Coloring problems on infinite graphs

Dániel T. Soukup

University of Toronto

Miami University, January 23 2015

Dániel Soukup (U of T)

Coloring problems on infinite graphs

MU 2015 1 / 28

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

- we work with infinite graphs: countably or uncountably many vertices;
- edge-coloring problems: Ramsey-type results and partitions into monochromatic subgraphs;
- vertex-coloring problems: structural properties of graphs with large chromatic number,
- some problems I would like to solve.

Dániel Soukup (U of T)

- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;

• chromatic number problems:

- theory of expanders,
- applications in computer science;

Dániel Soukup (U of T)

- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;

• chromatic number problems:

- theory of expanders,
- applications in computer science;

Dániel Soukup (U of T)

- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;

• chromatic number problems:

- theory of expanders,
- applications in computer science;

- anti-Ramsey theory:
 - applications in general topology: L-spaces,
 - applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
 - theory of expanders,
 - applications in computer science;

- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
 - theory of expanders,
 - applications in computer science;

- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
 - theory of expanders,
 - applications in computer science;

- applications in general topology: L-spaces,
- applications in functional analysis: Banach-spaces and free sequences;
- chromatic number problems:
 - theory of expanders,
 - applications in computer science;

Dániel Soukup (U of T)

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be **covered by disjoint monochromatic paths of different color**.

P. Erdős on Richard Rado:

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be **covered by disjoint monochromatic paths of different color**.

P. Erdős on Richard Rado:

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be **covered by disjoint monochromatic paths of different color**.

P. Erdős on Richard Rado:

If the edges of the complete graph on \mathbb{N} are colored with finitely many colors then the vertices can be **covered by disjoint monochromatic paths of different color**.

P. Erdős on Richard Rado:

• *m* is finitely additive,

• $m(\mathbb{N}) = 1$ and $m(\{n\}) = 0$ for all $n \in \mathbb{N}$.

Fact

• If $m(U \cup V) = 1$ then either m(U) = 1 or m(V) = 1.

• *m* is finitely additive,

• $m(\mathbb{N}) = 1$ and $m(\{n\}) = 0$ for all $n \in \mathbb{N}$.

Fact

• If $m(U \cup V) = 1$ then either m(U) = 1 or m(V) = 1.

• *m* is finitely additive,

• $m(\mathbb{N}) = 1$ and $m(\{n\}) = 0$ for all $n \in \mathbb{N}$.

Fact

• If $m(U \cup V) = 1$ then either m(U) = 1 or m(V) = 1.

• *m* is finitely additive,

• $m(\mathbb{N}) = 1$ and $m(\{n\}) = 0$ for all $n \in \mathbb{N}$.

Fact

• If $m(U \cup V) = 1$ then either m(U) = 1 or m(V) = 1.

• *m* is finitely additive,

• $m(\mathbb{N}) = 1$ and $m(\{n\}) = 0$ for all $n \in \mathbb{N}$.

Fact

- If $m(U \cup V) = 1$ then either m(U) = 1 or m(V) = 1.
- If m(U) = m(V) = 1 then $m(U \cap V) = 1$.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on $\mathbb N$ with red and blue edges.

- let $A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is red} \}) = 1 \}$,
- let $A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\},$
- note that $\mathbb{N} = A_r \cup A_b$.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path, \Rightarrow repeat the same for A_r simultaneously.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is red} \}) = 1 \}$$
,

• let
$$A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\},$$

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path, \Rightarrow repeat the same for A_r simultaneously.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is } red \}) = 1 \}$$
,

• let $A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\},$

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path, \Rightarrow repeat the same for A_r simultaneously.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is } red \}) = 1 \}$$
,

• let
$$A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\}$$
,

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path, \Rightarrow repeat the same for A_b simultaneously

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is } red \}) = 1 \}$$
,

• let
$$A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\}$$
,

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path, \Rightarrow repeat the same for A_b simultaneously.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is } red \}) = 1 \},$$

• let
$$A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\}$$
,

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path,

 \Rightarrow repeat the same for A_b simultaneously.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is } red \}) = 1 \},$$

• let
$$A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\}$$
,

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path,

 \Rightarrow repeat the same for A_b simultaneously.

$$m(U \cup V) = 1 \Rightarrow m(U) = 1 \text{ or } m(V) = 1;$$

$$m(U) = m(V) = 1 \Rightarrow m(U \cap V) = 1.$$

Consider a complete graph on \mathbb{N} with red and blue edges.

