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Abstract. We construct from a version of ♦ a T2 example of a
hereditarily Lindelöf space X that is not a D-space but it is the
union of two subspaces both of which are D-spaces. This answers
a question of Arhangel’skii.

A T1 space X is said to be a D-space if for each open neighbourhood
assignment {Ux : x ∈ X} there is a closed and discrete subset D ⊆ X
such that {Ux : x ∈ D} covers the space. The notion is due to van
Douwen and was first studied in [2]. The main open question regarding
D-spaces is whether every regular Lindelöf space is aD-space. Recently
in [4] the construction of a consistent T2 counterexample to the van
Douwen question was presented. In this note we use the same technique
to construct an example of a T2 space that is not a D-space but is the
union of two subspaces that are bothD-spaces. This answers a question
of Arhangel’skii from [1].

A topology on ω1 is defined by constructing a sequence U = {Uα :
α < ω1} of subsets of ω1 such that α ∈ Uα. The example will be
obtained by taking the family U ∪{ω1 \H : H ∈ [ω1]

<ω} as a subbasis.
Then sets of the form UF \ H where F,H ⊆ ω1 are finite and UF =⋂
α∈F Uα form a basis for the topology. Any such topology is T1 and

there is a natural way to make it T2 by identifying ω1 in an appropriate
way with some other T2 space and taking the common refinement of
the two topologies.

We also partition ω1 as a union of two stationary sets S0 ∪ S1. We
will construct the Uα’s in such a way that α ∈ Uα is the neighborhood
assignment witnessing the space is not D but both subspaces S0 and S1

are D-spaces. Whether the union of two D-spaces is always a D-space
was asked in [1].

The following lemma shows how the subspaces will be made to be
D.
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Lemma 0.1. Suppose that τ is a topology on ω1 obtained by taking a
family {Uα : α ∈ ω1} ∪ {ω1 \ F : F ∈ [ω1]

<ω} as a subbasis. Suppose
that S ⊆ ω1 is an uncountable subspace. Suppose also that for any
uncountable T ⊆ S and any neighborhood assignment {Vα : α ∈ T}
such that each Vα = UFα and the family {Fα : α ∈ T} is pairwise
disjoint, there is a D ⊆ T countable and closed discrete in S such that
{UFα : α ∈ D} covers a tail of S. Then the subspace S is hereditarily
a D-space.

PROOF. Fix an arbitrary neighborhood assignment V = {Vα : α ∈ S ′}
with S ′ ⊆ S. Without loss of generality we may assume Vα = UFα \Gα

for some finite Fα and Gα. LetM be a countable elementary submodel
of some H(κ) for κ sufficiently large so that

{Vα, Fα, Gα : α ∈ S ′} ∈M.

Enumerate as {dn : n ∈ ω} the finite subsets of S ′∩M . Also enumerate
S ′ ∩M = {βn : n ∈ ω}. We define a sequence {En : n ∈ ω} as follows.
First consider d0.
If there is a γ ∈ S ′ such that Fγ = d0 by elementarity we may fix
γ0 ∈ S ′ ∩M such that Fγ0 = d0.
If there is an uncountable T0 such that {Fα : α ∈ T0} is an uncountable
∆-system with root d0, fix such a T0 and consider the family {UFα\d0 :
α ∈ T0}. By assumption there is a D0 ⊆ T0 countable and closed
discrete in S such that {UFα\d0 : α ∈ D0} covers a tail of S. By
elementarity we may assume that D0 ∈M and that

S \M ⊆
⋃
α∈D0

UFα\d0 .

If there is no such T0 just let D0 = ∅.
Finally let k0 be minimal such that βk0 6∈

⋃
{UFα \Gα : α ∈ D0∪{γ0}}.

Now let E0 = {γ0} ∪D0 ∪ {βk0}.
Suppose n > 0 and we have constructed E0 ⊆ ... ⊆ En−1 and Ei ∈ M
are countable and closed and discrete in S for each i < n. Let

Sn = S ′ \
( ⋃
α∈En−1

UFα \Gα

)
.

And consider dn.
If there is a γ ∈ Sn such that Fβ = dn then by elementarity we may fix
γn ∈ Sn ∩M with Fγn = dn.
If there is an uncountable Tn ⊆ Sn such that {Fα : α ∈ Tn} is a ∆-
system with root dn, fix such a Tn. Proceed now as above, finding a
countable Dn ∈ M subset of Tn closed discrete in S such that {UFα :
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α ∈ Dn} covers S \ M . If there is no such uncountable Tn just let
Dn = ∅. And finally let kn be minimal such that

βkn 6∈
⋃
{UFα \Gα : α ∈ En−1 ∪Dn ∪ {γn+1} }.

