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The outline of our problems

@ we work with infinite graphs: countably or uncountably many
vertices;

@ edge-coloring problems: Ramsey-type results and partitions into
monochromatic subgraphs;

@ vertex-coloring problems: structural properties of graphs with large
chromatic number,

@ some problems | would like to solve.
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@ applications in functional analysis: Banach-spaces and free sequences;
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@ anti-Ramsey theory:
@ applications in general topology: L-spaces,

@ applications in functional analysis: Banach-spaces and free sequences;

® chromatic number problems:
@ theory of expanders,

o applications in computer science;
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Theorem (R. Rado, 1978)

If the edges of the complete graph on N are colored with finitely many

colors then the vertices can be covered by disjoint monochromatic
paths of different color.
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Edge-colored complete graphs
The origins

Theorem (R. Rado, 1978)

If the edges of the complete graph on N are colored with finitely many
colors then the vertices can be covered by disjoint monochromatic
paths of different color.

P. Erdés on Richard Rado:

"I was good at discovering perhaps
difficult and interesting special cases,
and Richard was good at generalizing
them and putting them in their proper
perspective."
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such that:

e mis finitely additive,

o m(N)=1and m({n}) =0 forall ne N.
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|deas of the proof

There is a non-trivial 0-1-valued measure on N, i.e. m: P(N) — {0,1}
such that:

e mis finitely additive,

o m(N)=1and m({n}) =0 forall ne N.

o If m(UU V) =1 then either m(U) =1 or m(V) = 1.

o Ifm(U)y=m(V)=1then m(UNV)=1.
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|deas of the proof

m(UUuV)=1= mU)=1orm(V)=1;
m(U)=m(V)=1= mUNV) =1

Consider a complete graph on N with red and blue edges.

o let A, ={ueN:m({veN:{uv}isred}) =1},
o let Ap={ueN:m({veN:{u v} is blue}) =1},
@ note that N= A, U Ap.
Any u,u’ € A, are connected by infinitely many red paths (of length 2),

= A, is covered by a red path,

= repeat the same for A, simultaneously.
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Developments on the finite case

General problem (Gyarfas): given an r-edge coloring of K, is there a cover by
(disjoint) monochromatic paths (of different color)?
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Developments on the finite case

General problem (Gyarfas): given an r-edge coloring of K, is there a cover by
(disjoint) monochromatic paths (of different color)?

Suppose that r is small:

O ("easy") Every 2-edge colored K, can be partitioned into 2
monochromatic paths of different color.

@ [K. Heinrich, ??] There are r-edge colored copies of K, for r > 3 so
that there is no partition into r paths of different color.

O [A. Pokrovskiy, 2013] Every 3-edge colored K, can be partitioned
into 3 monochromatic paths.

Completely open: r =4 or larger.
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General problem (Gyarfas): given an r-edge coloring of K, is there a cover by
(disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

O [Gyarfas, 1989] Every r-edge colored K, is covered by < C - r*
monochromatic paths (for some small constant C).
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Developments on the finite case

General problem (Gyarfas): given an r-edge coloring of K, is there a cover by
(disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

O [Gyarfas, 1989] Every r-edge colored K, is covered by < C - r*
monochromatic paths (for some small constant C).

© [Gyarfas et al., 1998] Every r-edge colored copy of K, can be
partitioned into ~ 100r log(r) monochromatic cycles.
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Developments on the finite case

General problem (Gyarfas): given an r-edge coloring of K, is there a cover by
(disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

O [Gyarfas, 1989] Every r-edge colored K, is covered by < C - r*
monochromatic paths (for some small constant C).

© [Gyarfas et al., 1998] Every r-edge colored copy of K, can be
partitioned into ~ 100r log(r) monochromatic cycles.

Significant work done on monochromatic cycle partitions; Lehel’s
conjecture and Erd&s-Gyarfas-Pyber conjecture.
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Covers by powers of paths
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Stronger versions of Rado’s theorem

Covers by powers of paths

Definition

Suppose that G is a graph and k € N. The k" power of G is the graph
Gk = (V,EK) where {v,w} € E iff there is a finite path of length < k
from v to w.
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Stronger versions of Rado’s theorem
Covers by powers of paths

Definition

Suppose that G is a graph and k € N. The k" power of G is the graph

Gk = (V,EK) where {v,w} € E iff there is a finite path of length < k
from v to w.

What is a power of a path?

o ———O — & — 0 —— 0

DDAV

l.e. the graph is locally complete.
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Theorem (Infinite Ramsey)

In every finite edge colored complete graph on N there is an infinite
monochromatic complete subgraph.
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Theorem (Infinite Ramsey)

In every finite edge colored complete graph on N there is an infinite
monochromatic complete subgraph.