• let
$$A_r = \{ u \in \mathbb{N} : m(\{ v \in \mathbb{N} : \{ u, v \} \text{ is } red \}) = 1 \},$$

• let
$$A_b = \{u \in \mathbb{N} : m(\{v \in \mathbb{N} : \{u, v\} \text{ is blue}\}) = 1\}$$
,

• note that
$$\mathbb{N} = A_r \cup A_b$$
.

Any $u, u' \in A_r$ are connected by infinitely many red paths (of length 2), $\Rightarrow A_r$ is covered by a red path,

 \Rightarrow repeat the same for A_b simultaneously.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that *r* is small:

- ("easy") Every 2-edge colored K_n can be partitioned into 2 monochromatic paths of different color.
- **2** [K. Heinrich, ??] There are *r*-edge colored copies of K_n for $r \ge 3$ so that there is no partition into *r* paths of different color.
- [A. Pokrovskiy, 2013] Every 3-edge colored K_n can be partitioned into 3 monochromatic paths.

Completely open: r = 4 or larger.

MU 2015

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that *r* is small:

- ("easy") Every 2-edge colored K_n can be partitioned into 2 monochromatic paths of different color.
- **2** [K. Heinrich, ??] There are *r*-edge colored copies of K_n for $r \ge 3$ so that there is no partition into *r* paths of different color.
- [A. Pokrovskiy, 2013] Every 3-edge colored K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that *r* is small:

- ("easy") Every 2-edge colored K_n can be partitioned into 2 monochromatic paths of different color.
- **2** [K. Heinrich, ??] There are *r*-edge colored copies of K_n for $r \ge 3$ so that there is no partition into *r* paths of different color.
- [A. Pokrovskiy, 2013] Every 3-edge colored K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that *r* is small:

- ("easy") Every 2-edge colored K_n can be partitioned into 2 monochromatic paths of different color.
- **2** [K. Heinrich, ??] There are *r*-edge colored copies of K_n for $r \ge 3$ so that there is no partition into *r* paths of different color.
- [A. Pokrovskiy, 2013] Every 3-edge colored K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that *r* is small:

- ("easy") Every 2-edge colored K_n can be partitioned into 2 monochromatic paths of different color.
- **2** [K. Heinrich, ??] There are *r*-edge colored copies of K_n for $r \ge 3$ so that there is no partition into *r* paths of different color.
- [A. Pokrovskiy, 2013] Every 3-edge colored K_n can be partitioned into 3 monochromatic paths.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

Suppose that *r* is small:

- ("easy") Every 2-edge colored K_n can be partitioned into 2 monochromatic paths of different color.
- **2** [K. Heinrich, ??] There are *r*-edge colored copies of K_n for $r \ge 3$ so that there is no partition into *r* paths of different color.
- [A. Pokrovskiy, 2013] Every 3-edge colored K_n can be partitioned into 3 monochromatic paths.
General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

- **Q** [Gyárfás, 1989] Every *r*-edge colored K_n is covered by $\leq C \cdot r^4$ monochromatic paths (for some small constant *C*).
- **2** [Gyárfás et al., 1998] Every *r*-edge colored copy of K_n can be partitioned into $\approx 100r \log(r)$ monochromatic cycles.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

Q [Gyárfás, 1989] Every *r*-edge colored K_n is covered by $\leq C \cdot r^4$ monochromatic paths (for some small constant *C*).

2 [Gyárfás et al., 1998] Every *r*-edge colored copy of K_n can be partitioned into $\approx 100r \log(r)$ monochromatic cycles.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

• [Gyárfás, 1989] Every *r*-edge colored K_n is covered by $\leq C \cdot r^4$ monochromatic paths (for some small constant C).

② [Gyárfás et al., 1998] Every *r*-edge colored copy of K_n can be partitioned into $\approx 100r \log(r)$ monochromatic cycles.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

- **(**Gyárfás, 1989) Every *r*-edge colored K_n is covered by $\leq C \cdot r^4$ monochromatic paths (for some small constant *C*).
- **3** [Gyárfás et al., 1998] Every *r*-edge colored copy of K_n can be partitioned into $\approx 100r \log(r)$ monochromatic cycles.

