THE UNION OF TWO D-SPACES NEED NOT BE D

DÁNIEL T. SOUKUP AND PAUL J. SZEPTYCKI

Abstract

We construct from a version of \diamond a T_{2} example of a hereditarily Lindelöf space X that is not a D-space but it is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.

A T_{1} space X is said to be a D-space if for each open neighbourhood assignment $\left\{U_{x}: x \in X\right\}$ there is a closed and discrete subset $D \subseteq X$ such that $\left\{U_{x}: x \in D\right\}$ covers the space. The notion is due to van Douwen and was first studied in [2]. The main open question regarding D-spaces is whether every regular Lindelöf space is a D-space. Recently in [4] the construction of a consistent T_{2} counterexample to the van Douwen question was presented. In this note we use the same technique to construct an example of a T_{2} space that is not a D-space but is the union of two subspaces that are both D-spaces. This answers a question of Arhangel'skii from [1].

A topology on ω_{1} is defined by constructing a sequence $\mathcal{U}=\left\{U_{\alpha}\right.$: $\left.\alpha<\omega_{1}\right\}$ of subsets of ω_{1} such that $\alpha \in U_{\alpha}$. The example will be obtained by taking the family $\mathcal{U} \cup\left\{\omega_{1} \backslash H: H \in\left[\omega_{1}\right]^{<\omega}\right\}$ as a subbasis. Then sets of the form $U_{F} \backslash H$ where $F, H \subseteq \omega_{1}$ are finite and $U_{F}=$ $\bigcap_{\alpha \in F} U_{\alpha}$ form a basis for the topology. Any such topology is T_{1} and there is a natural way to make it T_{2} by identifying ω_{1} in an appropriate way with some other T_{2} space and taking the common refinement of the two topologies.

We also partition ω_{1} as a union of two stationary sets $S_{0} \cup S_{1}$. We will construct the U_{α} 's in such a way that $\alpha \in U_{\alpha}$ is the neighborhood assignment witnessing the space is not D but both subspaces S_{0} and S_{1} are D-spaces. Whether the union of two D-spaces is always a D-space was asked in [1].

The following lemma shows how the subspaces will be made to be D.

[^0]Lemma 0.1. Suppose that τ is a topology on ω_{1} obtained by taking a family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\} \cup\left\{\omega_{1} \backslash F: F \in\left[\omega_{1}\right]^{<\omega}\right\}$ as a subbasis. Suppose that $S \subseteq \omega_{1}$ is an uncountable subspace. Suppose also that for any uncountable $T \subseteq S$ and any neighborhood assignment $\left\{V_{\alpha}: \alpha \in T\right\}$ such that each $V_{\alpha}=U_{F_{\alpha}}$ and the family $\left\{F_{\alpha}: \alpha \in T\right\}$ is pairwise disjoint, there is a $D \subseteq T$ countable and closed discrete in S such that $\left\{U_{F_{\alpha}}: \alpha \in D\right\}$ covers a tail of S. Then the subspace S is hereditarily a D-space.

PROOF. Fix an arbitrary neighborhood assignment $\mathcal{V}=\left\{V_{\alpha}: \alpha \in S^{\prime}\right\}$ with $S^{\prime} \subseteq S$. Without loss of generality we may assume $V_{\alpha}=U_{F_{\alpha}} \backslash G_{\alpha}$ for some finite F_{α} and G_{α}. Let M be a countable elementary submodel of some $H(\kappa)$ for κ sufficiently large so that

$$
\left\{V_{\alpha}, F_{\alpha}, G_{\alpha}: \alpha \in S^{\prime}\right\} \in M
$$

Enumerate as $\left\{d_{n}: n \in \omega\right\}$ the finite subsets of $S^{\prime} \cap M$. Also enumerate $S^{\prime} \cap M=\left\{\beta_{n}: n \in \omega\right\}$. We define a sequence $\left\{E_{n}: n \in \omega\right\}$ as follows. First consider d_{0}.
If there is a $\gamma \in S^{\prime}$ such that $F_{\gamma}=d_{0}$ by elementarity we may fix $\gamma_{0} \in S^{\prime} \cap M$ such that $F_{\gamma_{0}}=d_{0}$.
If there is an uncountable T_{0} such that $\left\{F_{\alpha}: \alpha \in T_{0}\right\}$ is an uncountable Δ-system with root d_{0}, fix such a T_{0} and consider the family $\left\{U_{F_{\alpha} \backslash d_{0}}\right.$: $\left.\alpha \in T_{0}\right\}$. By assumption there is a $D_{0} \subseteq T_{0}$ countable and closed discrete in S such that $\left\{U_{F_{\alpha} \backslash d_{0}}: \alpha \in D_{0}\right\}$ covers a tail of S. By elementarity we may assume that $D_{0} \in M$ and that

$$
S \backslash M \subseteq \bigcup_{\alpha \in D_{0}} U_{F_{\alpha} \backslash d_{0}}
$$