@ one cannot always partition into monochromatic complete
subgraphs,

@ how about partitions into monochromatic locally complete
subgraphs?
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Partitions into powers of paths

A k'™-power of a path is {x; : i < n} so that x;, x; is an edge if |i — j| < k.
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A k'™-power of a path is {x; : i < n} so that x;, x; is an edge if |i — j| < k.

Jointly with M. Elekes, L. Soukup and Z. Szentmikldssy at Rényi Institute:
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Partitions into powers of paths

A k'™-power of a path is {x; : i < n} so that x;, x; is an edge if |i — j| < k.

Jointly with M. Elekes, L. Soukup and Z. Szentmikldssy at Rényi Institute:

Fix natural numbers k,r and an r-edge coloring of the complete graph on
N. Then the vertices can be covered by < r’k~1)r+1 disjoint infinite
monochromatic k" powers of paths apart from a finite set.
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Partitions into powers of paths

A k'™-power of a path is {x; : i < n} so that x;, x; is an edge if |i — j| < k.

Jointly with M. Elekes, L. Soukup and Z. Szentmikldssy at Rényi Institute:

Fix natural numbers k,r and an r-edge coloring of the complete graph on
N. Then the vertices can be covered by < r’k~1)r+1 disjoint infinite
monochromatic k" powers of paths apart from a finite set.

For k = r = 2 we actually have a partition into 4 monochromatic second
powers of paths and this result is sharp.
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@ a winning strategy for Bob covers W/ by a power of a path,

o find sufficient conditions on W for the existence of a winning strategy,

@ use the measure on N from before to find N = [ J{ W : i < N} with
winning strategies on each \V,

@ let Bob win simultaneously on each W;.
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The tools of our proof

@ introduce a game on edge colored graphs with parameter W (subset
of vertices),
@ Adam and Bob chooses disjoint finite sets turn by turn,

@ a winning strategy for Bob covers W/ by a power of a path,

o find sufficient conditions on W for the existence of a winning strategy,

@ use the measure on N from before to find N = [ J{ W : i < N} with
winning strategies on each \V,

@ let Bob win simultaneously on each W;.

Open problem: what is the precise bound? what about finite graphs?
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Infinite paths of arbitrary length
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Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph P = (V, E), we say that P is a path iff there is a well
ordering < on V such that any two points v, w € V are connected by a
<-monotone finite path.
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Infinite paths of arbitrary length

Definition (Rado, 1978)

For a graph P = (V, E), we say that P is a path iff there is a well
ordering < on V such that any two points v, w € V are connected by a
<-monotone finite path.

How to imagine paths longer than the type of N? Type N + 17
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Arbitrary infinite complete graphs

A path is a graph P with w.o. < so that any two points are connected by a finite
<-monotone path.
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Arbitrary infinite complete graphs

A path is a graph P with w.o. < so that any two points are connected by a finite
<-monotone path.

Problem (Rado, 1978)

Is every 2-edge colored infinite complete graph covered by two disjoint
monochromatic paths of different color?
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Arbitrary infinite complete graphs

A path is a graph P with w.o. < so that any two points are connected by a finite
<-monotone path.

Problem (Rado, 1978)

Is every 2-edge colored infinite complete graph covered by two disjoint
monochromatic paths of different color?

@ How about more colors?
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Arbitrary infinite complete graphs

Answers
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Arbitrary infinite complete graphs

Answers

Theorem (D.S.)

Every 2-edge colored infinite complete graph can be covered by two
disjoint monochromatic paths of different color.
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Arbitrary infinite complete graphs

Answers

Theorem (D.S.)

Every finite edge colored infinite complete graph can be covered by
finitely many disjoint monochromatic paths.
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Arbitrary infinite complete graphs

Answers

Theorem (D.S.)

Every finite edge colored infinite complete graph can be covered by
finitely many disjoint monochromatic paths.

Open: Is it true that the number of paths needed only depends on the
number of colors? The number of colors and the size of the graph?
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How to build uncountable paths?

... and what are the difficulties?
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... and what are the difficulties?

Our approach: o
© find the limit points of the path first, o
© find the cofinal sets witnessing the

limit position,
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How to build uncountable paths?

... and what are the difficulties?

Our approach:

[ ]
© find the limit points of the path first, o
© find the cofinal sets witnessing the
limit position,
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... and what are the difficulties?

Our approach:
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© find the limit points of the path first, -
SN
Q find the cofinal sets witnessing the AN
limit position, ¢ ,,' \
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How to build uncountable paths?