General problem (Gyárfás): given an *r*-edge coloring of K_n is there a cover by (disjoint) monochromatic paths (of different color)?

For arbitrary number of colors:

- **(**Gyárfás, 1989) Every *r*-edge colored K_n is covered by $\leq C \cdot r^4$ monochromatic paths (for some small constant *C*).
- **(a)** [Gyárfás et al., 1998] Every *r*-edge colored copy of K_n can be partitioned into $\approx 100r \log(r)$ monochromatic cycles.

Suppose that G is a graph and $k \in \mathbb{N}$. The k^{th} power of G is the graph $G^k = (V, E^k)$ where $\{v, w\} \in E^k$ iff there is a finite path of length $\leq k$ from v to w.

What is a **power of a path**?

Suppose that G is a graph and $k \in \mathbb{N}$. The k^{th} power of G is the graph $G^k = (V, E^k)$ where $\{v, w\} \in E^k$ iff there is a finite path of length $\leq k$ from v to w.

What is a **power of a path**?

Dániel Soukup (U of T)

Suppose that G is a graph and $k \in \mathbb{N}$. The k^{th} power of G is the graph $G^k = (V, E^k)$ where $\{v, w\} \in E^k$ iff there is a finite path of length $\leq k$ from v to w.

What is a **power of a path**?

Suppose that G is a graph and $k \in \mathbb{N}$. The k^{th} power of G is the graph $G^k = (V, E^k)$ where $\{v, w\} \in E^k$ iff there is a finite path of length $\leq k$ from v to w.

What is a **power of a path**?

I.e. the graph is locally complete.

Dániel Soukup (U of T)

- one cannot always partition into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

Dániel Soukup (U of T)

- one **cannot always partition** into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

Dániel Soukup (U of T)

- one **cannot always partition** into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

- one cannot always partition into monochromatic complete subgraphs,
- how about partitions into monochromatic locally complete subgraphs?

A k^{th} -power of a path is $\{x_i : i < n\}$ so that x_i, x_j is an edge if $|i - j| \le k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on \mathbb{N} . Then the vertices can be **covered by** $\leq r^{(k-1)r+1}$ **disjoint infinite monochromatic** k^{th} **powers of paths** apart from a finite set.

For k = r = 2 we actually have a **partition into 4** monochromatic second powers of paths and this result is sharp.

A k^{th} -power of a path is $\{x_i : i < n\}$ so that x_i, x_j is an edge if $|i - j| \le k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on \mathbb{N} . Then the vertices can be **covered by** $\leq r^{(k-1)r+1}$ **disjoint infinite monochromatic** k^{th} **powers of paths** apart from a finite set.

For k = r = 2 we actually have a **partition into 4** monochromatic second powers of paths and this result is sharp.

A k^{th} -power of a path is $\{x_i : i < n\}$ so that x_i, x_j is an edge if $|i - j| \le k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on \mathbb{N} . Then the vertices can be covered by $\leq r^{(k-1)r+1}$ disjoint infinite monochromatic k^{th} powers of paths apart from a finite set.

For k = r = 2 we actually have a **partition into 4** monochromatic second powers of paths and this result is sharp.

A k^{th} -power of a path is $\{x_i : i < n\}$ so that x_i, x_j is an edge if $|i - j| \le k$.

Jointly with M. Elekes, L. Soukup and Z. Szentmiklóssy at Rényi Institute:

Theorem

Fix natural numbers k, r and an r-edge coloring of the complete graph on \mathbb{N} . Then the vertices can be covered by $\leq r^{(k-1)r+1}$ disjoint infinite monochromatic k^{th} powers of paths apart from a finite set.

For k = r = 2 we actually have a **partition into 4** monochromatic second powers of paths and this result is sharp.

- introduce a **game** on edge colored graphs with parameter *W* (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - a winning strategy for Bob covers W by a power of a path,
 - find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i ,
- let Bob win simultaneously on each W_i.

Open problem: what is the **precise bound?** what about **finite graphs**?