Finally let En = En−1 ∪Dn ∪ {γn, βkn}.
Now, let

D =
⋃
n∈ω

En.

Claim 0.2. S ′ ⊆
⋃
{UFα \Gα : α ∈ D}

PROOF. Clearly by choice of the βnk it must be the case that S ′ ∩M
is covered. So fix γ ∈ S ′ \M .

First consider the possibility that Fγ ⊆M . If so, then by elementar-
ity, there is a β ∈ S ′ ∩M such that Fβ = Fγ. Fix n such that dn = Fγ
and consider stage n of the construction. If γ 6∈

⋃
α∈En−1

UFα \Gα, then
at this stage we fixed γn with Fγn = dn and we put γn ∈ En ⊆ D. Then
since γ ∈ UFγ it follows that γ ∈ UFγn . And since γn ∈ M it follows
that Gγn ⊆M . Therefore γ ∈ UFγn \Gγn as required since γn ∈ D.

Next, consider the possibility that Fγ \M 6= ∅. Then there is an
n such that dn = Fγ ∩M . By the elementary submodel proof of the
∆-system lemma (see [3] or for an explicit proof see [4]) it follows that
there is an uncountable ∆-system of the form {Fα : α ∈ Tn} with root
dn where Tn ⊆ Sn. By choice of Dn we may fix α ∈ Dn such that
γ ∈ UFα\dn . And since γ ∈ Udn it follows that γ ∈ UFα . Finally since
α ∈ M it follows that Gα ⊆ M so γ ∈ UFα \ Gα as required since
α ∈ Dn ⊆ D. �

Claim 0.3. D is closed discrete in S ′.

PROOF. This follows directly from the following observation: Suppose
that X is a space, {Vx : x ∈ X} a neighborhood assignment and
{Bn : n ∈ ω} a family of closed discrete subsets such that

(1) X =
⋃
{Vx : x ∈

⋃
k<ω Bk}, and

(2) Bn ⊆ X \
⋃
{Vx : x ∈

⋃
k<nBk}

Then
⋃
nBn is closed discrete. � �

Remark: If the family of sets {Uα : α ∈ ω1} generates a Hausdorff
topology, then the lemma still applies and the proof is in fact simplified
since the extra parameter of the complement of the finite sets can be
removed.
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Now let us proceed with the construction of the example. The topol-
ogy will be a common refinement of the topology generated by a se-
quence of subsets Uα ⊆ ω1 and by identifying ω1 with a subset of [R]<ω

and using Euclidean open subsets to define a topology. In particular:

Definition 0.4. Define a topology on [R]<ω as follows. Let Q ⊆ R be
a Euclidean open set and let Q∗ = {H ∈ [R]<ω : H ⊆ Q}. Sets of the
form Q∗ define a topology ρ on [R]<ω.

The proof of the following claim is straightforward.

Claim 0.5. (1) ([R]<ω, ρ) is of countable weight,
(2) any family X ⊆ [R]<ω of pairwise disjoint nonempty sets forms

a Hausdorff subspace of ([R]<ω, ρ).

Let us fix a countable base W for ([R]<ω, ρ).

To proceed with the rest of the construction we assume ♦ and fix
two sequences:

(1) {Cα : α ∈ ω1} an enumeration of [ω1]
ω such that Cα ⊆ α for

each α.
(2) {aα : α ∈ ω1} a special ♦ sequence that captures functions on

S0 stationarily often on S1 and vice-versa in the following sense:
(a) for each uncountable partial function f : S0 → [ω1]

<ω the
set of α ∈ S1 such that f � dom(f) ∩ α = aα is stationary,
and

(b) for each uncountable partial function f : S1 → [ω1]
<ω the

set of α ∈ S0 such that f � dom(f) ∩ α = aα is stationary.
The existence of such a partition of ω1 and corresponding ♦ sequence
is a consequence of ♦. Indeed, if {aα : α ∈ ω1} is a ♦ sequence, then
S0 = {α : 0 ∈ aα} and S1 = {α : 1 ∈ aα} are both stationary, disjoint
and {aα\{i} : α ∈ Si} is a ♦Si sequence on ω1\{i} for each i < 2. Now,
by putting together a ♦S0 sequence and a ♦S1 sequence one obtains the
desired special ♦ sequence. 1

We want to construct the sets Uα so that a few things happen.
1. For every α, if Cα is closed discrete then α 6∈ Uξ for any ξ ∈ Cα.