If there is no such T_{0} just let $D_{0}=\emptyset$.
Finally let k_{0} be minimal such that $\beta_{k_{0}} \notin \bigcup\left\{U_{F_{\alpha}} \backslash G_{\alpha}: \alpha \in D_{0} \cup\left\{\gamma_{0}\right\}\right\}$. Now let $E_{0}=\left\{\gamma_{0}\right\} \cup D_{0} \cup\left\{\beta_{k_{0}}\right\}$.
Suppose $n>0$ and we have constructed $E_{0} \subseteq \ldots \subseteq E_{n-1}$ and $E_{i} \in M$ are countable and closed and discrete in S for each $i<n$. Let

$$
S_{n}=S^{\prime} \backslash\left(\bigcup_{\alpha \in E_{n-1}} U_{F_{\alpha}} \backslash G_{\alpha}\right)
$$

And consider d_{n}.
If there is a $\gamma \in S_{n}$ such that $F_{\beta}=d_{n}$ then by elementarity we may fix $\gamma_{n} \in S_{n} \cap M$ with $F_{\gamma_{n}}=d_{n}$.
If there is an uncountable $T_{n} \subseteq S_{n}$ such that $\left\{F_{\alpha}: \alpha \in T_{n}\right\}$ is a Δ system with root d_{n}, fix such a T_{n}. Proceed now as above, finding a countable $D_{n} \in M$ subset of T_{n} closed discrete in S such that $\left\{U_{F_{\alpha}}\right.$:
$\left.\alpha \in D_{n}\right\}$ covers $S \backslash M$. If there is no such uncountable T_{n} just let $D_{n}=\emptyset$. And finally let k_{n} be minimal such that

$$
\beta_{k_{n}} \notin \bigcup\left\{U_{F_{\alpha}} \backslash G_{\alpha}: \alpha \in E_{n-1} \cup D_{n} \cup\left\{\gamma_{n+1}\right\}\right\}
$$

Finally let $E_{n}=E_{n-1} \cup D_{n} \cup\left\{\gamma_{n}, \beta_{k_{n}}\right\}$.
Now, let

$$
D=\bigcup_{n \in \omega} E_{n} .
$$

Claim 0.2. $S^{\prime} \subseteq \bigcup\left\{U_{F_{\alpha}} \backslash G_{\alpha}: \alpha \in D\right\}$
PROOF. Clearly by choice of the $\beta_{n_{k}}$ it must be the case that $S^{\prime} \cap M$ is covered. So fix $\gamma \in S^{\prime} \backslash M$.

First consider the possibility that $F_{\gamma} \subseteq M$. If so, then by elementarity, there is a $\beta \in S^{\prime} \cap M$ such that $F_{\beta}=F_{\gamma}$. Fix n such that $d_{n}=F_{\gamma}$ and consider stage n of the construction. If $\gamma \notin \bigcup_{\alpha \in E_{n-1}} U_{F_{\alpha}} \backslash G_{\alpha}$, then at this stage we fixed γ_{n} with $F_{\gamma_{n}}=d_{n}$ and we put $\gamma_{n} \in E_{n} \subseteq D$. Then since $\gamma \in U_{F_{\gamma}}$ it follows that $\gamma \in U_{F_{\gamma_{n}}}$. And since $\gamma_{n} \in M$ it follows that $G_{\gamma_{n}} \subseteq M$. Therefore $\gamma \in U_{F_{\gamma_{n}}} \backslash G_{\gamma_{n}}$ as required since $\gamma_{n} \in D$.