... and what are the difficulties?

Our approach: o
© find the limit points of the path first, -
SN
Q find the cofinal sets witnessing the AN
limit position, ¢ ,,' \
b 1
© provided that the green vertices are o--"" /
connected (by finite paths), build the .__,/'
transfinite path around these
points... YRR
II \\
o \
1
1
/
4
-
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How to build uncountable paths?

... and what are the difficulties?

Our approach: o
© find the limit points of the path first, 0 —~.
@ find the cofinal sets witnessing the o A \\\
limit position, ¢ g
, 1
© provided that the green vertices are o--"" /
connected (by finite paths), build the . _/”
transfinite path around these
points... YRR
| N
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How to build uncountable paths?

... and what are the difficulties?

Our approach: o

© find the limit points of the path first,

© find the cofinal sets witnessing the
limit position,

© provided that the green vertices are
connected (by finite paths), build the
transfinite path around these
points...
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Vertex coloring problems
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Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by Chr(G), is the least
(cardinal) number k such that the vertices of G can be covered by k
many independent sets.
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Vertex coloring problems

Definition

The chromatic number of a graph G, denoted by Chr(G), is the least
(cardinal) number k such that the vertices of G can be covered by k
many independent sets.

How does large chromatic number
! affect the subgraph structure?
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The first results

o Tutte, 1954: There are A\-free
graphs of arbitrary large finite
chromatic number. {

Thotograph by J. A Boody

Two giants of combinatorics share a passion: Erd6s and William T. Tutte
play “Go” at Tutte’s home in Westmontrose, Ontario, 1985, Another favorite
game of Erd6¢’s was Ping-Pong.
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The first results

o Tutte, 1954: There are A\-free
graphs of arbitrary large finite
chromatic number.

@ Erdds, 1959: There are graphs
with arbitrary large girth and
arbitrary large finite
chromatic number.

Thotograph by J. A Boody

Two giants of combinatorics share a passion: Erdos and William T. Tutte

o the pro babi Iity method : gLa[:\gg:"{:;g;?:;;?gir:;ipnoﬁv;smommse, Ontario, 1985. Another favorite

o de-randomized constructions:
expanders.
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Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?
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Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

o Erd6s-Rado, 1959: There are
/\-free graphs with size and
chromatic number x for each
infinite .

o Erdds-Hajnal, 1966:
If Chr(G) > w then K,
embeds into G for each n € w.
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Uncountable chromatic number

What graphs must occur as subgraphs of uncountably chromatic graphs?

o Erd6s-Rado, 1959: There are
/\-free graphs with size and
chromatic number x for each
infinite .

o Erdds-Hajnal, 1966:
If Chr(G) > w then K,
embeds into G for each n € w.

In particular, cyles of length 4
embed into G.
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Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v,w and n — 1
points (finitely many points) F there is a path which connects v and w
and avoids F.
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Degrees of connectivity

Definition

G is n-connected (infinitely connected) iff given vertices v,w and n — 1
points (finitely many points) F there is a path which connects v and w
and avoids F.

E.g: Knw, is n-connected. Does having large chromatic number

@ imply the existence of highly connected subgraphs?

o reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.
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Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

@ an n-connected uncountably chromatic subgraph?
@ an infinitely connected uncountably chromatic subgraph?

o [Erdds-Hajnal, 1966] Suppose |G| = Chr(G) = w;. Is there an
infinitely connected uncountably chromatic subgraph of G?
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Chromatic number and connectivity

Does every graph G with uncountable chromatic number contain

@ an n-connected uncountably chromatic subgraph?
@ an infinitely connected uncountably chromatic subgraph?

o [Erdds-Hajnal, 1966] Suppose |G| = Chr(G) = w;. Is there an
infinitely connected uncountably chromatic subgraph of G?

o [Erdds-Hajnal, 1985] Suppose Chr(G) = wy. Is there an infinitely
connected uncountably chromatic subgraph of G?
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The answers

o [Komjath, 1986]
If Chr(G) > w then there is an
n-connected uncountably
chromatic subgraph of G
for each n € w.