• introduce a game on edge colored graphs with parameter W (subset of vertices),

- Adam and Bob chooses disjoint finite sets turn by turn,
- ullet a winning strategy for Bob covers W by a power of a path,
- find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i .
- let Bob win simultaneously on each W_i.

Open problem: what is the **precise bound?** what about **finite graphs**?

- introduce a game on edge colored graphs with parameter W (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - a winning strategy for Bob covers W by a power of a path,
 - find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i ,
- Iet Bob win simultaneously on each W_i.

Open problem: what is the **precise bound?** what about **finite graphs**?

- introduce a game on edge colored graphs with parameter W (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - a winning strategy for Bob covers W by a power of a path,
 - find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i ,
- Iet Bob win simultaneously on each W_i.

Open problem: what is the precise bound? what about finite graphs?

- introduce a game on edge colored graphs with parameter W (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - a winning strategy for Bob covers W by a power of a path,
 - find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i ,
- Iet Bob win simultaneously on each W_i.

Open problem: what is the **precise bound?** what about **finite graphs?**

- introduce a game on edge colored graphs with parameter W (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - \bullet a winning strategy for Bob covers W by a power of a path.
 - find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i ,
- let Bob win simultaneously on each W_i.

Open problem: what is the **precise bound?** what about **finite graphs?**

- introduce a game on edge colored graphs with parameter W (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - \bullet a winning strategy for Bob covers W by a power of a path.
 - find sufficient conditions on W for the existence of a winning strategy,
- use the measure on \mathbb{N} from before to find $\mathbb{N} = \bigcup \{ W_i : i < N \}$ with winning strategies on each W_i ,
- let Bob win simultaneously on each W_i.

Open problem: what is the **precise bound?** what about **finite graphs?**

- introduce a game on edge colored graphs with parameter W (subset of vertices),
 - Adam and Bob chooses disjoint finite sets turn by turn,
 - \bullet a winning strategy for Bob covers W by a power of a path.
 - find sufficient conditions on W for the existence of a winning strategy,

12 / 28

- use the measure on N from before to find N = ∪{W_i: i < N} with winning strategies on each W_i
- let Bob win simultaneously on each W_i.

Open problem: what is the precise bound? what about finite graphs?

For a graph P = (V, E), we say that P is a **path** iff there is a **well** ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N}+1$?

Dániel Soukup (U of T)

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N}+1$?

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N} + 1$?

For a graph P = (V, E), we say that P is a **path** iff there is a well ordering \prec on V such that any two points $v, w \in V$ are connected by a \prec -monotone finite path.

How to imagine paths longer than the type of \mathbb{N} ? Type $\mathbb{N} + 1$?

Arbitrary infinite complete graphs

A **path** is a graph *P* with w.o. \prec so that any two points are connected by a finite \prec -monotone path.

Problem (Rado, 1978)

Is every 2-edge colored infinite complete graph covered by two disjoint monochromatic paths of different color?

• How about more colors?

Arbitrary infinite complete graphs

A **path** is a graph *P* with w.o. \prec so that any two points are connected by a finite \prec -monotone path.

Problem (Rado, 1978)

Is every **2-edge colored** *infinite complete graph covered by* **two** *disjoint monochromatic paths of different color?*

MU 2015

14 / 28

• How about more colors?

Arbitrary infinite complete graphs

A **path** is a graph *P* with w.o. \prec so that any two points are connected by a finite \prec -monotone path.

Problem (Rado, 1978)

Is every **2-edge colored** *infinite complete graph covered by* **two** *disjoint monochromatic paths of different color?*

MU 2015

14 / 28

How about more colors?

Every **2-edge** colored infinite complete graph can be covered by **two** disjoint monochromatic paths of different color.

Every **2-edge** *colored infinite complete graph can be covered by* **two** *disjoint monochromatic paths of different color.*

Every **finite edge** colored infinite complete graph can be covered by **finitely many disjoint monochromatic paths**.

Every **finite edge** colored infinite complete graph can be covered by **finitely many disjoint monochromatic paths**.
... and what are the difficulties?

- Ind the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- Ind the limit points of the path first,
- ind the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- I find the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- I find the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

Our approach:

Dániel Soukup (U of T)

- find the limit points of the path first,
- I find the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- I find the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the **difficulties**?