Next, consider the possibility that $F_{\gamma} \backslash M \neq \emptyset$. Then there is an n such that $d_{n}=F_{\gamma} \cap M$. By the elementary submodel proof of the Δ-system lemma (see [3] or for an explicit proof see [4]) it follows that there is an uncountable Δ-system of the form $\left\{F_{\alpha}: \alpha \in T_{n}\right\}$ with root d_{n} where $T_{n} \subseteq S_{n}$. By choice of D_{n} we may fix $\alpha \in D_{n}$ such that $\gamma \in U_{F_{\alpha} \backslash d_{n}}$. And since $\gamma \in U_{d_{n}}$ it follows that $\gamma \in U_{F_{\alpha}}$. Finally since $\alpha \in M$ it follows that $G_{\alpha} \subseteq M$ so $\gamma \in U_{F_{\alpha}} \backslash G_{\alpha}$ as required since $\alpha \in D_{n} \subseteq D$.

Claim 0.3. D is closed discrete in S^{\prime}.

PROOF. This follows directly from the following observation: Suppose that X is a space, $\left\{V_{x}: x \in X\right\}$ a neighborhood assignment and $\left\{B_{n}: n \in \omega\right\}$ a family of closed discrete subsets such that
(1) $X=\bigcup\left\{V_{x}: x \in \bigcup_{k<\omega} B_{k}\right\}$, and
(2) $B_{n} \subseteq X \backslash \bigcup\left\{V_{x}: x \in \bigcup_{k<n} B_{k}\right\}$

Then $\bigcup_{n} B_{n}$ is closed discrete.
Remark: If the family of sets $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ generates a Hausdorff topology, then the lemma still applies and the proof is in fact simplified since the extra parameter of the complement of the finite sets can be removed.

Now let us proceed with the construction of the example. The topology will be a common refinement of the topology generated by a sequence of subsets $U_{\alpha} \subseteq \omega_{1}$ and by identifying ω_{1} with a subset of $[\mathbb{R}]^{<\omega}$ and using Euclidean open subsets to define a topology. In particular:
Definition 0.4. Define a topology on $[\mathbb{R}]^{<\omega}$ as follows. Let $Q \subseteq \mathbb{R}$ be a Euclidean open set and let $Q^{*}=\left\{H \in[\mathbb{R}]^{<\omega}: H \subseteq Q\right\}$. Sets of the form Q^{*} define a topology ρ on $[\mathbb{R}]^{<\omega}$.

The proof of the following claim is straightforward.
Claim 0.5. (1) $\left([\mathbb{R}]^{<\omega}, \rho\right)$ is of countable weight,
(2) any family $\mathcal{X} \subseteq[\mathbb{R}]^{<\omega}$ of pairwise disjoint nonempty sets forms a Hausdorff subspace of $\left([\mathbb{R}]^{<\omega}, \rho\right)$.
Let us fix a countable base \mathcal{W} for $\left([\mathbb{R}]^{<\omega}, \rho\right)$.
To proceed with the rest of the construction we assume \diamond and fix two sequences:
(1) $\left\{C_{\alpha}: \alpha \in \omega_{1}\right\}$ an enumeration of $\left[\omega_{1}\right]^{\omega}$ such that $C_{\alpha} \subseteq \alpha$ for each α.
(2) $\left\{a_{\alpha}: \alpha \in \omega_{1}\right\}$ a special \diamond sequence that captures functions on S_{0} stationarily often on S_{1} and vice-versa in the following sense:
(a) for each uncountable partial function $f: S_{0} \rightarrow\left[\omega_{1}\right]^{<\omega}$ the set of $\alpha \in S_{1}$ such that $f \upharpoonright \operatorname{dom}(f) \cap \alpha=a_{\alpha}$ is stationary, and
(b) for each uncountable partial function $f: S_{1} \rightarrow\left[\omega_{1}\right]^{<\omega}$ the set of $\alpha \in S_{0}$ such that $f \upharpoonright \operatorname{dom}(f) \cap \alpha=a_{\alpha}$ is stationary.
The existence of such a partition of ω_{1} and corresponding \diamond sequence is a consequence of \diamond. Indeed, if $\left\{a_{\alpha}: \alpha \in \omega_{1}\right\}$ is a \diamond sequence, then $S_{0}=\left\{\alpha: 0 \in a_{\alpha}\right\}$ and $S_{1}=\left\{\alpha: 1 \in a_{\alpha}\right\}$ are both stationary, disjoint and $\left\{a_{\alpha} \backslash\{i\}: \alpha \in S_{i}\right\}$ is a $\diamond_{S_{i}}$ sequence on $\omega_{1} \backslash\{i\}$ for each $i<2$. Now, by putting together a $\diamond_{S_{0}}$ sequence and a $\diamond_{S_{1}}$ sequence one obtains the desired special \diamond sequence. ${ }^{1}$

We want to construct the sets U_{α} so that a few things happen.