(Since we will make sure that closed discrete sets are countable this
assures that X is not a D-space).

2. For each i < 2 and each uncountable T ⊆ Si and each function
f : T → [ω1]

<ω such that the range is pairwise disjoint, there is an
α ∈ S1−i such that f � T ∩ α = aα and there is a Dα ⊆ T ∩ α that
converges to α such that {Uf(β) : β ∈ Dα} covers Si \ α.

1Thanks to Arnie Miller for pointing this out.
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Note that if our space is constructed to be T2, then (2) implies that
D will be closed discrete in Si, so if we can do (2) then by the previous
lemma we will have that both S0 and S1 are D-spaces.

So suppose that we are at stage α of the construction and we have
constructed {Uβ ∩ α : β < α}. We need to decide whether or not to
add α to Uβ for each β < α. Let τα be the topology on α generated
by the Uβ ∩ α’s. Suppose, without loss of generality, that α ∈ S0.
Let {βn : n ∈ ω} be the set of β ∈ S1 ∩ α for which we have fixed a
Dβ ⊆ S0 ∩ β where Dβ is closed discrete in S0 ∩ α with respect to the
subspace topology determined by τα and {Uaβ(ξ) : ξ ∈ Dβ} is a cover
of S0 ∩ (β, α). So we need to assure that α is covered by some set from
{Uaβ(ξ) : ξ ∈ Dβ}.

We also need to consider aα : S1∩α→ [α]<ω coding a neighborhood
assignment and find Dα ⊆ S1 ∩ α in conjunction with our choice for
the neighborhoods for α so that Dα converges to α and so that we will
be able to assure that {Uaα(ξ) : ξ ∈ Dα} will cover a tail of the space.
Recall that Dα converging to α assures not only that Dα will be closed
discrete in S1 wrt the subspace topology generated by τα, but that it
will remain closed discrete regardless of how we extend the topology
(as long as the final topology is T2). We begin by proving:

Theorem 0.6. There exist {Uα
γ }γ≤α and ϕα : (α + 1) → [R]<ω for

α < ω1 with the following properties:
IH(1) Uα

γ ⊆ α + 1 and Uα
α = α + 1 for every γ ≤ α < ω1, and the

range of ϕα is pairwise disjoint for every α < ω1.
IH(2) Uα

γ = Uα0
γ ∩ (α+ 1) and ϕα = ϕα0 � (α + 1) for all γ ≤ α ≤ α0.

Let τα denote the topology generated by the sets

{Uα
γ : γ ≤ α} ∪ {ϕ−1

α (W ) : W ∈ W}

as a subbase. Let Uα
F =

⋂
{Uα

γ : γ ∈ F} for F ∈ [α + 1]<ω.
IH(3) If Cα is τα closed discrete then

⋃
{Uα

γ : γ ∈ Cα} 6= α + 1.
IH(4) Let Tα = {β ≤ α : there is a countable elementary submodel

M ≺ H(ϑ) for some sufficiently large ϑ such that the require-
ments (i)-(v) below all hold}.
(i) M ∩ ω1 = β,
(ii) (aη : η ∈ ω1), S0, S1, (Cη : η ∈ ω1) ∈M ,
(iii) there is a function ϕ ∈M such that ϕ � β = ϕβ � β,
(iv) if β ∈ Si then there is an uncountable f ∈ M coding

a neighborhood assignment to an uncountable subset of
S1−i captured by our ♦ sequence at α. I.e., f is such
that dom(f) ⊆ S1−i and f : dom(f) → [ω1]

<ω such that
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f � dom(f) ∩ β = aβ. Furthermore, ξ ∈ Uf(ξ) for all
ξ ∈ domf .

(v) there is a {Vγ}γ<ω1 ∈M such that Vγ ∩ β = Uβ
γ ∩ β for all

γ < β.
Then for each i < 2 and each β ∈ Tα ∩ Si there is a Dβ ⊆
dom(aβ) (independent of α) such that
(a) if β ∈ Tα then both Dβ and {aβ(ξ) : ξ ∈ Dβ} converge to β

in τα (i.e., for each neighborhood V of β, {ξ ∈ Dβ : ξ 6∈ V }
is finite and {ξ ∈ Dβ : aβ(ξ) 6⊆ V } is finite), and

(b) if β ∈ Tα ∩ α then for every V ∈ τα with β ∈ V the family

{Uα
aβ(ξ) : ξ ∈ Dβ, aβ(ξ) ⊆ V }

is an ω-cover of (β, α] ∩ S1−i.