Our approach:

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,

MU 2015 16 / 28

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- Provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- find the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

... and what are the difficulties?

- find the limit points of the path first,
- Ind the cofinal sets witnessing the limit position,
- provided that the green vertices are connected (by finite paths), build the transfinite path around these points...

The **chromatic number** of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Dániel Soukup (U of T)

Dániel Soukup (U of T)

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

Dániel Soukup (U of T)

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

The chromatic number of a graph G, denoted by Chr(G), is the least (cardinal) number κ such that the vertices of G can be covered by κ many independent sets.

How does large chromatic number affect the subgraph structure?

Coloring problems on infinite graphs

MU 2015 17 /

28

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
 - the probability method;
 - de-randomized constructions: expanders.

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
 - the probability method;
 - de-randomized constructions: expanders.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

MU 2015 18 / 28

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
 - the probability method;
 - de-randomized constructions: expanders.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

MU 2015 18 / 28

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
 - the probability method;
 - de-randomized constructions: expanders.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

MU 2015 18 / 28

- Tutte, 1954: There are △-free graphs of arbitrary large finite chromatic number.
- Erdős, 1959: There are graphs with arbitrary large girth and arbitrary large finite chromatic number.
 - the probability method;
 - de-randomized constructions: expanders.

Two giants of combinatorics share a passion: Erdős and William T. Tutte play "Go" at Tutte's home in Westmontrose, Ontario, 1985. Another favorite game of Erdős's was Ping-Pong.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are
 Δ-free graphs with size and
 chromatic number κ for each
 infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, cyles of length 4 embed into *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

 Erdős-Rado, 1959: There are
 Δ-free graphs with size and
 chromatic number κ for each
 infinite κ.

• Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$

In particular, cyles of length 4 embed into *G*.

MU 2015 19 / 28

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, cyles of length 4 embed into *G*.

What graphs must occur as subgraphs of uncountably chromatic graphs?

- Erdős-Rado, 1959: There are Δ-free graphs with size and chromatic number κ for each infinite κ.
- Erdős-Hajnal, 1966: If $Chr(G) > \omega$ then K_{n,ω_1} embeds into G for each $n \in \omega$.

In particular, cyles of length 4 embed into *G*.

MU 2015 19 / 28

G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

E.g: K_{n,ω_1} is *n*-connected. **Does having large chromatic number**

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

E.g: K_{n,ω_1} is *n*-connected. **Does having large chromatic number**

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.
G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

E.g.: K_{n,ω_1} is *n*-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

E.g.: K_{n,ω_1} is *n*-connected. Does having large chromatic number

- imply the existence of highly connected subgraphs?
- reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

- E.g.: K_{n,ω_1} is *n*-connected. Does having large chromatic number
 - imply the existence of highly connected subgraphs?
 - reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

- E.g.: K_{n,ω_1} is *n*-connected. Does having large chromatic number
 - imply the existence of highly connected subgraphs?
 - reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

G is *n*-connected (infinitely connected) iff given vertices v, w and n - 1 points (finitely many points) *F* there is a path which connects v and w and avoids *F*.

- E.g.: K_{n,ω_1} is *n*-connected. Does having large chromatic number
 - imply the existence of highly connected subgraphs?
 - reflect to some highly connected subgraphs?

Note: the chromatic number reflects to connected subgraphs.

- an *n*-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
 - **[Erdős-Hajnal**, **1966]** Suppose $|G| = Chr(G) = \omega_1$. Is there an infinitely connected uncountably chromatic subgraph of *G*?
 - [Erdős-Hajnal, 1985] Suppose Chr(G) = ω₁. Is there an infinitely connected uncountably chromatic subgraph of G?

- an *n*-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
 - [Erdős-Hajnal, 1966] Suppose |G| = Chr(G) = ω₁. Is there an infinitely connected uncountably chromatic subgraph of G?
 - [Erdős-Hajnal, 1985] Suppose Chr(G) = ω₁. Is there an infinitely connected uncountably chromatic subgraph of G?

- an *n*-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
 - [Erdős-Hajnal, 1966] Suppose |G| = Chr(G) = ω₁. Is there an infinitely connected uncountably chromatic subgraph of G?
 - [Erdős-Hajnal, 1985] Suppose Chr(G) = ω₁. Is there an infinitely connected uncountably chromatic subgraph of G?

