
Modern techniques in combinatorial set theory

Dániel T. Soukup

June 3, 2019



Contents

1 Introduction 2
1.1 Notation and preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Basic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Basic graph and Ramsey theory . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 General resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Inductive constructions and closure arguments 5
2.1 Simple diagonalisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Working with elementary submodels . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Some useful facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 The first applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Chains of elementary submodels . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Graphs with uncountable chromatic number . . . . . . . . . . . . . . . 20

2.3 Balogh’s Q-set space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Coherent maps and minimal walks 30
3.1 The first uncountable ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Some Ramsey theory on ω1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Walks on ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The full code of the walk . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 The simplified lower trace and T (ρ0) . . . . . . . . . . . . . . . . . . . 40

3.4 Countryman lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 The basis problem for uncountable linear orders . . . . . . . . . . . . 47

4 Construction schemes 51
4.1 Finite approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Todorcevic’s construction scheme . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Coherent maps from construction schemes . . . . . . . . . . . . . . . . 52
4.1.3 Capturing construction schemes . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Countable approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Trees of countable elementary submodels . . . . . . . . . . . . . . . . 54
4.2.2 Paradoxical covers of the plane . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Uncountable approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 High Davies-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Coloring topological spaces . . . . . . . . . . . . . . . . . . . . . . . . 59

1



Chapter 1

Introduction

What single ideas lead to the breakthrough results of infinite combinatorics in the last 30
years? And which methods found the widest range of applications? The main purpose of this
course is to overview novel set-theoretic and combinatorial techniques. We will especially
focus on constructing uncountable structures with prescribed combinatorial behaviour.

We will first focus on inductive constructions and diagonalisation arguments. In general,
such construction follow a similar scheme: one enumerates all the requirements on the final
structure and then proceeds by induction, building an increasingly large object that satisfies
more and more requirements. Starting from simple examples, we look at more complex
constructions that require special care when choosing the initial enumeration. Often, this is
based on choosing a sequence of elementary submodels containing all relevant parameters.
We will introduce this technique in detail and cover various applications from the set theory
of Euclidean spaces, graph theory and general topology.

The second main topic of the course is centred around the following fact: there is a
sequence of injective maps eα : α → ω for α < ω1 which are coherent i.e., eα and eβ disagree
at at most finitely many values. We will arrive at such maps through S. Todorcevic’s theory
of minimal walks on ordinals. Our goal is to cover the basic properties of walks and see
how this ties into the classification of uncountable linear orders and Ramsey theory on small
uncountable cardinals (in particular, on ℵ1 and ℵ2).

Finally, we will survey further general construction schemes. We introduce tools that
support inductively building large objects by one small piece at a time. We will cover trees
of elementary submodels; ♢-type axioms and other guessing principles; Kurepa families; and
Todorcevic’s construction scheme.

These lecture notes were prepared for an Advanced Topics in Logic course at the Uni-
versity of Vienna (Summer 2019).

1.1 Notation and preliminaries.
The set of finite numbers/ordinals {0, 1, 2 . . . } is denoted by ω. We work with von Neumann
ordinals i.e., α is the set of all smaller ordinals. In particular, if we write f : R → 2 then f
is a map from the set of reals to {0, 1}.

We use c or 2ℵ0 to denote the cardinality of R. We will regularly use the fact that a set
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of cardinality c has c many countable subsets i.e., |[c]ω|= c. We often identify the cardinal
2κ with the set of all functions from κ to 2. The notation [X]κ stands for the collection of
κ sized subsets of X. We let Xκ denote the set of all functions from κ to X (i.e., κ-tuples).

1.1.1 Basic set theory
A set C ⊂ κ is a club if supC = κ (unbounded) and for any α ∈ κ, sup(C ∩ α) = α implies
α ∈ C (closed). A set S ⊂ κ is stationary if S has non-empty intersection with any club
subset of κ. The club sets form a filter that is closed under taking intersections of size < κ.
You might think of them as having measure 1 in some sense. Stationary sets behave like
sets of positive measure. They do not form a filter and in fact, κ can be partitioned into κ
many pairwise disjoint stationary sets.

Lemma 1.1.1 (Fodor’s pressing down lemma). Suppose that κ is a regular cardinal and
S ⊆ κ is stationary. If f : S → κ is regressive i.e., for any α ∈ S \ {0}, f(α) < α, then
there is a stationary T ⊂ S so that f ↾ T is constant.

1.1.2 Basic graph and Ramsey theory
A graph G is a pair (V,E) of vertices V and edges E so that E ⊂ [V ]2. An independent set
in G is a set of vertices with no edges, a clique or complete subgraph is a set of vertices with
all edges between distinct vertices.

A graph H is a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). Whenever we say
that H is contained in G we mean that G has a subgraph isomorphic to H. A subgraph H
is induced if E(H) = [V (H)]2 ∩ E(G).

The chromatic number of a graph G, usually denote by χ(G), is the minimal number of
independent vertex sets that can cover G. In other words, the minimal (finite or infinite)
cardinal r so that there is a colouring c : V → r such that there are no monochromatic
edges.

Let us summarise the most basic infinite Ramsey results with the so-called arrow nota-
tion:

1. (F. P. Ramsey 1930, [35]) For any finite n and k,

ω → (ω)nk

i.e., for any colouring c : [ω]n → k there is an infinite A ⊂ ω so that c ↾ [A]n is
constant.

In general, the left-hand side of the arrow denotes the base set of the colouring. On
the right-hand side, the upper index is the dimension (are we colouring singletons, pairs,
triples?), the lower index the number of colours and inside the bracket you see the size or
order-type of the monochromatic sets we can always select. If the arrow is crossed over that
means there is a colouring witnessing without monochromatic sets of that particular size.
Let us continue with some further examples.

2. (Erdős-Dushnik-Miller, 1941) For any infinite κ,

κ → (κ, ω)22
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i.e., for any colouring c : [κ]2 → 2 either there is an A ⊂ κ of size κ so that c ↾ [A]2 is
constant 0 or there is an infinite A ⊂ κ so that c ↾ [A]2 is constant 1.

3. (Erdős-Rado, 1956 [13]) For any infinite κ,

(2κ)+ → (κ+)2κ

i.e., for any colouring c : [(2κ)+]2 → κ there is an A ⊂ κ of size κ+ so that c ↾ [A]2 is
constant.1

Two famous negative partition results that are good to keep in mind are the following.

4. (Sierpinski, 1933 [39]) For any λ ≤ c,

λ ̸→ (ω1)
2
2

i.e., there is a colouring c : [λ]2 → 2 so that both colours appear on any uncountable
subset of λ.

5. (Todorcevic, 1987 [45])
ω1 ̸→ [ω1]

2
ω1

i.e., there is a colouring c : [ω1]
2 → ω1 so that all ω1 many colours appear on any

uncountable subset of ω1.

Suppose that F is a family of sets. The chromatic number of F is the minimal r so that
there is a colouring c :

∪
F → r such that c ↾ a is not constant for any a ∈ F . In the arrow

notation, we could write ∪
F ̸→ (F)1r.

If F is the edge-set of a graph then we get back the usual notion of graph chromatic
number.

1.1.3 General resources
Classical textbooks in set theory [28, 20, 18]; A. Rinot has a great blog about combinatorial
set theory;2 the standard textbook in general topology [9].

1This theorem has an analogue for colouring n-tuples but one needs to iterate the exponential function
n− 1 times.

2See here http://blog.assafrinot.com/
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Chapter 2

Inductive constructions and
closure arguments

2.1 Simple diagonalisations
Let us warm up with a simple diagonalisation argument for constructing an interesting
subset of R.

Theorem 2.1.1 (W. Sierpinski, 1932 [38]). There is a dense and rigid X ⊂ R.

Proof. Our goal is to construct X in such a way that there is no non-trivial continuous
bijection g : X → X. While there are 2c many maps X → X in general, there are only
continuum many continuous functions X → X.

Waclaw
Sierpinski
1882-1969

Indeed, any continuous map is uniquely
determined by its values on a countable, dense subset X0 of X.1

We will start with the set of rationals X0 = Q. Given some continuous f : Q → R, there
is a unique largest Xf ⊂ R and continuous f̄ : Xf → R so that f ⊂ f̄ . Indeed, Xf consists
of all x ∈ R so that ∩

n∈ω

f [Q ∩ (x− 1

n
, x+

1

n
)]

is a singleton y, in which case, we put f̄(x) = y. Now, list all f : Q → R which are

1. not the identity, and

2. Xf ∩ I has size continuum for any interval I

as {fα : α < c}.
We shall construct two sequences of points {xα : α < c} and {yα : α < c}, each pairwise

distinct, so that f̄α(xα) = yα. The idea is that we will promise to put xα into X but not
yα and so eliminating fα as a (restriction of a) potential homeomorphism of X. To make
sure X has size continuum in each interval in the end, we keep a list {Jα : α < c} of all
non-empty intervals, each enumerated c-times.

1So the number of continuous maps is bounded by |X||X0|= cℵ0 = c.
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How does the induction go? Given {xα : α < β} and {yα : α < β}, we look at fβ . This
function is not the identity so we can find q ∈ Q with q ̸= fβ(q). Let I denote an open
interval around q so that I ∩ f̄β [I] = ∅. Pick

xβ ∈ I ∩Xfβ \ {xα, yα, f̄
−1
β (xα), f̄

−1
β (yα) : α < β}

which is possible since Xfβ was assumed to have size continuum in each interval. Now,
yβ = f̄β(xβ) /∈ {xα, yα : α < β} as desired. We also select an extra point zβ ∈ Jβ that is
distinct from all the xα and yα points (for α ≤ β) we chose so far.

Now, we can let X = Q ∪ {xα, zα : α < c} and this set will satisfy the requirements.
That is, if g : X → X is continuous but not the identity then we let f = g ↾ Q and note that
Xf must satisfy the two requirements above (since g ⊂ f̄) and so there is some α < c so
that g ↾ Q = fα. In turn, g ⊂ f̄α which implies g(xα) = f̄α(xα) = yα /∈ X, a contradiction.

There are two features of the above argument especially relevant for us: first, we managed
to take care of all relevant X → X maps by realising that each such map is completely
characterised by its behaviour on a countable set. Second, no matter which enumeration
{fα : α < c} we take, the construction goes through (producing different sets possibly).
This is not always the case, however. Often, we need a special enumeration to avoid getting
stuck in the construction of our desired structure. The next result will make these remarks
clear.

Theorem 2.1.2 (P. Erdős and A. Hajnal, 1969 [11]). There is a colouring c : R2 → ω so
that no two points of the same colour are in rational distance.

We will call such colourings good in the following proof.