MU 2015
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The answers

o [Komjath, 1986]
If Chr(G) > w then there is an
n-connected uncountably
chromatic subgraph of G
for each n € w.

o [Komjath, 1988] Under PFA, if |G| = Chr(G) = w; then
G has an infinitely connected uncountably chromatic subgraph.
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The answers

o [Komjath, 1986]
If Chr(G) > w then there is an
n-connected uncountably
chromatic subgraph of G
for each n € w.

o [Komjath, 1988] Under PFA, if |G| = Chr(G) = w; then
G has an infinitely connected uncountably chromatic subgraph.
o [Komjath, 1988-2013] Consistently, there is a graph

|G| = Chr(G) = w; such that there is no infinitely connected
uncountably chromatic subgraphs of G.
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@ Question from [ErdGs-Hajnal, 1966]: independent. v/
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The answers - continued

@ Question from [ErdGs-Hajnal, 1966]: independent. v/

@ Question from [Erd6s-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number wy and size continuum without
uncountable infinitely connected subgraphs.
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The answers - continued

@ Question from [ErdGs-Hajnal, 1966]: independent. v/

@ Question from [Erd6s-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number wy and size continuum without
uncountable infinitely connected subgraphs.

@ Question from [ErdGs-Hajnal, 1985]: no in ZFC. v

Daniel Soukup (U of T)
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A few words about the proof

@ find a rather disconnected graph with large chromatic number:

o the comparability graph of a non-special tree without uncountable
chains;

@ thin out the edges to have no
uncountable infinitely connected
subgraph:
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A few words about the proof

@ find a rather disconnected graph with large chromatic number:

o the comparability graph of a non-special tree without uncountable
chains;

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

@ how to make sure that the chromatic
number is still large?
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A few words about the proof

@ find a rather disconnected graph with large chromatic number:

o the comparability graph of a non-special tree without uncountable
chains;

@ thin out the edges to have no T
uncountable infinitely connected
subgraph:

@ use a ladder system on the tree;

@ how to make sure that the chromatic
number is still large?

s a smart diagonalization of length
continuum.
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Problems | would like to solve I.

... or see solved.
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Problems | would like to solve I.

... or see solved.

o [Komjath, ??] Is there a graph with uncountable chromatic number
which contains no infinitely connected subgraphs?
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Problems | would like to solve I.

... or see solved.

o [Komjath, ??] Is there a graph with uncountable chromatic number
which contains no infinitely connected subgraphs?

o Recall: there are G with Chr(G) > w where every infinitely connected
subgraph is countable.
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Problems | would like to solve I.

... or see solved.

o [Komjath, ??] Is there a graph with uncountable chromatic number
which contains no infinitely connected subgraphs?

o Recall: there are G with Chr(G) > w where every infinitely connected
subgraph is countable.

@ Question: how to eliminate the countable infinitely connected
subgraphs?

o Not even a consistency result...

MU 2015 25 / 28
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Problems | would like to solve II.

... or see solved.
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Problems | would like to solve II.

... or see solved.

o [Erdés, Hajnal 1975] Is there a graph with uncountable chromatic
number which contains no triangle free subgraphs with
uncountable chromatic number?
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Problems | would like to solve II.

... or see solved.

o [Erdés, Hajnal 1975] Is there a graph with uncountable chromatic
number which contains no triangle free subgraphs with
uncountable chromatic number?

o Recall: 3 A-free graph G with Chr(G) > w.

@ Question: is there a graph with large chromatic number without such
a subgraph?

o [Shelah, 1988] Consistently yes.
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Problems | would like to solve Ill.

... or see solved.
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Problems | would like to solve Ill.

... or see solved.

o [Erdés, Hajnal 1975] Suppose that f : N — N is increasing. Is there
a graph G with uncountable chromatic number such that every
n-chromatic subgraph of G has at least f(n) vertices (for all
n>3)?
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o [Erdés, Hajnal 1975] Suppose that f : N — N is increasing. Is there
a graph G with uncountable chromatic number such that every
n-chromatic subgraph of G has at least f(n) vertices (for all
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@ Recall: If Chr(G) is infinite then sup{Chr(H) : H C G finite} is
infinite as well.
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o [Erdés, Hajnal 1975] Suppose that f : N — N is increasing. Is there
a graph G with uncountable chromatic number such that every
n-chromatic subgraph of G has at least f(n) vertices (for all
n>3)?

@ Recall: If Chr(G) is infinite then sup{Chr(H) : H C G finite} is
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@ Question: how fast are the finitely chromatic subgraphs growing?
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Problems | would like to solve Ill.

... or see solved.

o [Erdés, Hajnal 1975] Suppose that f : N — N is increasing. Is there
a graph G with uncountable chromatic number such that every
n-chromatic subgraph of G has at least f(n) vertices (for all
n>3)?

@ Recall: If Chr(G) is infinite then sup{Chr(H) : H C G finite} is
infinite as well.

@ Question: how fast are the finitely chromatic subgraphs growing?

o [Shelah, 2005] Consistently yes.
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Thank you for your attention.

“The infinite we do now, the finite
will have to wait a little.”

P. Erdés
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