1. For every α, if C_{α} is closed discrete then $\alpha \notin U_{\xi}$ for any $\xi \in C_{\alpha}$. (Since we will make sure that closed discrete sets are countable this assures that X is not a D-space).
2. For each $i<2$ and each uncountable $T \subseteq S_{i}$ and each function $f: T \rightarrow\left[\omega_{1}\right]^{<\omega}$ such that the range is pairwise disjoint, there is an $\alpha \in S_{1-i}$ such that $f \upharpoonright T \cap \alpha=a_{\alpha}$ and there is a $D_{\alpha} \subseteq T \cap \alpha$ that converges to α such that $\left\{U_{f(\beta)}: \beta \in D_{\alpha}\right\}$ covers $S_{i} \backslash \alpha$.
[^1]Note that if our space is constructed to be T_{2}, then (2) implies that D will be closed discrete in S_{i}, so if we can do (2) then by the previous lemma we will have that both S_{0} and S_{1} are D-spaces.

So suppose that we are at stage α of the construction and we have constructed $\left\{U_{\beta} \cap \alpha: \beta<\alpha\right\}$. We need to decide whether or not to add α to U_{β} for each $\beta<\alpha$. Let τ_{α} be the topology on α generated by the $U_{\beta} \cap \alpha$'s. Suppose, without loss of generality, that $\alpha \in S_{0}$. Let $\left\{\beta_{n}: n \in \omega\right\}$ be the set of $\beta \in S_{1} \cap \alpha$ for which we have fixed a $D_{\beta} \subseteq S_{0} \cap \beta$ where D_{β} is closed discrete in $S_{0} \cap \alpha$ with respect to the subspace topology determined by τ_{α} and $\left\{U_{a_{\beta}(\xi)}: \xi \in D_{\beta}\right\}$ is a cover of $S_{0} \cap(\beta, \alpha)$. So we need to assure that α is covered by some set from $\left\{U_{a_{\beta}(\xi)}: \xi \in D_{\beta}\right\}$.

We also need to consider $a_{\alpha}: S_{1} \cap \alpha \rightarrow[\alpha]^{<\omega}$ coding a neighborhood assignment and find $D_{\alpha} \subseteq S_{1} \cap \alpha$ in conjunction with our choice for the neighborhoods for α so that D_{α} converges to α and so that we will be able to assure that $\left\{U_{a_{\alpha}(\xi)}: \xi \in D_{\alpha}\right\}$ will cover a tail of the space. Recall that D_{α} converging to α assures not only that D_{α} will be closed discrete in S_{1} wrt the subspace topology generated by τ_{α}, but that it will remain closed discrete regardless of how we extend the topology (as long as the final topology is T_{2}). We begin by proving:

Theorem 0.6. There exist $\left\{U_{\gamma}^{\alpha}\right\}_{\gamma \leq \alpha}$ and $\varphi_{\alpha}:(\alpha+1) \rightarrow[\mathbb{R}\}^{<\omega}$ for $\alpha<\omega_{1}$ with the following properties:
$\boldsymbol{I H}(1) U_{\gamma}^{\alpha} \subseteq \alpha+1$ and $U_{\alpha}^{\alpha}=\alpha+1$ for every $\gamma \leq \alpha<\omega_{1}$, and the range of φ_{α} is pairwise disjoint for every $\alpha<\omega_{1}$.
$\boldsymbol{I H}$ (2) $U_{\gamma}^{\alpha}=U_{\gamma}^{\alpha_{0}} \cap(\alpha+1)$ and $\varphi_{\alpha}=\varphi_{\alpha_{0}} \upharpoonright(\alpha+1)$ for all $\gamma \leq \alpha \leq \alpha_{0}$.
Let τ_{α} denote the topology generated by the sets

$$
\left\{U_{\gamma}^{\alpha}: \gamma \leq \alpha\right\} \cup\left\{\varphi_{\alpha}^{-1}(W): W \in \mathcal{W}\right\}
$$