Proof. Let’s do something less ambitious first: take some countable X ⊂ R2 and find a good
colouring c : X → ω.

Paul Erdős
1913-1996

Of course this is trivial as we can make sure that no two points are
of the same colour. Now take some y ∈ R2 \X and try to extend c by defining c(y). The
problem is that maybe, for any possible colour n < ω that we can choose for y, there is
already an x ∈ X with c(x) = n and |x − y|∈ Q. This hints that if we define c inductively
then the domains should be large enough to contain these y’s at bad distances from old
points. Let’s see the actual proof now.

X

b

b

b
b

b

b

0

1

y

Figure 2.1: Extending a partial colouring.
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We will say that X ⊂ R2 is closed enough if whenever x ̸= x′ are both in X and
|x − y|, |x′ − y| are both rational then y ∈ X too. That is, for any y /∈ X, there is at most
one x ∈ X of rational distance to y.

Claim 2.1.3. For any infinite X ⊂ R2, there is a closed enough X̂ ⊇ X of the same size.

Proof. Define a map F by

F (x, x′) =
∪

q,q′∈Q

({y : |x− y|= q} ∩ {y : |x− y|= q′}).

Note that F (x, x′) is a countable union of intersections of two circles and hence is countable.
Now, starting from X0 = X, let Xn+1 = Xn ∪

∪
{F (x, x′) : x ̸= x′ ∈ Xn}. Then X̂ =∪

n∈ω Xn is closed enough and has the same cardinality as X. □

We prove that any closed enough X ⊂ R2 has a good colouring c : X → ω by induction
on κ = |X|. For κ = c and X = R2, this gives the theorem. Again, the κ = ℵ0 case is trivial.

Now, given X of size κ we use the claim to write X =
∪

α<cf(κ) Xα so that Xα is
closed enough of size < κ and the sequence is continuous i.e., Xβ =

∪
α<β Xα for any limit

β < cf(κ).
Now, define c along this decomposition inductively. A good map c0 : X0 → ω must

exist because X0 has size less than κ. Given cα for α < β, if β is limit we simply take
cβ = ∪α<βcα.

In the successor case, when β = α+ 1, we take a good colouring d on Xα+1 \Xα which
maps into {2n : n < ω}. Note that cα ∪ d might not be a good choice (why?). But if
y ∈ Xα+1 \ Xα then there is at most one x ∈ Xα of rational distance from y. So look at
the two values {d(y), d(y)+1} and pick cα+1(y) ∈ {d(y), d(y)+1} \ {cα(x)}. This new cα+1

will have no conflict with points in Xα and remains a good colouring on Xα+1 \Xα as well.
This finishes the inductive construction of c : X → ω and the proof of the theorem.

⊠

This theorem can be nicely rephrased in the language of graphs. We can define a graph
GQ on R2 by taking xy to be an edge if and only if |x − y|∈ Q. Now the theorem states
the existence of a countable colouring so that each colour class is independent i.e., that the
graph has countable chromatic number. Note that for any set of distances D ⊂ R, one can
define a graph GD similarly. One of the most well-studied examples is the unit distance
graph G{1} and the chromatic number of this graph is famously unknown to this day.

Open Problem 2.1.4 (Hadwiger-Nelson). What is the minimal number of sets avoiding
distance 1 that can cover the plane?

The chromatic number of G{1} is known to be either 5, 6 or 7 (for the latest result see
[7]). For the classical lower bound of 4 and upper bound of 7, see Figure 2.2 below.
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Figure 2.2: The Moser spindle (of chromatic number 4) and a 7-colouring of the plane.

For a survey of this problem and similar fun questions see the book [40].

Summary
We saw two simple inductive proofs: in both cases, we constructed something in c steps while
taking care of c many objectives. While in the first case, the enumeration of the objectives
was arbitrary, in the second proof we needed a carefully chosen list. This was provided
by a closure argument. A useful trick to keep in mind: the behaviour of large objects are
often determined by their traces on small substructures (e.g., continuous functions on R are
uniquely characterised by their values on Q).

Exercises and problems

Exercise 2.1.5. Starting with a single coin, you play a game with a simple automaton: at
each step you insert a single coin to which the machine returns two coins.

1. Show that an unassuming player might loose all his/her money in ω steps.

2. Show that, with any strategy, the player will go bankrupt in countably many steps.

Exercise 2.1.6. Suppose that A ⊆ C is arbitrary. Show that there is an algebraically closed
subfield F ⊆ C of size at most |A|+ℵ0 which contains A.

Exercise 2.1.7. Suppose that fα : ω1 → ω1 for α < ω1. Show that there is a club C ⊂ ω1

such that for any β ∈ C and α, ξ < β, fα(ξ) < β as well.

Exercise 2.1.8. Suppose that each line ℓ in R2 is assigned a natural number mℓ ≥ 2.
Construct a set A ⊂ R2 which meets each line ℓ in exactly mℓ points.

Problem 2.1.9. Show that R2 has a well order ≺ so that for any y, the set {x ≺ y :
|y−x|∈ Q} is finite. Why does it follow that the rational distance graph on R2 has countable
chromatic number?
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Problem 2.1.10. Prove that the family of all non-empty perfect subsets of R has chromatic
number 2. In fact, show that there is a function g : R → R so that g[C] = R for any copy C
of the Cantor set in R.

Problem 2.1.11. Prove that any graph G of size at most continuum is spatial i.e., there
is an injective f : V (G) → R3 so that for any pair of edges ab, cd ∈ E(G), the open line
segments (f(a), f(b)) and (f(c), f(d)) are disjoint.

Problem 2.1.12. Can we cover R2 by disjoint circles? How about R3? Can you do it by
unit circles only?

Problem 2.1.13. Show that R+ can be decomposed into two, disjoint sets both closed under
addition.

Challenge 2.1.14. Show that the rational distance graph on R3 has countable chromatic
number too.

⋆

Open Problem 2.1.15 (Erdős). Is there a Borel set A ⊂ R2 which meets each line ℓ in
exactly 2 points?

Open Problem 2.1.16 (Ulam). Does there exist a dense set S ⊆ R2 so that all pairwise
distances between points in S are rational?

Open Problem 2.1.17. Is there a Borel partition of R3 by unit circles?

Further reading
Set theory in Euclidean spaces [24, 14]; diagonalisations of length continuum and general
topology [46, Chapter 4]; results and problems on colouring [40].
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2.2 Working with elementary submodels
The idea behind elementary submodels is very simple: given a large structure A, you would
like to consider substructures B which are smaller than A but reflect basic properties of its
original structure. Suppose A is some Euclidean space A = Rn (which is of size continuum)
along with lines, planes, hyperplanes, etc. Now, you look for a small set of points B ⊂ A
together with a small set of lines, planes, etc. that satisfy the same relations as A and its
lines, planes, etc. That is, if two lines of B meet in Rn then they must meet in B and in turn,
their unique intersection must be in B as well. Similarly, for any three points in B, there
is a (hyper)plane in B that contains them (since there was one in A). If this hyperplane
is not unique, then there could be ones which are in A but not in B. If there is only a
small number of new objects definable from a given set of elements already in B then we
can throw in all those without increasing the size our structure. Repeat this process and, if
you keep track of all objects and operations appropriately, you will end up with the desired
substructure.

Whenever you occur any similar situation, you can carry out a closure argument, starting
from some fixed B0, adding more and more points and objects inductively. The general
framework of elementary submodels will provide a tool which saves you from repeating the
very same closure argument over and over and give you the nicest substructures you can
imagine, all in a single step.

2.2.1 The basics
Models and formulas. Recall that the language L of set theory only involves a single bi-
nary relation ∈. We are allowed to build formulae using ∈, the logical symbols {∃,∀, (, ),¬,∧}
and (countably many) variables. There is a simple inductive procedure that yields all pos-
sible formulas, starting from the elementary formula x ∈ y.

Let V denote the set theoretic universe, the class of all sets, and we assume that V
satisfies the usual ZFC axioms. We will mostly be interested in L-structures of the form
(M,∈) where M itself is a set from V ; we often just write M to mean (M,∈). What does
it mean that a formula holds in a model M? Given φ(x0, . . . , xn) and a0, . . . , an ∈ M , we
can define M |= φ(a0, . . . , an) by induction on φ.

For the elementary formula x ∈ y, we write M |= x ∈ y if actually x ∈ y in V holds.
Suppose that ϕ(x) = (∀y)φ(x). Then

(M,∈) |= (∀y)φ(y, x)

if and only if for any y ∈ M , M |= φ(y, x). Similarly, if ϕ(x) = (∃y)φ(y, x) then

(M,∈) |= (∃y)φ(y, x)

if and only if there is some y ∈ M so that M |= φ(y, x).
Of course, an arbitrary set M as an ∈-structure has no reason to share too many prop-

erties of the set theoretic universe. In other words, M and V will satisfy very different
formulas.

The H(θ) models and reflection. Now, let θ be a cardinal. We use H(θ) to denote the
collection of sets of hereditary cardinality < θ; in other words, sets x which have transitive
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closure of size < θ.2 So, for example, H(ℵ0) is the collection of hereditarily finite sets: each
a ∈ H(ℵ0) is finite, moreover, any element b ∈ a is finite, and any element c ∈ b is finite,
and so on.

We collected some properties of these models here.

Fact 2.2.1. For any infinite θ,

1. H(θ) is transitive i.e., b ∈ a ∈ H(θ) implies b ∈ H(θ);

2. H(θ) has size 2<θ (in particular, its a set);

3. H(θ) ∩ON = θ (where ON denotes the class of all ordinals);

4. if θ is uncountable and regular then all of the ZFC axioms except the power set axiom
is satisfied by the model (H(θ),∈).

Let us also mention that this H(θ) hierarchy agrees with the Vθ hierarchy (based on the
power-set operation) on a closed and unbounded set of ordinals.

Now, if x ∈ H(θ) and 2|x| < θ then the power set P(x) = {y : y ⊂ x} is also in H(θ).
So, choosing θ large enough ensures that any argument, with limited iterations of the power
set operation, can be carried out in H(θ) instead of the whole set-theoretic universe.

Furthermore, compared to V , H(θ) is not any other model of set theory (minus the
powerset). These models, for all practical purposes, completely reflect the behaviour of the
underlying universe.

Theorem 2.2.2. Given a finite set of formulae Σ and cardinal ρ, there is a θ > ρ so that
for any φ ∈ Σ and a0, . . . , an ∈ H(θ):

H(θ) |= φ(a0, . . . , an) if and only if φ(a0, . . . , an) is true in the universe V.

