ is infinite then $\sup \{\operatorname{Chr}(H): H \subseteq G$ finite $\}$ is infinite as well.
- Question: how fast are the finitely chromatic subgraphs growing?
- [Shelah, 2005] Consistently yes.

Thank you for your attention.

"The infinite we do now, the finite will have to wait a little."
P. Erdős