- an *n*-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
 - **[Erdős-Hajnal, 1966]** Suppose $|G| = Chr(G) = \omega_1$. Is there an infinitely connected uncountably chromatic subgraph of *G*?
 - **[Erdős-Hajnal, 1985]** Suppose $Chr(G) = \omega_1$. Is there an infinitely connected uncountably chromatic subgraph of *G*?

- an *n*-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
 - **[Erdős-Hajnal, 1966]** Suppose $|G| = Chr(G) = \omega_1$. Is there an infinitely connected uncountably chromatic subgraph of G?
 - [Erdős-Hajnal, 1985] Suppose Chr(G) = ω₁. Is there an infinitely connected uncountably chromatic subgraph of G?

- an *n*-connected uncountably chromatic subgraph?
- an infinitely connected uncountably chromatic subgraph?
 - **[Erdős-Hajnal, 1966]** Suppose $|G| = Chr(G) = \omega_1$. Is there an infinitely connected uncountably chromatic subgraph of G?
 - **[Erdős-Hajnal, 1985]** Suppose $Chr(G) = \omega_1$. Is there an infinitely connected uncountably chromatic subgraph of G?

- [Komjáth, 1988] Under PFA, if |G| = Chr(G) = ω₁ then
 G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph
 |G| = Chr(G) = ω₁ such that there is no infinitely connected uncountably chromatic subgraphs of G.

- [Komjáth, 1988] Under PFA, if |G| = Chr(G) = ω₁ then
 G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph
 |G| = Chr(G) = ω₁ such that there is no infinitely connected uncountably chromatic subgraphs of G.

- [Komjáth, 1988] Under PFA, if |G| = Chr(G) = ω₁ then
 G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph
 |G| = Chr(G) = ω₁ such that there is no infinitely connected uncountably chromatic subgraphs of G.

- [Komjáth, 1988] Under PFA, if |G| = Chr(G) = ω₁ then
 G has an infinitely connected uncountably chromatic subgraph.
- [Komjáth, 1988-2013] Consistently, there is a graph $|G| = Chr(G) = \omega_1$ such that there is no infinitely connected uncountably chromatic subgraphs of G.

● Question from [Erdős-Hajnal, 1966]: independent. ✓

• Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

● Question from [Erdős-Hajnal, 1985]: no in ZFC. ✓

● Question from [Erdős-Hajnal, 1966]: independent. ✓

• Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

● Question from [Erdős-Hajnal, 1985]: no in ZFC. ✓

Dániel Soukup (U of T) Coloring problems on infinite graphs

- Question from [Erdős-Hajnal, 1966]: independent. ✓
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

● Question from [Erdős-Hajnal, 1985]: no in ZFC. ✓

- Question from [Erdős-Hajnal, 1966]: independent. ✓
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

● Question from [Erdős-Hajnal, 1985]: no in ZFC. ✓

Dániel Soukup (U of T) Coloring problems on infinite graphs

MU 2015 23 / 28

- Question from [Erdős-Hajnal, 1966]: independent. ✓
- Question from [Erdős-Hajnal, 1985]: consistently no.

Theorem (D.S. 2014)

There is a graph of chromatic number ω_1 and size continuum without uncountable infinitely connected subgraphs.

• Question from [Erdős-Hajnal, 1985]: no in ZFC. \checkmark

• find a rather disconnected graph with large chromatic number:

- the comparability graph of a non-special tree without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

• find a rather disconnected graph with large chromatic number:

- the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

MU 2015 24 / 28

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

MU 2015 24 / 28

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- find a rather disconnected graph with large chromatic number:
 - the comparability graph of a **non-special tree** without uncountable chains;
- thin out the edges to have no uncountable infinitely connected subgraph:
 - use a ladder system on the tree;
- how to make sure that the chromatic number is still large?
 - a smart diagonalization of length continuum.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
 - Recall: there are G with Chr(G) > ω where every infinitely connected subgraph is countable.
 - Question: how to eliminate the countable infinitely connected subgraphs?
 - Not even a consistency result...

... or see solved.

Dániel Soukup (U of T)

• [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?