This means that whatever theorem or formula φ(a1, . . . , an) you are trying to prove, it
suffices to check its validity in models of the form H(θ) where θ is large enough to contain
a1, . . . , an and φ is absolute between H(θ) and V (i.e., satisfies the equation in the last
theorem). We also say that H(θ) is a Σ-elementary submodel of V . When you read "let θ be
large enough" without any further explanation, the authors usually mean the above choice.

Countable elementary submodels. So we found some relatively small models that
resemble the whole universe but what we need is models of arbitrary size (often countable)
that can still ’talk’ about large structures (say the real line). This is certainly not true for
the H(θ) models.

A submodel of (H(θ),∈) is simply a structure of the form (M,∈) so that M ⊂ H(θ).
Suppose that x ∈ M and ϕ(x) is some formula with parameter(s) x from M . What does
(M,∈) |= ϕ(x) mean again?

If ϕ(x) = (∃y)φ(y, x) then
(M,∈) |= (∃y)φ(y, x)

2The transitive closure tc(x) of a set x is defined as tc(x) = ∪{tc(x, n) : n ∈ ω} where tc(x, 0) = x and
tc(x, n+ 1) = ∪tc(x, n).
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if and only if there is some y ∈ M so that M |= φ(y, x). Think about ϕ saying that two
given lines x0, x1 (in M) have an intersection y. Now, (M,∈) |= (∃y)φ(y, x) means that M
contains such an intersection. Of course this is a unique point so the intersection is in M .

Note that it becomes harder to satisfy (M,∈) |= (∃y)φ(y, x) than to satisfy (H(θ),∈) |=
(∃y)φ(y, x) since for M , we have less y to choose from.

Similarly, let ϕ(x) = (∀y)φ(x). Then

(M,∈) |= (∀y)φ(y, x)

if and only if for any y ∈ M , M |= φ(y, x). So if M is a proper subset of H(θ) then at first
sight, (M,∈) |= (∀y)φ(y, x) is easier to satisfy than (H(θ),∈) |= (∀y)φ(y, x) since for H(θ)
we have more y to consider.

M being an elementary submodel of H(θ) is a sort of equilibrium point for the above
satisfactions.

Definition 2.2.3. We say that (M,∈) is an elementary submodel (H(θ),∈) if M ⊂ H(θ)
and for any first-order formula ϕ(x) and parameters a from M ,

(M,∈) |= ϕ(a) if and only if (H(θ),∈) |= ϕ(a).

We write M ≺ H(θ) in this case (understanding that elementarity is over the ∈ relation).

In other words, the structures (M,∈) and (H(θ),∈) completely agree about formulas
that concern objects in M . For example, M = H(θ) is a valid but uninteresting choice of
an elementary submodel.

By Gödel’s Second Incompleteness Theorem, we cannot prove the existence of elementary
submodels of V in using ZFC alone. In contrast, we can always take elementary submodels
of sets (but not classes) by the downward Löwenheim-Skolem theorem [28, Theorem I.15.10].

Theorem 2.2.4 (Löwenheim-Skolem). For any set A ⊆ H(θ), there is an elementary sub-
model M with A ⊆ M and |M |= |A|+ℵ0.

So any infinite set A ⊂ H(θ) can be included in an elementary submodel M ≺ H(θ) of the
same size. We will not cover the proof; it is a standard closure argument (inductively adding
more and more witnesses for existential formulas) included in many classical textbooks.

To reiterate, the exact value of θ in our arguments will never play a role, we just assume
that θ is large enough so that H(θ) includes all relevant parameters that our important for
our purposes and is Σ-elementary in V for an appropriately large set of formulas (based on
the result we are trying to prove). If we prove something about R, then c+ or 2c is a good
choice for θ usually. If you prove a theorem about subsets of an ℵ27-dimensional vector
space over F11 then pick θ = (2ℵ27)+.

2.2.2 Some useful facts
Now that we saw that elementary submodels exist, lets see what makes them so useful.
First, if x, y ∈ M ≺ H(θ) then (x, y), x ∪ y, x ∩ y ∈ M . Moreover, for any function f ∈ M
with x ∈ dom(f), f(x) ∈ M as well.
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Let’s take now a non-empty, countable M ≺ H(ℵ2). As a first step, let’s see how does
M ∩ ON look like. It is easy to see that ∅ ∈ M and so ω ⊂ M follows easily. Even more,
ω ∈ M since ω is uniquely definable in H(ℵ2). Similarly, ω1 ∈ M as well since in H(ℵ2), we
can uniquely define ω1 as the smallest cardinal above ω. Note that ℵ2 /∈ M since ℵ2 is not
even in H(ℵ2).

However, since M is countable, ω1 cannot be a subset of M . Countable elementary sub-
models are far from being transitive i.e., A ∈ M does not imply A ⊆ M in general. How-
ever, we will see that M ∩ ω1 is an initial segment of ω1.

ω2

ω1

ω1 ∩M

ON

M ≺ H(ℵ2)

M

Figure 2.3: H(ℵ2) and a countable elementary submodel

However, if x ∈ M is finite then x ⊂ M does hold. We will apply this and the following
fact regularly.

Main Fact 2.2.5. Suppose that M ≺ H(θ) is a countable elementary submodel (for some
θ ≥ ℵ2) and X ∈ M .

1. If X is countable then X ⊂ M ;

2. if X \M ̸= ∅ then X must be uncountable;

3. M ∩ ω1 is an initial segment of ω1;

4. if X ⊂ ω1 is uncountable then X ∩M is a cofinal subset of ω1 ∩M .

Similarly, if µ is a cardinal which is an element and subset of M and X ∈ M has size µ
then X ⊂ M as well.

Proof. Note that the first two statements are equivalent so we prove (1) only. If X is
countable then the formula

ϕ(X) ≡ (∃f : ω → X)f [ω] = X

13



must hold in H(θ). So, ϕ(X) holds in M as well and hence we can pick f : ω → X, f ∈ M
so that f [ω] = X. Now, for any n ∈ ω, both n, f ∈ M so f(n) ∈ M as well. In turn,
X = f [ω] = {f(n) : n ∈ ω} ⊂ M as desired.

Now, (3) follows easily: if β ∈ M ∩ ω1 then β is of course countable so β ⊂ M i.e., for
any α < β, α ∈ M as well.

Finally, suppose that there is some α ∈ M ∩ ω1 so that for any x ∈ X ∩M , x < α. In
turn,

M |= (∀x ∈ X)x < α

so H(θ) must satisfy the same formula. That is, we must have x < α for any x ∈ X (since
H(θ) and V agree about this). However, this contradicts that X was uncountable.

The following observation is quite useful as well and points to the fact that for elementary
submodels M , the ordinal M ∩ ω1 plays a critical role.

Fact 2.2.6. Suppose that M ≺ H(θ) is countable and α = M ∩ω1. If X ∈ M is a subset of
ω1 and α ∈ X then X is stationary.

Conversely, for any stationary S ⊂ ω1 and X ∈ H(θ), there is a countable M ≺ H(θ)
which contains X and M ∩ ω1 ∈ S.

Proof. First, take a club C ⊂ ω1 so that C ∈ M . By the previous fact, C ∩ ω1 is cofinal in
M and in turn, α ∈ C as well (because C is closed). So X ∩ C ̸= ∅. We just showed that
the statement ’for any club C ⊂ ω1, X ∩C ̸= ∅’ is true in M . So this must be true in H(θ)
as well, which in turn, implies that X is stationary.

Second, we claim that there is a continuous, increasing sequences of models Mα ≺ H(θ)
all containing X so that ω1 ⊂ ∪{Mα : α < ω1} (see the exercises). Now, {Mα∩ω1 : α < ω1}
must be closed and unbounded so there is an α < ω1 so that ω1 ∩Mα ∈ S.3

We will return to sequences and chains of elementary submodels in later sections.

Corollary 2.2.7 (Fodor’s pressing down lemma). Suppose T is stationary and f : T → ω1

is regressive i.e., f(α) < α for any α ∈ T \ {0}. Then f is constant on a stationary subset
of T .

Proof. Pick some countable M ≺ H(ℵ2) so that f ∈ M and α = M ∩ ω1 ∈ T . Note that
ε = f(α) < α so ε ∈ M . In turn, if we let S = f−1(ε) ⊂ T then α ∈ S ∈ M and so S must
be a stationary set as well. By definition, f is constant ε on S.

Extended languages. Finally, we mention that it is often useful to extend the model
(H(θ),∈) with additional relations and predicates. For example, we can take a well-order
<w of H(θ) and consider elementary submodels M of the structure (H(θ),∈, <w). The
benefit of doing this is the following: we often build structures, such as graphs or tree
orders, inductively along chains of elementary submodels. At each stage, we can usually
find many equally good choices that satisfy our requirements (say to extend a tree with a
new level). If we use the <w well-order to pick a minimal good choice then we construct
a unique object that only depends on the sequence of models. In turn, a larger model Mγ

that contains a restricted sequence (Mα)α<β can re-create the construction up to level β of
the object solely in Mγ . This comes handy in various situations.

3Since {α < ω1 : α = Mα ∩ ω1} is also a club, we can also assume that α = Mα ∩ ω1 ∈ S.
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Exercises and problems

Exercise 2.2.8. Prove that H(ℵ1) satisfies the statement ’all sets are countable.’

Exercise 2.2.9. Show that the transitive closure of any a ∈ H(θ) is again an element of
H(θ). Show that [H(θ)]<θ ⊂ H(θ).

Exercise 2.2.10. Suppose that (Mα)α<µ is an increasing sequence of elementary submodels
of some H(θ). Prove that M =

∪
{Mα : α < µ} is also an elementary submodel of H(θ).

Exercise 2.2.11. Show that if µ is a cardinal which is an element and subset of M and
X ∈ M has size µ then X ⊂ M as well.

Exercise 2.2.12. Show that any uncountable A ⊂ R contains uncountably many complete
accumulation points i.e., x ∈ A so that |U ∩A|= |A| for any open neighbourhood U of x.

Exercise 2.2.13. Suppose that M ≺ H(θ) is some elementary submodel and κ ∈ M . When
is κ ∩M an initial segment of κ?

Problem 2.2.14. Prove that, for large enough θ, for any X ⊂ H(θ) of size c there is a
countably closed elementary submodel M ≺ H(θ) of size c which contains X.

Problem 2.2.15. For any uncountable A ⊂ Rn, there is an uncountable B ⊂ A such that
all distances between points in B are pairwise different.

Problem 2.2.16. Find a Borel function f : R → R with the property that f [I] = R for any
non-empty open I ⊂ R.

Problem 2.2.17. Show that R is the union of countably many sets (Ai)i<ω so that none of
the Ai contains a 3-element arithmetic progression.