as a subbase. Let $U_{F}^{\alpha}=\bigcap\left\{U_{\gamma}^{\alpha}: \gamma \in F\right\}$ for $F \in[\alpha+1]^{<\omega}$.
$\boldsymbol{I H}(3)$ If C_{α} is τ_{α} closed discrete then $\bigcup\left\{U_{\gamma}^{\alpha}: \gamma \in C_{\alpha}\right\} \neq \alpha+1$.
$\boldsymbol{I H}(4)$ Let $T_{\alpha}=\{\beta \leq \alpha$: there is a countable elementary submodel $M \prec H(\vartheta)$ for some sufficiently large ϑ such that the requirements (i)-(v) below all hold\}.
(i) $M \cap \omega_{1}=\beta$,
(ii) $\left(a_{\eta}: \eta \in \omega_{1}\right), S_{0}, S_{1},\left(C_{\eta}: \eta \in \omega_{1}\right) \in M$,
(iii) there is a function $\varphi \in M$ such that $\varphi \upharpoonright \beta=\varphi_{\beta} \upharpoonright \beta$,
(iv) if $\beta \in S_{i}$ then there is an uncountable $f \in M$ coding a neighborhood assignment to an uncountable subset of S_{1-i} captured by our \diamond sequence at α. I.e., f is such that $\operatorname{dom}(f) \subseteq S_{1-i}$ and $f: \operatorname{dom}(f) \rightarrow\left[\omega_{1}\right]^{<\omega}$ such that
$f \upharpoonright \operatorname{dom}(f) \cap \beta=a_{\beta}$. Furthermore, $\xi \in U_{f(\xi)}$ for all $\xi \in \operatorname{domf}$.
(v) there is a $\left\{V_{\gamma}\right\}_{\gamma<\omega_{1}} \in M$ such that $V_{\gamma} \cap \beta=U_{\gamma}^{\beta} \cap \beta$ for all $\gamma<\beta$.
Then for each $i<2$ and each $\beta \in T_{\alpha} \cap S_{i}$ there is a $D_{\beta} \subseteq$ $\operatorname{dom}\left(a_{\beta}\right)$ (independent of α) such that
(a) if $\beta \in T_{\alpha}$ then both D_{β} and $\left\{a_{\beta}(\xi): \xi \in D_{\beta}\right\}$ converge to β in τ_{α} (i.e., for each neighborhood V of $\beta,\left\{\xi \in D_{\beta}: \xi \notin V\right\}$ is finite and $\left\{\xi \in D_{\beta}: a_{\beta}(\xi) \nsubseteq V\right\}$ is finite), and
(b) if $\beta \in T_{\alpha} \cap \alpha$ then for every $V \in \tau_{\alpha}$ with $\beta \in V$ the family

$$
\left\{U_{a_{\beta}(\xi)}^{\alpha}: \xi \in D_{\beta}, a_{\beta}(\xi) \subseteq V\right\}
$$

is an ω-cover of $(\beta, \alpha] \cap S_{1-i}$.
Let us first show that the theorem implies that the resulting space is hereditarily Lindelöf, not a D-space but each of the subspaces S_{0} and S_{1} are D-spaces. It clearly follows from $\mathrm{IH}(1)$ and $\mathrm{IH}(2)$ that the resulting space is a refinement of a T_{2} topology, hence is T_{2}.

To see why each subspace S_{i} is a D-space, wlog, let us just consider S_{0}. By Lemma 0.1, it suffices to consider a neighborhood assignment of the form $\left\{U_{f(\xi)}: \xi \in T\right\}$ where $T \subseteq S_{0}$ is uncountable and $f: T \rightarrow$ $\left[\omega_{1}\right]^{<\omega}$ is such that the family $\{f(\xi): \xi \in T\}$ is pairwise disjoint. And it suffices to find a subset of T closed discrete in S_{0} whose neighborhoods cover a tail of S_{0}. So fix such an f and fix a countable elementary submodel containing everything relevant including f and such that $M \cap \omega_{1}=\beta$ and $f \upharpoonright(\operatorname{dom}(f) \cap \beta)=a_{\beta}$. Therefore $\beta \in T_{\alpha}$ for all $\alpha \geq \beta$. The set D_{β} given by the Theorem converges to β, and since $D_{\beta} \subseteq \operatorname{dom}(f) \subseteq S_{0}$ and since $\beta \in S_{1}$, it follows, since our topology is T_{2}, that D_{β} is closed discrete in S_{0}. Finally, note that $\mathrm{IH}(4)(\mathrm{b})$ implies that $\left\{U_{f(\xi)}: \xi \in D_{\beta}\right\}$ covers $S_{0} \backslash \beta$, so by Lemma $0.1, S_{0}$ is a D-space.