Let us first show that the theorem implies that the resulting space
is hereditarily Lindelöf, not a D-space but each of the subspaces S0

and S1 are D-spaces. It clearly follows from IH(1) and IH(2) that the
resulting space is a refinement of a T2 topology, hence is T2.

To see why each subspace Si is a D-space, wlog, let us just consider
S0. By Lemma 0.1, it suffices to consider a neighborhood assignment
of the form {Uf(ξ) : ξ ∈ T} where T ⊆ S0 is uncountable and f : T →
[ω1]

<ω is such that the family {f(ξ) : ξ ∈ T} is pairwise disjoint. And it
suffices to find a subset of T closed discrete in S0 whose neighborhoods
cover a tail of S0. So fix such an f and fix a countable elementary
submodel containing everything relevant including f and such that
M ∩ ω1 = β and f � (dom(f) ∩ β) = aβ. Therefore β ∈ Tα for all
α ≥ β. The set Dβ given by the Theorem converges to β, and since
Dβ ⊆ dom(f) ⊆ S0 and since β ∈ S1, it follows, since our topology is
T2, that Dβ is closed discrete in S0. Finally, note that IH(4)(b) implies
that {Uf(ξ) : ξ ∈ Dβ} covers S0 \ β, so by Lemma 0.1, S0 is a D-space.

Note that this shows that both S0 and S1 are hereditarily D-spaces
and indeed since the closed discrete sets witnessing D for neighborhood
assignments are always countable, it follows that both S0 and S1 are
hereditarily Lindelöf, so X is hereditarily Lindelöf.

Furthermore, closed discrete subsets of X are countable so IH(3)
implies that X is itself not a D-space.

It suffices to prove Theorem 0.6. We construct the sets {Uβ : β < ω1}
by constructing Uα

β for all β < α < ω1 by recursion on α. Suppose we
are some stage α and {Uγ

β : β < γ < α} has been constructed so that
for γ < α the inductive hypotheses have been preserved. Consider α a
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limit ordinal. For each β < α, let

Ũα
β =

⋃
β<γ<α

Uγ
β .

And let τα be the topology generated on α as described in the hypothe-
ses of the theorem.

We let Uα
α = α + 1 and we need to decide for each β < α whether

• Uα
β = Ũα

β , or
• Uα

β = Ũα
β ∪ {α}.

Let Tα be as in the inductive hypotheses. Assume that Tα ∩ α 6= ∅
(if it is empty, then the construction is simpler and we leave the reader
to check this case). Enumerate as

{(Gn, βn) : n ∈ ω}
all pairs (G, β) where β < α and G ∈ [α \ β]<ω. For each β < α let
{Vn(β) : n ∈ ω} be a decreasing local neighborhood base at β in the τα
topology. Since each β < α appears infinitely often in the enumeration
{βn : n ∈ ω}, the family {Vn(βn) : βn = β} is a local neighborhood
base at β. Also fix an enumeration {αn : n ∈ ω} of α and let φ̃ denote
the function

⋃
β<α φβ.

What we do at stage α splits into cases.
Case 1 α ∈ Tα and Cα is closed discrete in the τα topology on α.
Fix M witnessing this and fix f ∈M such that f � dom(f) ∩M = aα.
Since the domain of f is uncountable, it includes an uncountable subset
E ∈ M such that if we let g(η) = f(η) ∪ {η} for all η ∈ dom(f) then
{g(η) : η ∈ E} is pairwise disjoint and

(1) |g(η)| = m for all η ∈ E (for some fixed m ∈ ω), and
(2) for each η ∈ E, if g(η) = {ξ(η, i) : i < m} then |φ̃(ξ(η, i))| = ki.

(for some fixed sequence (ki)i∈m).
LetN = k0+...+km−1 and letHξ denote theN -element set

⋃
{φ̃(ξ(η, i)) :

i < m}
We construct now a sequence of finite set {Fn : n ∈ ω} as follows.

Consider (G0, β0). Since Cα is closed discrete, and let W0 ⊆ V0(β0) be
such that W0 ∩ Cα ⊆ {β0}. Consider now the set {aβ0(ξ) ⊆ W0 : ξ ∈
Dβ0}. By our IH, we know this is an ω-cover of (β0, α). And M knows
this set is countable. Therefore there is a ξ0 ∈ Dβ0 such that

(1) G0 ⊆ Uaβ0 (ξ0), and
(2) E ′ = {η ∈ E : g(η) ⊆ Uaβ0 (ξ0)} is uncountable.