Problem 2.2.18. Suppose that G is a graph and k < ω. Assume that any finite subgraph
of G has chromatic number at most k. Prove that χ(G) ≤ k as well.
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2.2.3 The first applications
We start by a standard example of demonstrating the use of elementary submodels. A family
of sets F is called a ∆-system (or sunflower) if there is a single r so that for any a ̸= b ∈ F ,
r = a ∩ b. This set r is called the root or core of the ∆-system.

Theorem 2.2.19 (∆-system lemma). Every uncountable family of finite sets contains an
uncountable ∆-system.

The ∆-system lemma is one of the most cited results in set theory, ubiquitous in forcing
arguments, topological and Ramsey results.

Proof. We can assume, without loss of generality, that we work with subsets of ω1 i.e. take
an uncountable F ⊂ [ω1]

<ω. Pick a countable M ≺ H(ℵ2) so that F ∈ M . Fix any b ∈ F \M
and let r = b ∩M . Note that r ∈ M and so the set

E = {a ∈ F : r ⊂ a}

is also an element of M . Moreover, b ∈ E \M and so E must be uncountable. We shall find
our uncountable ∆-system in E with root r.

Indeed, we take a maximal subfamily E0 of E which satisfies that {a \ r : a ∈ E0} is
pairwise disjoint i.e., E0 is a ∆-system with root r. Moreover, we pick such an E0 in M .

We claim that E0 must be uncountable. Otherwise, if E0 is countable then E0 ⊂ M
and each element a ∈ E0 is a subset of M . In turn, E0 ∪ {b} ⊂ E is a proper extension of
E0 which still forms a ∆-system with root r. While the set E0 ∪ {b} is not an element of
M , it still witnesses (in H(θ)) that E0 is not maximal. So, by elementarity, E0 cannot be
maximal in M either, which contradicts our initial maximal choice of E0.

Finally, note that E0 is the desired uncountable ∆-system.
⊠

Most often, we use two types of elementary submodels: countable models and countably
closed models of size c. The latter means that if x ⊂ M is countable then x ∈ M as well. In
some sense, this is the reverse of the transitivity property we proved in the Main Fact. The
existence of countably closed models of size c is the µ = ω case of the following fact.

Fact 2.2.20. For any µ and X ⊂ H(θ), there is M ≺ H(θ) so that X ⊂ M , |M |= |X|µ
and M is µ-closed i.e., [M ]µ ⊂ M .

We omit the proof which is again a variant of the Löwenheim-Skolem closure argument.

We shall make use of countably closed elementary submodels of size continuum now.
Recall that these models satisfy the property that if x ⊂ M is countable then x ∈ M as
well. The following theorem was an answer to a five-decade-old problem of Alexandroff and
Urysohn whether there is a compact, first countable space with cardinality greater than the
continuum.4 Recall that first countable means that any point has a countable neighbourhood
base. A space is compact if any open cover has a finite subcover; we assume that compact
spaces are Hausdorff i.e., any two points have disjoint open neighbourhoods. This implies
that convergent sequences have unique limits, as expected in any reasonable space.

4The proof we present is due to R. Pol.
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Theorem 2.2.21 (A. Arhangel’skii, 1969 [9]). Every compact, first countable topological
space (X, τ) has size at most continuum.

Alexander
Arhangel’skii We only use the fact that if x is in the closure of a set A then there is a convergent

subsequence of A with limit x.

Proof. Take a countably closed model M ≺ H(θ) of size continuum with (X, τ) ∈ M . Since
the topology is in M , we can use formulas that talk about subsets of X (which are elements
of M) being closed, open, convergent, etc. In particular, if A ∈ M is a subset of X then the
closure Ā with respect to τ is also an element of M .

Claim 2.2.22. X ∩M is closed and so compact.

Proof. If x ∈ X ∩M then, since X is first countable, there is a sequence A = {xn : n ∈ ω} ⊂
M ∩X converging to x. I.e., x is the unique accumulation point of A. However, A ∈ M as
M is countably closed and so the unique accumulation point x of A is also in M . Indeed,
Ā = A ∪ {x} ∈ M is countable so Ā ⊂ M by the Main Fact. Hence, X ∩M ⊆ X ∩M as
desired. □

To finish the proof of the theorem, it suffices to prove the following.

Claim 2.2.23. X ∩M = X.

Proof. Suppose that y ∈ X \ M . Note that for any x ∈ M ∩ X, there is a countable
neighbourhood base Bx ∈ M . By countability, Bx is also a subset of M . Now, for any
x ∈ M , select Ux ∈ Bx so that x ∈ Ux ⊂ X \ {y}. The open family {Ux : x ∈ X ∩M} covers
the compact space X∩M and so there is a finite subfamily {Ux : x ∈ F} that covers X∩M .
The latter finite family is an element of M and so M |= (∀x′ ∈ X)x′ ∈ {Ux : x ∈ F}. In
turn, {Ux : x ∈ F} must really cover X which contradicts y /∈ {Ux : x ∈ F}. □

⊠

In fact, Arhangel’skii proved that for any Hausdorff space X, the following inequality
holds:

|X| ≤ 2χ(X)·L(X).

Here, χ(X) is the minimal cardinal κ so that any point in X has a neighbourhood base of
size at most κ, and L(X) is the minimal λ so that any open cover has a subcover of size at
most λ. So, in the previous theorem, we essentially proved the case of χ(X) = L(X) = ℵ0.5

2.2.4 Chains of elementary submodels
Elementary submodels are often used to cut a large structure X into smaller pieces. The
literature refers to these as filtrations sometimes.

Fact 2.2.24. Suppose that X ∈ H(θ) is of size κ and cf κ = µ. Then there is a sequence
(Mα)α<µ so that

1. X ∈ Mα ≺ H(θ) and |Mα|< κ,
5Compactness is stronger than assuming L(X) = ℵ0 which is referred to as being Lindelöf.
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2. (continuity) for any limit β < µ, Mβ = ∪{Mα : α < β},

3. X ⊂
∪
{Mα : α < µ}.

Moreover, we can assume that (Mα)α<β ∈ Mβ+1 for all β < µ.

We use the models Mα to write X as the increasing union of X ∩Mα. We often apply
some inductive assumption to X∩Mα or X∩Mα+1 \Mα. Note that the latter sets partition
X because we assumed that the sequence (Mα)α<µ is continuous.

X

M0

M1
M2

Figure 2.4: A filtration of a structure X

Moreover, note that if κ is regular then {κ ∩Mα : α < κ} is a club subset of κ.

Let’s see an application of chains of models. First, recall how we found uncountable
∆-systems in families of finite sets. Note that you can always make a ∆-system pairwise
disjoint by removing the root (this is often used in applications). Is the same true for an
arbitrary set system with pairwise small intersections? The next theorem addresses this
question, but first some definitions. We say that

• a family of sets F is d-almost disjoint if |x ∩ y|< d for any x, y ∈ F ;

• F is essentially disjoint if for any x ∈ F , there is a finite f(x) so that {x\f(x) : x ∈ F}
is pairwise disjoint.

Theorem 2.2.25 (P. Komjáth, 1984 [22]). Suppose that d is finite. Then every d-almost
disjoint family of countable sets is essentially disjoint.

The theorem is optimal in the following sense: first, note that any uncountable, almost
disjoint F ⊂ [ω]ω is not essentially disjoint. One can also find almost disjoint families
of countable sets which are locally countable i.e., for any countable A, {x ∩ A : x ∈ F}
is countable, but F is still not essentially disjoint. On the other hand, there are 2-almost
disjoint families of sets of size continuum which are not essentially disjoint (see the exercises).

Proof. Let us fix a family A of countable sets so that x ∩ y has size < d for any x ̸= y ∈ A.
We need to find a map x 7→ f(x) so that f(x) is finite and {x \ f(x) : x ∈ A} is pairwise
disjoint.

Péter
Komjáth

In fact, we will show that there is a well order < on A so that

y ∩
∪

{x ∈ A : x < y}
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is finite for any y ∈ A. This clearly suffices since we can let f(y) = y ∩
∪
{x ∈ A : x < y}.

Now, we prove the existence of the well order by induction on the size of A. If A is
countable then any type ω well order works just fine.

In general, assume A has size κ. Take a continuous sequence of elementary submodels
(Mα)α<cf(κ), each of size < κ and containing A as an element. Note that each Aα =
A∩Mα+1\Mα has a good well order <α by the inductive assumption. Also, A is partitioned
by the Aα sets so it would be great if we could just glue these <α orders together. This is
possible by the next claim.

Claim 2.2.26. If y ∈ Aβ then both y ∩Mβ and y ∩
∪

α<β Aα are finite.

Proof. Actually, y ∩ Mβ has less than d elements. Otherwise, take y0 ⊂ y ∩ Mβ of size
exactly d. Note that {y′ ∈ A : y0 ⊂ y′} ∈ Mβ and {y′ ∈ A : y0 ⊂ y′} = {y} must hold by
d-almost disjointness. In turn, y ∈ Mβ , contradicting y ∈ Aβ = A ∩Mβ+1 \Mβ .

Finally, note that
∪

α<β Aα is a subset of Mβ . □

Now, define < on A as follows: take x ∈ Aα, y ∈ Aβ and let x < y if either α < β or
α = β and x <α y. This order < on A is as desired.

⊠

Exercises and problems

Exercise 2.2.27. Let d be a finite number. Prove that any infinite family of d-element sets
contains an infinite ∆-system.

Suppose that κ is an infinite cardinal. The basic open sets in the product topology on
2κ are of the form [ε] := {f ∈ 2κ : ε ⊂ f} where ε is a finite partial function from κ to 2.

Exercise 2.2.28. Let κ be an infinite cardinal. Show that there is no uncountable family of
pairwise disjoint non-empty open subsets of 2κ.6

A topological space (X, τ) is called separable if it has a countable dense subset. (X, τ)
is said to be Lindelöf if any open cover of X has a countable subcover.

Exercise 2.2.29. Suppose that (X, τ) is a topological space and (X, τ) ∈ M ≺ H(θ). Prove
the following claims.

1. If X is separable then X ∩M = X.

2. If X is Lindelöf and U ∈ M is an open cover of X then M ∩ U covers X.

Exercise 2.2.30. Suppose that F : ω1 → [ω1]
<ω. Show that there is a stationary S ⊂ ω1

so that {F (ξ) : ξ ∈ S} is a ∆-system.

6In other words, this topology satisfies the countable chain condition.

19



Exercise 2.2.31. Show that any family of (2ℵ0)+-many countably infinite sets contains a
∆-system of the same size.