Note that this shows that both S_{0} and S_{1} are hereditarily D-spaces and indeed since the closed discrete sets witnessing D for neighborhood assignments are always countable, it follows that both S_{0} and S_{1} are hereditarily Lindelöf, so X is hereditarily Lindelöf.

Furthermore, closed discrete subsets of X are countable so $\mathrm{IH}(3)$ implies that X is itself not a D-space.

It suffices to prove Theorem 0.6. We construct the sets $\left\{U_{\beta}: \beta<\omega_{1}\right\}$ by constructing U_{β}^{α} for all $\beta<\alpha<\omega_{1}$ by recursion on α. Suppose we are some stage α and $\left\{U_{\beta}^{\gamma}: \beta<\gamma<\alpha\right\}$ has been constructed so that for $\gamma<\alpha$ the inductive hypotheses have been preserved. Consider α a
limit ordinal. For each $\beta<\alpha$, let

$$
\widetilde{U}_{\beta}^{\alpha}=\bigcup_{\beta<\gamma<\alpha} U_{\beta}^{\gamma}
$$

And let τ_{α} be the topology generated on α as described in the hypotheses of the theorem.

We let $U_{\alpha}^{\alpha}=\alpha+1$ and we need to decide for each $\beta<\alpha$ whether

- $U_{\beta}^{\alpha}=\widetilde{U}_{\beta}^{\alpha}$, or
- $U_{\beta}^{\alpha}=\widetilde{U}_{\beta}^{\alpha} \cup\{\alpha\}$.

Let T_{α} be as in the inductive hypotheses. Assume that $T_{\alpha} \cap \alpha \neq \emptyset$ (if it is empty, then the construction is simpler and we leave the reader to check this case). Enumerate as

$$
\left\{\left(G_{n}, \beta_{n}\right): n \in \omega\right\}
$$

all pairs (G, β) where $\beta<\alpha$ and $G \in[\alpha \backslash \beta]^{<\omega}$. For each $\beta<\alpha$ let $\left\{V_{n}(\beta): n \in \omega\right\}$ be a decreasing local neighborhood base at β in the τ_{α} topology. Since each $\beta<\alpha$ appears infinitely often in the enumeration $\left\{\beta_{n}: n \in \omega\right\}$, the family $\left\{V_{n}\left(\beta_{n}\right): \beta_{n}=\beta\right\}$ is a local neighborhood base at β. Also fix an enumeration $\left\{\alpha_{n}: n \in \omega\right\}$ of α and let $\widetilde{\phi}$ denote the function $\bigcup_{\beta<\alpha} \phi_{\beta}$.

What we do at stage α splits into cases.
Case $1 \alpha \in T_{\alpha}$ and C_{α} is closed discrete in the τ_{α} topology on α. Fix M witnessing this and fix $f \in M$ such that $f \upharpoonright \operatorname{dom}(f) \cap M=a_{\alpha}$. Since the domain of f is uncountable, it includes an uncountable subset $E \in M$ such that if we let $g(\eta)=f(\eta) \cup\{\eta\}$ for all $\eta \in \operatorname{dom}(f)$ then $\{g(\eta): \eta \in E\}$ is pairwise disjoint and
(1) $|g(\eta)|=m$ for all $\eta \in E$ (for some fixed $m \in \omega$), and
(2) for each $\eta \in E$, if $g(\eta)=\{\xi(\eta, i): i<m\}$ then $|\widetilde{\phi}(\xi(\eta, i))|=k_{i}$. (for some fixed sequence $\left.\left(k_{i}\right)_{i \in m}\right)$.
Let $N=k_{0}+\ldots+k_{m-1}$ and let H_{ξ} denote the N-element set $\bigcup\{\widetilde{\phi}(\xi(\eta, i))$: $i<m\}$

We construct now a sequence of finite set $\left\{F_{n}: n \in \omega\right\}$ as follows. Consider $\left(G_{0}, \beta_{0}\right)$. Since C_{α} is closed discrete, and let $W_{0} \subseteq V_{0}\left(\beta_{0}\right)$ be such that $W_{0} \cap C_{\alpha} \subseteq\left\{\beta_{0}\right\}$. Consider now the set $\left\{a_{\beta_{0}}(\xi) \subseteq W_{0}: \xi \in\right.$ $\left.D_{\beta_{0}}\right\}$. By our IH, we know this is an ω-cover of $\left(\beta_{0}, \alpha\right)$. And M knows this set is countable. Therefore there is a $\xi_{0} \in D_{\beta_{0}}$ such that
(1) $G_{0} \subseteq U_{a_{\beta_{0}}\left(\xi_{0}\right)}$, and
(2) $E^{\prime}=\left\{\eta \in E: g(\eta) \subseteq U_{a_{\beta_{0}}\left(\xi_{0}\right)}\right\}$ is uncountable.