- Recall: there are G with Chr(G) > ω where every infinitely connected subgraph is countable.
- Question: **how to eliminate** the countable infinitely connected subgraphs?
- Not even a consistency result...

... or see solved.

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
 - Recall: there are G with Chr(G) > ω where every infinitely connected subgraph is countable.
 - Question: **how to eliminate** the countable infinitely connected subgraphs?
 - Not even a consistency result...

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
 - Recall: there are G with Chr(G) > ω where every infinitely connected subgraph is countable.
 - Question: **how to eliminate** the countable infinitely connected subgraphs?
 - Not even a consistency result...

- [Komjáth, ??] Is there a graph with uncountable chromatic number which contains no infinitely connected subgraphs?
 - Recall: there are G with Chr(G) > ω where every infinitely connected subgraph is countable.
 - Question: **how to eliminate** the countable infinitely connected subgraphs?
 - Not even a consistency result...

... or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
 - Recall: $\exists \Delta$ -free graph G with $Chr(G) > \omega$.
 - Question: is there a graph with large chromatic number without such a subgraph?
 - [Shelah, 1988] Consistently yes.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
 - Recall: $\exists \Delta$ -free graph G with $Chr(G) > \omega$.
 - Question: is there a graph with large chromatic number without such a subgraph?
 - [Shelah, 1988] Consistently yes.

... or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
 - Recall: $\exists \Delta$ -free graph G with $Chr(G) > \omega$.
 - Question: is there a graph with large chromatic number without such a subgraph?
 - [Shelah, 1988] Consistently yes.

... or see solved.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
 - Recall: $\exists \Delta$ -free graph G with $Chr(G) > \omega$.
 - Question: is there a graph with large chromatic number without such a subgraph?
 - [Shelah, 1988] Consistently yes.

- [Erdős, Hajnal 1975] Is there a graph with uncountable chromatic number which contains no triangle free subgraphs with uncountable chromatic number?
 - Recall: $\exists \Delta$ -free graph G with $Chr(G) > \omega$.
 - Question: is there a graph with large chromatic number without such a subgraph?
 - [Shelah, 1988] Consistently yes.

- [Erdős, Hajnal 1975] Suppose that $f : \mathbb{N} \to \mathbb{N}$ is increasing. Is there

- [Erdős, Hajnal 1975] Suppose that $f : \mathbb{N} \to \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every *n*-chromatic subgraph of G has at least f(n) vertices (for all n > 3)?
 - Recall: If Chr(G) is infinite then $\sup\{Chr(H) : H \subseteq G \text{ finite}\}$ is
 - Question: how fast are the finitely chromatic subgraphs growing?
 - [Shelah, 2005] Consistently yes.

... or see solved.

- [Erdős, Hajnal 1975] Suppose that $f : \mathbb{N} \to \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every *n*-chromatic subgraph of G has at least f(n) vertices (for all $n \ge 3$)?
 - Recall: If Chr(G) is infinite then sup{Chr(H) : H ⊆ G finite} is infinite as well.
 - Question: how fast are the finitely chromatic subgraphs growing?

MU 2015

27 / 28

• [Shelah, 2005] Consistently yes.

- [Erdős, Hajnal 1975] Suppose that $f : \mathbb{N} \to \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every *n*-chromatic subgraph of G has at least f(n) vertices (for all $n \ge 3$)?
 - Recall: If Chr(G) is infinite then sup{Chr(H) : H ⊆ G finite} is infinite as well.
 - Question: how fast are the finitely chromatic subgraphs growing?
 - [Shelah, 2005] Consistently yes.

... or see solved.

- [Erdős, Hajnal 1975] Suppose that $f : \mathbb{N} \to \mathbb{N}$ is increasing. Is there a graph G with uncountable chromatic number such that every *n*-chromatic subgraph of G has at least f(n) vertices (for all $n \ge 3$)?
 - Recall: If Chr(G) is infinite then sup{Chr(H) : H ⊆ G finite} is infinite as well.
 - Question: how fast are the finitely chromatic subgraphs growing?

MU 2015

27 / 28

• [Shelah, 2005] Consistently yes.

"The infinite we do now, the finite will have to wait a little."

P. Erdős

Dániel Soukup (U of T)

Coloring problems on infinite graphs

MU 2015 28 / 28