Problem 2.2.32. Show that there is a family of countable sets A of size continuum so that
A is totally ordered by the subset relation (i.e., for any x ̸= y ∈ A either x ⊂ y or y ⊂ x).

Problem 2.2.33. Let k be finite and suppose that F is a family of sets each of finite size
s. Show that if |F |> s! (k − 1)s then F contains a ∆-system with at least k elements.

Problem 2.2.34. Suppose that A is a family of subsets of R and for any a, b ∈ A, a ∩ b is
finite. Prove that A has size at most continuum.

Problem 2.2.35. Prove that there is no strictly increasing sequence (Fξ)ξ<ω1
of closed

subsets of R.

2.2.5 Graphs with uncountable chromatic number
The next group of applications concerns the following question: what subgraphs must appear
in a graph with large chromatic number? Is it true that certain cycles, paths or say highly
connected graphs must embed into every graph with large enough chromatic number? A
seminal result of P. Erdős is that for any finite k and ℓ, there is a graph G of chromatic
number k which contains no cycles of length ≤ ℓ [12]. So the chromatic number can be
arbitrary large, while the ℓ-neighbourhood of any vertex (i.e., the other vertices of distance
≤ ℓ) must form a tree (that is, contains no cycles). Now, trees have chromatic number 2; so
we see that there are graphs with arbitrary large chromatic number which locally have the
smallest possible chromatic number.

Quite interestingly, the above result does not extend to graphs with uncountable chro-
matic number [10]. In fact, the following theorem holds where Hω,ω+1 denotes the so-called
infinite half-graph i.e., the graph on vertices {uk : k < ω} ∪ {vk : k ≤ ω} and edges ukvℓ for
k ≤ ℓ ≤ ω. See Figure 2.5 below.

Theorem 2.2.36 (A. Hajnal and P. Komjáth, 1984 [17]). Any graph G of uncountable
chromatic number must contain the graph Hω,ω+1.

b b b b

b b b b

b b b

b b b b

u0 u1 u2

v0 v1 v2 vω

Figure 2.5: The infinite half-graph Hω,ω+1
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In particular, all even cycles and actually all finite bipartite graphs must appear in any
graph of uncountable chromatic number. We mention that the lack of finite half-graphs of
a given size also has various consequences on the structure and regularity properties of the
graph [30].

András
Hajnal

1931 - 2016

Proof. Suppose that G is a counterexample of minimal size κ. Take a sequence of elementary
submodels (Mα)α<cf(κ), each of size < κ and containing G. Note that Vα = V ∩Mα+1 \Mα

has countable chromatic number by the minimality of G.

Claim 2.2.37. For any α and v ∈ Vα, N(v) ∩Mα is finite.

Proof. Take v as in the claim and let {un : n < ω} be an infinite subset of N(v) ∩ Mα.
Observe that for any n < ω,

∩
k<n N(uk) must be uncountable by Fact 2.2.5; indeed, the

latter intersection is an element of Mα that contains v /∈ Mα. So, we can select pairwise
distinct vn ∈

∩
k<n+1 N(uk) for n < ω. Now, {uk : k < ω} ∪ {v, vk : k < ω} is a copy of

Hω,ω+1, a contradiction. □

However, the claim implies that G has countable chromatic number since we can glue
together proper colourings of V ∩ Mα+1 \ Mα. Indeed, suppose that for each α, we fixed
gα : Vα → ω, a proper colouring. We define g : V → ω using the gα functions and a partition
of ω into infinite sets (In)n∈ω. In fact, we will make sure that if v ∈ Vα then g(v) ∈ Igα(v).
Note that this assumption ensures that g ↾ Vα is again a good colouring (no matter how we
pick g(v) in Igα(v)).

First, simply let g(v) = min Ig0(v) for v ∈ V ∩ M0. Next, suppose that g ↾ V ∩ Mα is
defined already. Now, if v ∈ Vα then N(v) ∩Mα is finite so we can let

g(v) = min Igα(v) \ g[N(v) ∩Mα].

This definition ensures that there is no conflict between the colours on V ∩Mα and Vα. This
finishes the construction of a good colouring g and the proof of the theorem is done.

⊠

So we see that not just even cycles but all finite bipartite graphs must embed into
any graph with uncountable chromatic number. However, finitely many odd cycles can be
avoided: the simplest examples that witness this are the shift graphs [10]. Take some cardinal
κ and natural number n. We define a graph Shn(κ) on vertices [κ]n and edges āb̄ where

a0 < a1 = b0 < a2 = b1 < · · · < an−1 = bn−2 < bn−1.

Just looking at the n = 2 case, one easily sees that Sh2(κ) has no triangles. Moreover, if κ
is at least c+ then Sh2(κ) has uncountable chromatic number. In general, Shn(κ) contains
no odd cycles of length at most 2n − 1 and by choosing κ large enough, the chromatic
number of Shn(κ) can be made arbitrary large. Shift graphs are also interesting because
the chromatic number of their finite subgraphs grown relatively slowly.7

On the other hand, it was also shown that in any graph of uncountable chromatic number,
all but finitely many odd cycles must appear.

7Recall that any graph with infinite chromatic number must contain finite subgraphs with arbitrary large
finite chromatic number. However, in general, there is no bound on how fast these subgraphs should grow
in size relative to their chromatic number.
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Theorem 2.2.38 (C. Thomassen, 1983 [43]). If G has uncountable chromatic number then
G contains odd cycles of all but finitely many lengths.

Proof. We can assume that G is connected (since it must have a connected component of
uncountable chromatic number). Fix a vertex x and partition the vertices V into (Vm)m<ω

so that v ∈ Vm iff the shortest path from x to v has m edges. Now, some Vm must induce a
subgraph with uncountable chromatic number. We will find odd cycles of all length at least
2m. For any k < ω, we can find a copy H of the complete bipartite graph Kk,k in Vm. Let
uv be an edge in H and take paths P, P ′ from x to u and v of length m, respectively.

b
b b b

b

b

b

b

b

b

b

b
b b b

V0 Vm

x

v

u

Figure 2.6: Odd cycles in graphs with uncountable chromatic number

Note that P ∪ P ′ has no edges in Vm and contains a path from u to v of even length
ℓ ≤ 2m. Moreover, in H, we can connect u to v with odd paths of length 1, 3, 5... up to
2k− 1. So, we get odd cycles of length between ℓ+ 1, ℓ+ 3, . . . , ℓ+ 2k− 1. Since we can do
this for any k < ω, the proof is done.

So, the following holds.

Corollary 2.2.39. A finite graph H embeds into all graphs of uncountable chromatic number
if and only if H is bipartite.

The same question for countable, unavoidable subgraphs H is wide open. Similarly, there
is no nice description of the unavoidable finite substructures of uncountably chromatic triple
systems [27].

It will be instructive to see how to construct by hand sparse graphs with uncountable
chromatic number and certain structural properties. Variations on the following construction
can produce examples which avoid copies of Hω,ω+2 [17] or examples without uncountable,
infinitely connected subgraphs [41].

A construction scheme for graphs. We will define a graph G on vertex set V = ω1×c.
We let π : V → ω1 denote the projection to the first coordinate and let Vα = α × c. Nodes
with the same projection will never be connected which already implies that χ(G) ≤ ℵ1.

The neighbourhoods of a node (α, ξ) will satisfy that π[N(α, ξ)] ∩ α is either a finite or
type ω cofinal subset of α (i.e., converges to α). This is a natural condition which makes
the graph quite sparse.

Now, how do we ensure uncountable chromatic number? The idea is to diagonalise over
all possible vertex colourings g : V → ω and for each such g, construct a vertex vg witnessing
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that the colouring is not good. That is, no matter what is the colour of vg, there will be
another vertex u connected to vg so that g(u) = g(vg).

We cannot diagonalise over all colourings g : V → ω because there are 2|V | many of them
while only |V | vertices to choose the witnesses vg from. Instead, we will look at countable
restrictions which reflect important features of the colourings i.e., which colours appear
often.

For each α < ω1 and ξ < c, we will define N(α, ξ) ∩ Vα. To do this, list all countable
partial functions g : A → ω with A ∈ [Vα]

ω as {gξ : ξ < c}. We use gξ to define N(α, ξ)∩Vα.
Let

Iξ = {n ∈ ω : supπ[g−1
ξ (n)] = α},

the set of large colours for gξ. If Iξ is empty then we let N(α, ξ)∩ Vα be empty. Otherwise,
define N(α, ξ) ∩ Vα = {uk : k < ω} ⊂ dom gξ so that

1. {π(uk) : k < ω} converges to α, moreover

2. for any n ∈ Iξ, there is some k < ω so that g(uk) = n.

This ends the construction of G and we need to show that for any g : V → ω, there is
an edge uv so that g(u) = g(v). Now, take a countable elementary submodel M ≺ H(c+)
with G, g ∈ M . Let α = M ∩ ω1 and find a ξ so that gξ = g ↾ M ∩ V .

Let v = (α, ξ) and n = g(v). We claim that n ∈ Iξ. Indeed, note that π[g−1(n)] ∈ M
and α ∈ π[g−1(n)] so

sup(π[g−1(n)] ∩M) = supπ[g−1
ξ (n)] = α

by Fact 2.2.5.
In turn, by the definition of N(v), there is u ∈ N(v) so that g(u) = n = g(v). This

proves that g was not a good colouring. So, χ(G) = ℵ1 must hold.

A possible improvement of the previous construction is the following. Call a path P =
v0v1 . . . in G monotone if π(v0), π(v1), . . . is increasing. By a non-trivial modification of the
above argument, one can exclude cycles from G which are the union of two monotone paths.
This immediately yields that G will omit triangles.

Summary

We saw that elementary submodels provide a unified approach to some important themes:

• we can define closed substructures of a given size of arbitrary large structures;

• we can reflect properties of the global structures to small substructures which, in turn,
support diagonalisation arguments;

• we can decompose a large object into a continuous sequence of well-behaving substruc-
tures which often serves inductive proofs;

• elementary submodels can also operate as barriers in a structure X by separating
points of X ∩M from X \M .
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Exercises and problems

Exercise 2.2.40. Prove that any monotone f : ω1 → R is eventually constant.

Exercise 2.2.41. Suppose that X ∈ H(θ) and S ⊂ κ is stationary for some regular, un-
countable κ. Then there is an M ≺ H(θ) so that X ∈ M and M ∩ κ ∈ S.

Exercise 2.2.42. Suppose that <∗ is some well order on ω1 of type ω1. Prove that there is
a club C ⊂ ω1 so that α < β ∈ C implies that α <∗ β (i.e., the standard well order and <∗

must agree on C).

Exercise 2.2.43. Suppose that F is a d-almost disjoint family of countably infinite sets.
Find a colouring c :

∪
F → ω so that c assumes all colours on any element a ∈ F .