Now we may fix a x ∈ [R]N which is a complete accumulation point
of {Hη : η ∈ E ′} and which is disjoint from φ̃(α0). Finally fix Q0 a
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disjoint union of N rational intervals of measure < 1 containing and
separating the points of x and disjoint from φ̃(α0) with Q∗0 ∈ W and
let

E0 = {η ∈ E ′ : g(η) ⊆ φ̃−1(Q∗0)}.
Since x was a complete accumulation point of {Hη : η ∈ E ′}, E0 is
uncountable and since Q0 ∈M it follows that E0 ∈M .

Let F0 = aβ0(ξ0). Note that G0 ⊆ UF0 and F0 ∩ Cα = ∅ since
F0 ⊆ W0. And also {η : aα(η) ∪ {η} ⊆ UF0 ∩ φ̃−1(Q∗0)} ⊇ E0 ∩M so is
infinite.

Proceeding in this fashion it is clear that we can construct sequences
(ξi)i<ω; (Ei)i<ω; (Fi)i<ω and (Qi)i<ω so that for each i < ω

(1) ξi ∈ Dβi and Fi = aβi(ξi).
(2) Gi ⊆ UFi and Fi ∩ Cα = ∅.
(3) Ei ⊆ Ei−1 is uncountable and Ei ∈M .
(4) Qi is a disjoint union of N rational intervals of measure < 1/i

and Qi ⊆ Qi−1 and φ̃(αi) ∩Qi = ∅.
(5) Ei ⊆ {η ∈ dom(f) : g(η) ⊆ φ̃−1(Q∗i ) ∩ UFi}
Note that the intersection of the sets Qi is an N -element subset xα

of R which is disjoint from φ̃(β) for each β < α. So let φα extend φ̃
by letting φα(α) = xα. Then the range of φα is pairwise disjoint as
required in IH(2).

Now choose ηi ∈ Ei for each i and let Dα = {ηi : i ∈ ω}.
For each β ∈

⋃
n Fn let Uα

β = Ũα
β ∪ {α}, and for β ∈ α \

⋃
n Fn let

Uα
β = Ũα

β .
This completes the recursive construction and we need to verify that

the inductive hypotheses (1)-(5) are satisfied for α. As noted above, φα
satisfies the requirements of IH(2) and the rest of IH(1) and (2) follow
from the construction. IH(3) follows since each Fn∩Cα = ∅, so α 6∈ Uα

ξ

for all ξ ∈ Cα. To see that IH(4)(a) holds for α, note first that the
following family is a local neighborhood base at α:

{φ−1
α (Q∗n) ∩

⋂
j<n

Uα
Fj

: n ∈ ω}.

Also note that by construction, for each n and for each i ≥ n we have
ηi ∈ En so that

{ηi} ∪ aα(ηi) ⊆ φ−1
α (Q∗i ) ⊆ φ−1

α (Q∗n)

and for all j < i we have Ei ⊆ Ej so for all j ≤ n < i we have
{ηi} ∪ aα(ηi) ⊆ Uα

Fj
. So {aα(ηi) : i ∈ ω} and Dα both converge to α as

required by IH(4)(a).
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To verify IH(4)(b), fix β ∈ Tα ∩ α and fix a neighborhood V of β
in the τα topology. Also, fix G ⊆ (β, α] finite. Fix now n such that
Vn(β) ⊆ V and so that (Gn, βn) = (G∩α, β). Then at this stage of the
construction we fixed ξn ∈ Dβn = Dβ so that Fn = aβ(ξn) ⊆ Vn(β) ⊆ V
and G ∩ α ⊆ Uα

Fn
. And α ∈ Uα

Fn
, so G ⊆ Uα

aβ(ξ) for some ξ ∈ Dβ with
aβ(ξ) ⊆ V as required.
Case 2 α 6∈ Tα or Cα is not closed discrete. Then the construction is
essentially the same but easier as we do not need to concern ourselves
whether the Fn are disjoint from Cα (in the case Cα is not closed
discrete) and also we do not need to construct the set Dα in the domain
of aα in the case that α 6∈ Tα. �

Remark: Since each of the subspaces S0 and S1 are D-spaces, it
follows easily that for any neighborhood assignment of the whole space,
there is a discrete subset (the union of a closed discrete subset of S0 and
a closed discrete subset of S1) whose neighborhoods cover the whole
space. This property was called dually discrete in [5] where it was asked
whether Lindelöf spaces are dually discrete. This question remains
open.
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