Now we may fix a $x \in[\mathbb{R}]^{N}$ which is a complete accumulation point of $\left\{H_{\eta}: \eta \in E^{\prime}\right\}$ and which is disjoint from $\widetilde{\phi}\left(\alpha_{0}\right)$. Finally fix Q_{0} a
disjoint union of N rational intervals of measure <1 containing and separating the points of x and disjoint from $\widetilde{\phi}\left(\alpha_{0}\right)$ with $Q_{0}^{*} \in \mathcal{W}$ and let

$$
E_{0}=\left\{\eta \in E^{\prime}: g(\eta) \subseteq \widetilde{\phi}^{-1}\left(Q_{0}^{*}\right)\right\}
$$

Since x was a complete accumulation point of $\left\{H_{\eta}: \eta \in E^{\prime}\right\}, E_{0}$ is uncountable and since $Q_{0} \in M$ it follows that $E_{0} \in M$.

Let $F_{0}=a_{\beta_{0}}\left(\xi_{0}\right)$. Note that $G_{0} \subseteq U_{F_{0}}$ and $F_{0} \cap C_{\alpha}=\emptyset$ since $F_{0} \subseteq W_{0}$. And also $\left\{\eta: a_{\alpha}(\eta) \cup\{\eta\} \subseteq U_{F_{0}} \cap \widetilde{\phi}^{-1}\left(Q_{0}^{*}\right)\right\} \supseteq E_{0} \cap M$ so is infinite.

Proceeding in this fashion it is clear that we can construct sequences $\left(\xi_{i}\right)_{i<\omega} ;\left(E_{i}\right)_{i<\omega} ;\left(F_{i}\right)_{i<\omega}$ and $\left(Q_{i}\right)_{i<\omega}$ so that for each $i<\omega$
(1) $\xi_{i} \in D_{\beta_{i}}$ and $F_{i}=a_{\beta_{i}}\left(\xi_{i}\right)$.
(2) $G_{i} \subseteq U_{F_{i}}$ and $F_{i} \cap C_{\alpha}=\emptyset$.
(3) $E_{i} \subseteq E_{i-1}$ is uncountable and $E_{i} \in M$.
(4) Q_{i} is a disjoint union of N rational intervals of measure $<1 / i$ and $\bar{Q}_{i} \subseteq Q_{i-1}$ and $\widetilde{\phi}\left(\alpha_{i}\right) \cap Q_{i}=\emptyset$.
(5) $E_{i} \subseteq\left\{\eta \in \operatorname{dom}(f): g(\eta) \subseteq \widetilde{\phi}^{-1}\left(Q_{i}^{*}\right) \cap U_{F_{i}}\right\}$

Note that the intersection of the sets Q_{i} is an N-element subset x_{α} of \mathbb{R} which is disjoint from $\widetilde{\phi}(\beta)$ for each $\beta<\alpha$. So let ϕ_{α} extend $\widetilde{\phi}$ by letting $\phi_{\alpha}(\alpha)=x_{\alpha}$. Then the range of ϕ_{α} is pairwise disjoint as required in $\mathrm{IH}(2)$.

Now choose $\eta_{i} \in E_{i}$ for each i and let $D_{\alpha}=\left\{\eta_{i}: i \in \omega\right\}$.
For each $\beta \in \bigcup_{n} F_{n}$ let $U_{\beta}^{\alpha}=\widetilde{U}_{\beta}^{\alpha} \cup\{\alpha\}$, and for $\beta \in \alpha \backslash \bigcup_{n} F_{n}$ let $U_{\beta}^{\alpha}=\widetilde{U}_{\beta}^{\alpha}$.