Exercise 2.2.44. Take some cardinal κ and natural number n. We define a graph Shn(κ)
on vertices [κ]n and edges āb̄ where

a0 < a1 = b0 < a2 = b1 < · · · < an−1 = bn−2 < bn−1.

Show that for any cardinal χ there is a large enough κ, so that Shn(κ) has chromatic number
at least χ.

Problem 2.2.45. Suppose S ⊂ ω1 is a set of limit ordinals and that Cα is a cofinal subset
of α of type ω for α ∈ S. Show that S is non-stationary if and only if {Cα : α ∈ S} is
essentially disjoint.

Problem 2.2.46. Find a 2-almost disjoint family of sets which is not essentially disjoint.

Problem 2.2.47. Find a family F of countably infinite, almost disjoint sets that has un-
countable chromatic number i.e., for any c :

∪
F → ω there is some a ∈ F so that c ↾ a is

constant.

The colouring number of a graph G, denote by Col(G), is the minimal κ so that V (G)
has a well order < such that for any v ∈ V , {u < v : uv ∈ E(G)} has size < κ.
Problem 2.2.48. Prove that χ(G) ≤ Col(G) that is, the chromatic number is at most the
colouring number.

Problem 2.2.49. Find a graph G such that χ(G) < Col(G).

⋆

Open Problem 2.2.50. Is there a graph with uncountable chromatic number that contains
no infinitely connected subgraph?

Open Problem 2.2.51. Does every two uncountably chromatic graph contain a common
subgraph of chromatic number 4?

Open Problem 2.2.52. Does every two uncountably chromatic graph contain a triangle-
free subgraph of uncountable chromatic number?
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2.3 Balogh’s Q-set space
To conclude this chapter, we will see a construction that combines a number of the previous
ideas (diagonalisations of length continuum, elementary submodels and ∆-systems) in a
more complex topological setting.
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DENNIS BURKE AND GARY GRUENHAGE

1. Introduction

Zoltan “Zoli” Tibor Balogh died at his home in Oxford, Ohio, in
the early morning hours of Wednesday, June 19, 2002. He was 48
years old. In this article, we give a brief sketch of his life and then
discuss his mathematical contributions. He will be sorely missed,
both as a leader in the field of set-theoretic topology and as our
friend.

iZoltán
Balogh

1953 - 2002

Theorem 2.3.1 (Z. Balogh, 1991 [3]). There is a regular, T1 topological space X with the
following properties:

(a) any subset Y of X is Gδ, and

(b) X is not σ-discrete i.e., the union of countably many discrete sets.

Such spaces are refereed to as Q-set spaces. Why is this theorem interesting? Well,
consider the first feature, all subsets being Gδ i.e., the intersection of countably many open
sets. This is a certain notion of smallness: for example, any countable topological space
satisfies this property. Under various set-theoretic assumptions, like Martin’s Axiom, any
separable, metric space of size < c has this feature. Moreover, any such Q-set (i.e., a
separable, metrizable Q-set space) must have universal measure 0.8 On the other hand, it
is not hard to see that under CH, there are no Q-sets.

In turn, it is natural to look for other (not necessarily metrizable) examples that could
exist without any extra assumptions. However, there is a simple condition on any topological
space that makes feature (a) hold trivially: if the space X is the countable union of closed
discrete sets, then X has all subsets Gδ.9 When we exclude this case, we arrive at the right
question which turned out to be quite hard to solve.

Proof. We will present a simplified version of Balogh’s construction. In fact, we will not
bother making the space regular, just T1. This will ease notation and will let us focus on
the more important features of the space.

Our space will have size continuum so we just let X = c and define the topology there.
We shall start by the cofinite topology τ0 with base B0 = {X \ F : F ∈ [X]<ω}. Our final
goal is to ensure that all subsets Y ⊂ X are Gδ and we do this by the most naive approach.
By considering each Y ⊂ X separately, we add a decreasing sequence of sets (GY,n)n<ω to
our basis such that

Y =
∩
n<ω

GY,n.

The final topology τ is generated by B = B0 ∪ {GY,n : Y ∈ P(X), n < ω} as a subbasis (see
below).

This is all good so far, but we need to be careful not to make the space σ-discrete. Let’s
understand how basic neighbourhoods will look like in the final topology: these are simply
finite intersections from B which can be characterised by a cofinite set and a finite partial
function from P(X) to ω (the set of the latter maps will be denoted by Fn(P(X), ω)). Now,
given some U ∈ Fn(P(X), ω), we let

[U ] :=
∩

(Y,n)∈U

GY,n.

8I.e., Q-sets are null with respect to any regular Borel measure on R.
9Indeed, if D ⊂ X is closed and discrete then any subset Y of D is closed in X. So, if X is σ−closed

discrete then any subset Y is the countable union of closed sets. In turn, any subset Y must be Gδ as well.
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So a basic neighbourhood of a point x will look like x ∈ [U(x)] \F (x) where F (x) is a finite
subset of X and U(x) ∈ Fn(P(X), ω).

In turn, we need the following property:

if X =
∪

k∈ω Xk and the maps Uk : Xk → Fn(P(X), ω) and Fk : Xk →
[X]<ω code a neighbourhood assignment then there is an n < ω and
x ̸= y ∈ Xk so that y ∈ [Uk(x)].

In other words, Uk, Fk does not witness that Xk is discrete. This feels quite similar to the
chromatic number problems we considered before. Again, on the face of it, we need to find
witnesses for 2c many possible partitions from a collection of only c points. The trick will
be again to consider the trace of these partitions and neighbourhood assignments on nice,
countable sets.

We say that (A, u) is a control pair if A is a countable subset of X and

u : A → Fn(P(A), ω)

so that α < α′ ∈ A implies domu(α) ∩ domu(α′) = ∅. So u looks like a neighbourhood
assignment with some additional property on the domains. Note that there are only c many
control pairs, so we can list them as (Aβ , uβ)β<c. We also arrange that Aβ ⊂ β for any
β < c and so β /∈ Aβ .

Now, let’s describe the construction: given Y ⊂ X, we define GY,n for n < ω as follows.
For each β ∈ X = c, we decide if β ∈ GY,n or β /∈ GY,n: we put β ∈ GY,n if and only if one
of the following conditions hold:

1. β ∈ Y , or

2. there is an α ∈ Aβ so that Y ∩Aβ ∈ domuβ(α) and n ≤ maxuβ(α).

Note that the second condition can hold for at most one α ∈ Aβ which uniquely deter-
mines those finitely many n’s such that β ∈ GY,n. This ensure that if β ∈ GY,n and m < n
then β ∈ GY,m i.e., the sequence is decreasing. Furthermore, Y =

∩
n<ω GY,n as desired.

This ends the construction of the topology.

We need to prove that X is not σ-discrete in the final topology. Before that, let us
point out the intuition behind the above definition: think of u = uβ as a neighbourhood
assignment. Then the second condition essentially says that whenever (Y, n) ∈ u(α), we put
β into GY,n as well. In other words, we work to ensure β ∈ [u(α)] so the neighbourhood
assignment u cannot witness that α and β are in the same discrete set.

Now, assume that X =
∪

n∈ω Xk and Uk : X → Fn(P(X), ω) together with Fk : Xk →
[X]<ω codes a neighbourhood assignment. We need some n < ω and α < β ∈ Xk so that

β ∈ [Uk(α)] \ Fk(α).

Take a countable M ≺ H(θ) so that

τ, (Xk)n<ω, (Uk)n∈ω, (Fk)n∈ω,B, . . . ∈ M.

We let A = M ∩ c. Now, we define u : A → Fn(P(A), ω) so that {domu(α) : α ∈ A} is
pairwise disjoint and

26



if v ∈ M such that v is an infinite partial function from c to Fn(P(X), ω)
with {dom v(α) : α ∈ dom v} pairwise disjoint then there is an α ∈
dom v ∩ domu so that

u(α) = {(Y ∩A,n) : (Y, n) ∈ v(α)}.

In some sense, u diagonalises all partial neighbourhood assignments from M . Why is
this possible? List all v ∈ M that we need to consider as (vn)n∈ω. Select αn ∈ dom vn so
that {dom vn(αn) : n < ω} is pairwise disjoint. Now, let

u(α) =

{
{(Y ∩A,n) : (Y, n) ∈ vn(αn)} if α = αn,

∅ otherwise.

We shall prove that (A, u) is a control pair i.e., that domu(αn) and domu(αm) are
disjoint for n < m < ω. That is, we need that Y ∩ A ̸= Y ′ ∩ A for Y ∈ dom vn(αn) and
Y ′ ∈ dom vn(αn). Note that Y ̸= Y ′ and also, Y, Y ′ ∈ M . So this must be witnessed in M
i.e.,

Y ∩A = Y ∩M ̸= Y ′ ∩M = Y ′ ∩A

as desired.
In turn, the control pair (A, u) was enumerated at some stage β < c as (Aβ , uβ). Fix

n < ω so that β ∈ Xk. Our goal is to find an α ∈ A ∩Xk so that β ∈ [Uk(α)] \ Fk(α). Note
that it suffices to arrange β ∈ [Uk(α)] since α ∈ A ⊂ M implies that Fk(α) ⊂ M but β /∈ M .

Look at Uk(β) and recall that

β ∈ [Uk(β)] =
∩

(Y,n)∈Uk(β)

GY,n.

Let W := M ∩ Uk(β) which is an element of M (being a finite subset of M). The set

E = {α ∈ Xk : W ⊂ Uk(α)}

is also an element of M (since Xk, Uk ∈ M) and β ∈ E \ M so E must be uncountable.
Pick, in M , a maximal E0 ⊂ E so that {Uk(α) \W : α ∈ E0} has pairwise disjoint domains.
Note that E0 must be infinite, otherwise we could add β which contradicts its maximality
(just as in the proof of the ∆-system lemma).

Now, consider v : E0 → Fn(P(X), ω) defined by v(α) = Uk(α) \W ; this function v is in
M . So, by the definition of our control pair and the map u = uβ , there is some α so that

uβ(α) = {(Y ∩Aβ , n) : (Y, n) ∈ v(α)}
= {(Y ∩Aβ , n) : (Y, n) ∈ Uk(α) \W}.

Our goal is to show that
β ∈ [Uk(α)] =

∩
(Y,n)∈Uk(α)

GY,n.

Now, take some (Y, n) ∈ Uk(α). If (Y, n) ∈ W then (Y, n) ∈ Uk(β) so β ∈ GY,n. Assume
that (Y, n) ∈ Uk(α)\W . Then (Y ∩Aβ , n) ∈ uβ(α) and so the second clause in the definition
of GY,n takes effect and we put β in GY,n.

This finishes the proof that X is not σ-discrete.
⊠
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Balogh later improved the above result [4] and constructed a Q-set space that is (hered-
itarily) paracompact and also perfectly normal.10

We should mention that Balogh has another striking application of elementary submodels
and ingenious diagonalization. A Dowker space is a T1, normal topological space X (i.e.,
any two disjoint closed sets can be separated by disjoint open sets) so that X × [0, 1] is
not normal any more. There are several constructions of Dowker spaces using various set
theoretic assumptions (such as CH).

Mary Ellen
Rudin 1924 -

2013

In a breakthrough result, Mary Ellen Rudin proved
that such spaces must always exist in ZFC. Her example has size ℵℵ0

ω and the quest to find
small Dowker spaces in ZFC turned out to be one of the hardest problems in general/set-
theoretic topology. Then, Balogh constructed a Dowker space of size continuum in ZFC and
just as the Q-set space, his example has weight and character 2c. Without going into too
much detail, he used the Q-set space idea to ensure normality: the basis for the space is
now constructed inductively and as certain pairs of disjoint sets become closed during the
induction, he introduces disjoint open sets that separate them. It involves more topology to
see how the Dowker property is ensured which is not in the scope of these lectures.

Balogh credited Mary Ellen Rudin and her work as inspiration for his construction of
the Q-set and Dowker spaces. Still, it is one of the great unsolved problems of point-set
topology if there are Dowker spaces of size, weight or character ω1 in ZFC.

Summary
There are a few important points to take away from Balogh’s proof:

• we can often capture the essential information of a large object (such as a partition or
neighbourhood assignment) by countable traces;

• the latter supports inductive diagonalisations of length continuum;

• by using elementary submodels, we can reflect whatever finite information we have
from the original structure to the countable trace;

• finally, keep in mind that a simple and naive approach can still solve major open
problems with enough perseverance.

Exercises and problems

Exercise 2.3.2. Show that any graph G of uncountable chromatic number contains a copy
of Kn,ω1 for any n < ω. The latter is the complete bipartite graph with one finite class of
size n and another uncountable class.

Exercise 2.3.3. Fix a natural number k. Prove that any graph G of uncountable chromatic
number contains a k-connected subgraph H i.e., H remains connected after the removal of
< k vertices.

10This makes his example almost as nice as a metrizable space.
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Exercise 2.3.4. Prove that the rational distance graph on the plane has no copies of K2,ω1

and so it must have countable chromatic number.

Exercise 2.3.5. Suppose that (X, τ) is a topological space with a point-countable base B.
That is, for any x ∈ X, {U ∈ B : x ∈ U} is countable. Let (X, τ),B ∈ M ≺ H(θ). Prove
that for any y ∈ X ∩M , B ∩M contains a neighbourhood base for y.

Exercise 2.3.6. Suppose that X is a separable metric space and Y ⊂ X is σ-discrete. Prove
that Y is countable.

Exercise 2.3.7. Suppose that 2ℵ0 = ℵ1 and X is an uncountable, separable metric space.
Prove that X has a subset Y that is not Gδ.

Problem 2.3.8. Show that if a topological space X is σ-discrete and any subset is a Gδ

then actually X is σ-closed discrete.

Problem 2.3.9. Suppose that some X ⊂ 2ω1 satisfies the following: for any uncountable
family {sξ : ξ < ω1} of finite functions with pairwise disjoint domain there is a countable I
so that X \

∪
ξ∈I [sξ] is countable.11 Prove that any open cover of X has a countable subcover

i.e., that X is Lindelöf.

Problem 2.3.10. Show that for any countable edge-colouring of the complete graph on ω2,
one can find an infinite monochromatic path.

Problem 2.3.11. Describe an explicit construction of finite triangle-free graphs with arbi-
trary large finite chromatic number.12

Challenge 2.3.12. Show that there is a countable subspace X ⊂ 2c which has no isolated
points and any two non-empty dense subsets of X have non-empty intersection.13

⋆

Open Problem 2.3.13. Is there a ’small’ Dowker space i.e., one of size, character or
weight ω1?

Further reading
Introductions to elementary submodels [21, 28]; elementary submodels in topology [8, 15];
introduction to elementary submodels and graph theory [42]; about uncountable graphs and
chromatic number [26, 25].

11The notation [s] stands for {f ∈ 2ω1 : s ⊂ f}.
12Hint: using a triangle-free graph H, try to build a larger G which is still triangle-free but has bigger

chromatic number.
13Hint: construct {xn : n < ω} ⊂ 2c by defining {xn ↾ α : n < ω} by an induction on α < c. What should

we diagonalise in the construction?
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Chapter 3

Coherent maps and minimal
walks

3.1 The first uncountable ordinal
We will now look more closely at combinatorial properties of ω1, the smallest uncountable
cardinal. The ordinal ω1 is an incredibly interesting object witnessing various paradoxical
properties. Just consider the following

• The ∈ relation well-orders ω1 so that any proper initial segment is countable while the
whole order is uncountable.

• For any limit α ∈ ω1, there is countable, increasing, type ω sequence cofinal in α but
any countable subset of ω1 is bounded.

• Any proper initial segment of ω1 has an order preserving/topological embedding into
R but not ω1 itself.

• Any proper initial segment of ω1 is metrizable but not ω1 itself.

This tension between the local and global properties of ω1 can be used to construct a great
variety of interesting mathematical objects.

Since each α < ω1 is countable, there is an eα : α → ω that is injective (or bijective even,
if you wish). Now, if α < β and the set ω \ ran eα is infinite then we can extend eα to an
injective eβ : β → ω (and still avoid infinitely many values if we wish so). How long can we
keep doing this? Since there is no injective e : ω1 → ω, we must fail at some limit step of
any construction like that.

However, the following is possible. Call a collection of maps E coherent if for any e, e′ ∈ E ,
the set

{ξ ∈ dom e ∩ dom e′ : e(ξ) ̸= e′(ξ)}

is finite.

Theorem 3.1.1. There is a coherent sequence of one-to-one maps eα : α → ω for α < ω1.
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Proof. We construct (eα)α<ω1
by induction on α < ω1 so that

1. eα : α → ω is injective,

2. ran(eα) is co-infinite,

3. for any β < α, {ξ < β : eβ(ξ) ̸= eα(ξ)} is finite.

At successor steps, we simply let eα+1 = eα ∪ {(α,m)} so that m /∈ ran eα.
In limit steps, we select a strictly increasing cofinal sequence (αn)n<ω is α. Naively, we

might just take gn = eαn
↾ αn \ αn−1 and look at

∪
{gn : n ∈ ω} as a candidate for eα but

this can fail to be 1-1 or fail the requirement on the range. So, we do the following correction:
first, let g0 = ḡ0. Next, we modify g1 at finitely many points to get ḡ1 so that ḡ0 ∪ ḡ1 is 1-1
(this is possible, there could be only finitely many values k < ω that are assumed by both
g0 and g1). Furthermore, we reserve a value k1 outside the range of ḡ0 ∪ ḡ1 and promise to
keep k1 out of the range of all the ḡn. We proceed similarly: at stage n < ω, we modify gn
at finitely many points to get ḡn so that ∪{ḡi : i ≤ n} is 1-1 and does not assume the values
k1, k2 . . . kn−1. Finally, we reserve a new value kn to be avoided.

The function eα we constructed is 1-1 and has co-infinite range. Moreover, note that
eαn =∗ ∪

{ḡl : l ≤ n} where =∗ denotes equality modulo a finite set. So, if β < α and we
pick n so that β < αn then

eβ =∗ eαn
↾ β =∗

∪
{ḡl : l ≤ n} ↾ β = eα ↾ β.

This ends the proof. ⊠

The coherent, 1-1 sequence (eα)α<ω1
gives rise to a so-called Aronszajn tree. A set

theoretic tree is a partially ordered set (T,<) so that for any t ∈ T , t↓ = {s ∈ T : s < t} is
well ordered. For example, the set 2<ω of finite sequences of natural numbers forms a tree
with end-extensions. Any tree admits a height function: the height of t is simply the order
type of t↓. The height of the tree itself is the supremum of all the heights of elements of T .

Now, an ℵ1-tree is a tree of height ω1 with all levels countable. For example, (ω1,∈) is
an ℵ1-tree. Aronszajn-trees form the other extreme: we say that T is Aronszajn if T is an
ℵ1-tree without uncountable chains.

Going back to coherent, 1-1 sequences, we can form

T = {eβ ↾ α : α ≤ β < ω1}.

Now, (T,⊆) is a downward closed, uncountable subtree of ω<ω1 which has countable levels
but no uncountable chains i.e., T is Aronszajn. The existence of such trees show that König’s
well-known theorem1 does not extend to ω1.

Another important note is that a coherent sequence of 1-1 (or even finite-to-one) maps
eα : α → ω gives rise to finite sets

Fn(α) = {ξ ≤ α : ξ = α or eα(ξ) ≤ n}.

Note that α + 1 =
∪
{Fn(α) : n < ω} and for any α < β and large enough n < ω,

Fn(α) ⊆ Fn(β). That is, we can coherently decompose the countable ordinals into increasing
sequences of finite sets. Such decompositions will play an important role later.

1Recall that König’s theorem says that any infinite tree with finite levels must have an infinite branch
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3.2 Some Ramsey theory on ω1

Ramsey theory is concerned with the phenomena that any large enough object, no matter
how random it might look, necessarily contains regular substructures of a given size. A pop-
ular way to phrase this is that ’complete disorder is impossible.’ There are various branches
of Ramsey theory that concern finding regularity in geometric objects, general topological
space, Banach spaces, and various fascinating number and graph theoretic aspects. We will
look at the most fundamental case: partitions of [X]n for an unstructured infinite set X.

One might consider the pigeon hole principle the simplest, 1-dimensional Ramsey-type
statement: any infinite set of size κ, when partitioned into finitely many pieces, contains
a monochromatic piece of size κ. The classical theorem of F. P. Ramsey from 1930 [35]
captures the multi-dimensional analogue: for any finite n and k,

ω → (ω)nk

i.e., for any colouring c : [ω]n → k there is an infinite A ⊂ ω so that c ↾ [A]n is constant.2
On the other hand, Sierpinski showed in 1933 [39] that for any λ ≤ c,

λ ̸→ (ω1)
2
2

i.e., there is a colouring c : [λ]2 → 2 so that both colours appear on any uncountable subset
of λ. The colouring c is fairly easy to define: take any well-ordered set of λ-many reals
(rα)α<λ and for α < β < λ, let c(α, β) = 0 if and only if rα <R rβ . That is you compare
the Euclidean ordering and the well-order. The fact that these two orders have no common
uncountable suborder ensures that c witnesses Sierpinski’s relation.