This completes the recursive construction and we need to verify that the inductive hypotheses (1)-(5) are satisfied for α. As noted above, ϕ_{α} satisfies the requirements of $\mathrm{IH}(2)$ and the rest of $\mathrm{IH}(1)$ and (2) follow from the construction. $\mathrm{IH}(3)$ follows since each $F_{n} \cap C_{\alpha}=\emptyset$, so $\alpha \notin U_{\xi}^{\alpha}$ for all $\xi \in C_{\alpha}$. To see that $\operatorname{IH}(4)($ a) holds for α, note first that the following family is a local neighborhood base at α :

$$
\left\{\phi_{\alpha}^{-1}\left(Q_{n}^{*}\right) \cap \bigcap_{j<n} U_{F_{j}}^{\alpha}: n \in \omega\right\} .
$$

Also note that by construction, for each n and for each $i \geq n$ we have $\eta_{i} \in E_{n}$ so that

$$
\left\{\eta_{i}\right\} \cup a_{\alpha}\left(\eta_{i}\right) \subseteq \phi_{\alpha}^{-1}\left(Q_{i}^{*}\right) \subseteq \phi_{\alpha}^{-1}\left(Q_{n}^{*}\right)
$$

and for all $j<i$ we have $E_{i} \subseteq E_{j}$ so for all $j \leq n<i$ we have $\left\{\eta_{i}\right\} \cup a_{\alpha}\left(\eta_{i}\right) \subseteq U_{F_{j}}^{\alpha}$. So $\left\{a_{\alpha}\left(\eta_{i}\right): i \in \omega\right\}$ and D_{α} both converge to α as required by $\operatorname{IH}(4)(a)$.

To verify $\operatorname{IH}(4)(\mathrm{b})$, fix $\beta \in T_{\alpha} \cap \alpha$ and fix a neighborhood V of β in the τ_{α} topology. Also, fix $G \subseteq(\beta, \alpha]$ finite. Fix now n such that $V_{n}(\beta) \subseteq V$ and so that $\left(G_{n}, \beta_{n}\right)=(G \cap \alpha, \beta)$. Then at this stage of the construction we fixed $\xi_{n} \in D_{\beta_{n}}=D_{\beta}$ so that $F_{n}=a_{\beta}\left(\xi_{n}\right) \subseteq V_{n}(\beta) \subseteq V$ and $G \cap \alpha \subseteq U_{F_{n}}^{\alpha}$. And $\alpha \in U_{F_{n}}^{\alpha}$, so $G \subseteq U_{a_{\beta}(\xi)}^{\alpha}$ for some $\xi \in D_{\beta}$ with $a_{\beta}(\xi) \subseteq V$ as required.
Case $2 \alpha \notin T_{\alpha}$ or C_{α} is not closed discrete. Then the construction is essentially the same but easier as we do not need to concern ourselves whether the F_{n} are disjoint from C_{α} (in the case C_{α} is not closed discrete) and also we do not need to construct the set D_{α} in the domain of a_{α} in the case that $\alpha \notin T_{\alpha}$.

Remark: Since each of the subspaces S_{0} and S_{1} are D-spaces, it follows easily that for any neighborhood assignment of the whole space, there is a discrete subset (the union of a closed discrete subset of S_{0} and a closed discrete subset of S_{1}) whose neighborhoods cover the whole space. This property was called dually discrete in [5] where it was asked whether Lindelöf spaces are dually discrete. This question remains open.

References

[1] A.V. Arhangel'skii D-spaces and finite unions, Proceedings of the American Mathematical Society, 32 no. 7 (2004) 2163-2170.
[2] E.K. van Douwen and W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces Pacific Journal of Mathematics, 81 No. 2 (1979) 371-377.
[3] A. Dow An introduction to applications of elementary submodels to topology Topology Proc. 13 (1988), no. 1, 17-72.
[4] D. Soukup and P.J. Szeptycki A counterexample in the theory of D-spaces, to appear in Topology and its Applicaations.
[5] J. van Mill, V.V. Tkachuk and R.G. Wilson Classes defined by stars and neighbourhood assignments, Topology Appl. 154 (2007), 2127-2134. preprint.

Department of Mathematics, University of Toronto, Toronto, On M5S 1A1 CANADA

E-mail address: daniel.t.soukup@gmail.com
Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 Canada

E-mail address: szeptyck@yorku.ca

[^0]: 1991 Mathematics Subject Classification. 54D20, 54A35, 54G20.
 Key words and phrases. D-spaces, Lindelöf spaces, finite union.
 The second author acknowledges support from NSERC grant 238944.

[^1]: ${ }^{1}$ Thanks to Arnie Miller for pointing this out.