What if we use more than 2 colours? First, there is a very strong limitation to prove
anything about ω-colourings: consider the map ∆ : [2ω]2 → ω defined by

∆(f, g) = min{n < ω : f(n) ̸= g(n)}.

Note that there are no monochromatic triangles for ∆ so, using the arrow notation, we have

c ̸→ (3)2ω.

The same negative relation holds for any λ ≤ c, in particular for ω1 (indeed, just restrict ∆
to an appropriate set of reals).

How about finite colourings? It was open for a long time if one can at least reduce
the number of colours or omit a colour on some uncountable subset. This question was
eventually settled by Todorcevic.

Stevo
Todorcevic

1955 -

Theorem 3.2.1 (Todorcevic, 1987 [45]). There is a colouring c : [ω1]
2 → ω1 so that for any

uncountable X ⊂ ω1, c[X]2 = ω1.

There are many variations of this result based on minimal walks (due to Todorcevic
and Moore, yielding colourings with stronger combinatorial properties), and different proofs
using the complete binary tree or special Aronszajn trees; all of this is covered in Todorcevic’s

2This is the so-called arrow notation for partition relations which was introduced by Erdős and Rado.
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book on minimal walks [47]. We will present a simple argument using an Aronszajn-tree
and elementary submodels (the argument below is a mixture of proofs due to Todorcevic
and Velleman).

We will make use of the following fact which can be thought of as trimming the Aronszajn
tree.

Fact 3.2.2. Suppose that T is an Aronszajn tree. Then T has a subtree T̂ so that any t ∈ T̂
has uncountably many extensions in T̂ .

Now we are ready to prove the theorem.

Proof. [47, Lemma 5.4.1] The proof consists of two parts: first, a highly non-trivial definition
to get a colouring c : [ω1]

2 → ω1 so that for any uncountable X ⊂ ω1, c[X]2 contains a club.
Given such a c, the second and much easier part is that we can find an f : ω1 → ω1 so that
f ◦ c witnesses the theorem. Indeed, we can take any f so that f−1(ξ) is stationary for all
ξ < ω1.

Let us work on finding c now. Suppose that T is an Aronszajn tree and let us assume
that any two nodes s, t ∈ T have a greatest lower bound s ∧ t (note that s ∧ t = s if s ≤ t).
For each t ∈ T , we define Fn(t) for n < ω so that

1. Fn(t) ⊂ t↓ ∪ {t} is a finite set with maximal element t, and

2.
∪

n<ω Fn(t) = t↓ ∪ {t}.

This is of course possible since each t↓ is countable. For s, t ∈ T with ht(s) ≤ ht(t), we
define m = min{n < ω : s ∧ t ∈ Fn(t)} and now let

[s, t] = min{w ∈ Fm(t) : ht(w) ≥ ht(s)} ∈ T.

We will now show that for any uncountable X ⊂ T and countable M ≺ H(θ) with
X,T ∈ M , there is s, t ∈ T so that

M ∩ ω1 = ht([s, t]).

So the map c : [T ]2 → ω1 defined by c(s, t) = ht([s, t]) will satisfy that c[X]2 contains a club
for any uncountable X ⊂ T .3

Pick any t ∈ X \M and let v ≤ t so that ht(v) = M ∩ω1. Our goal is to find s ∈ X ∩M
so that [s, t] = v.

Find an m0 so that v ∈ Fm0(t) and let u0 be the maximum of v↓ ∩ Fm0(t).

Claim 3.2.3. There is some u < v above u0 and uncountable Y ⊂ X in M so that for any
s ∈ Y , s ∧ t = u.

Proof. Note that Y0 = {t′ ∈ X : t′ > u0} ∈ M and t ∈ Y0 so Y0 must be uncountable. Let
Y1 be a subtree of Y0 in M in which any node has uncountably many extensions. Now, Y1

cannot be a chain so we can find two incomparable elements in Y1 ∩M one of which is not
below t. Fix y1 ∈ Y1 ∩M to be such a point not in t↓ and let Y = {s ∈ Y1 : s > y1}. Then
Y is an uncountable subset of X and s∧ t = y1 ∧ t for any s ∈ Y . That is u = y1 ∧ t satisfies
the requirements of the claim. □

3It does not matter that c is defined on pairs of T instead of pairs of ω1. Any such map can be transformed
to a colouring c′ : [ω1]2 → ω1 by an arbitrary bijection ω1 → T .
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Now find the minimal m so that u ∈ Fm(t) and note that m > m0 as u > u0. In turn,
v ∈ Fm(t). Now, find s ∈ Y ∩M so that ht(s) > ht(v′) for any v′ ∈ Fm(t)∩M . Recall that
u = s ∧ t so

[s, t] = min{w ∈ Fm(t) : ht(w) ≥ ht(s)} = v

as desired.
⊠

However, there are some positive Ramsey results that one can prove. The most important
ones are summarized below.

1. (Erdős-Dushnik-Miller, 1941) For any infinite κ,

κ → (κ, ω + 1)22

i.e., for any colouring c : [κ]2 → 2 either there is an A ⊂ κ of size κ so that c ↾ [A]2 is
constant 0 or there is an A ⊂ κ of order type ω + 1 so that c ↾ [A]2 is constant 1.

2. (Erdős-Rado, 1956 [13]) For any infinite κ,

(2κ)+ → (κ+)2κ

i.e., for any colouring c : [(2κ)+]2 → κ there is an A ⊂ κ of size κ+ so that c ↾ [A]2 is
constant.

The last theorem has an analogue for colouring n-tuples but one needs to iterate the
exponential function n− 1 times:

(ℶn−1(κ))
+ → (κ+)nκ.

The beth-function is defined by ℶ1(κ) = κ and ℶn+1(κ) = 2ℶn(κ).

Complementing Todorcevic and Sierpinski’s result, Shelah proved the following:

3. (Shelah, 1988 [37]) Consistently (modulo some large cardinals),

c → [ω1]
2
<ω,3

i.e., for any colouring c : [c]2 → r with r < ω there is an uncountable X ⊂ c so that
c ↾ [X]2 assumes at most 2 colours.

It is still open if the above positive relation is consistent with small values of c i.e., with
c < ℵω.
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Exercises and problems

The ordinal ω1 has a natural order topology. Basic open neighbourhoods of β are the half-
open intervals (α, β] where α < β. So the isolated points are exactly the successor ordinals.

Exercise 3.2.4. Prove that any continuous f : ω1 → R is eventually constant.

Exercise 3.2.5. Prove that any continuous f : R → ω1 has countable range.

Exercise 3.2.6. Show that any graph G of chromatic number at least c+ must contain a
copy of Hω,c+ .

Exercise 3.2.7. Prove Kőnig’s theorem: any finitely branching, infinite tree must contain
an infinite branch.

Exercise 3.2.8. Let (eα)α<ω1
be a coherent, 1-1 sequence and let T = {f ∈ ω<ω1 : (∃α ∈

ω1)f =∗ eα}. Prove that T is an Aronszajn-tree.

Exercise 3.2.9. Let T ⊂ ω<ω1 be an Aronszajn tree. Define a relation <ℓ on T so that
s <ℓ t if s(ξ) ⊇ t(ξ) or s(ξ) < t(ξ) for the minimal ξ so that s(ξ) ̸= t(ξ). Prove that <ℓ is a
linear order.

Problem 3.2.10. Let T be the tree consisting of all closed subsets of a stationary set S.
Show that T cannot be partitioned into countably many antichains.

Problem 3.2.11. Suppose that G is a graph on ω1 and for any limit α, α∩N(α) is closed
and discrete in the order topology of α. Prove that given any pairwise disjoint, uncountable
family F of finite subsets of ω1, there is a ̸= b ∈ F so that there are no edges between a and
b. (This statement implies that under MAℵ1

, such graphs must have countable chromatic
number.)

Problem 3.2.12. Let T be an Aronszajn subtree of ω<ω1 . Show that there is no strictly
increasing map from (T,<ℓ) to R (see Exercise 3.2.9 for the definition of <ℓ).

Problem 3.2.13. Let V = {f : α → ω injective, α < ω1} and fg ∈ E if f ⊂ g or g ⊂ f .
Prove that G = (V,E) is uncountably chromatic.
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3.3 Walks on ordinals
In this section, we shall analyse minimal walks along C-sequences. A C-sequence is essen-
tially a ladder system extended to all of ω1 in a very natural way. That is, for the rest of
this chapter, we shall fix (Cα)α<ω1

so that

1. Cα+1 = {α}, and

2. Cα is a cofinal, type ω subset of α if α is limit.

In certain situations, it is useful to assume that if α is limit then Cα consists of successor
ordinals only.

Now, each such C-sequence defines a graph on ω1 by declaring αβ an edge if α ∈ Cβ .
We are interested in monotone decreasing walks in this graph which greedily step towards
a fixed destination. For α < β, we define the step from β to α by

step(α, β) = minCβ \ α.

That is, we find the minimal neighbour of β that is still at least α.
The minimal walk from β to α is the iteration of the step function until we reach α.

More precisely, we let β0 = β, β1 = step(α, β0) and if βn ̸= α then

βn+1 = step(α, βn).

Note that β0 > β1 > . . . ≥ α so this process must terminate in finitely many steps by
reaching α. If βn is a successor ordinal and above α then we step down to its predecessor
i.e., βn+1 = βn − 1. If βn is limit, we let βn+1 be the first element of the cofinal sequence
Cβn that is still at least α.

The (finite) collection of the nodes that appear in the walk is called the trace and is
denote by

Tr(α, β) = {β0, β1, . . . , βn}.

Just as the minimal walk itself, the trace has a concise recursive definition by

Tr(α, β) = {β} ∪ Tr(α, step(α, β))

with boundary value Tr(α, α) = {α}.

So we have defined a two-place set-mapping

Tr : [ω1]
2 → [ω1]

<ω.

Without any further preparation, we can prove a crucial fact about the expansion of the
trace function on uncountable sets.

Lemma 3.3.1 (Expansion lemma). Suppose that X ⊂ ω1 is uncountable. Then the set
Tr[X]2 =

∪
{Tr(α, β) : α < β ∈ X} contains a club.

Proof. In fact, we shall prove that acc(X), the set of accumulation points of X, is a subset
of Tr[X]2. Fix some δ ∈ acc(X). Since X is uncountable, we can find β ∈ X \ δ. Our goal
is to pick α ∈ δ ∩X so that δ ∈ Tr(α, β) i.e., the walk from β to α goes through δ.

The idea is the following: by definition, δ ∈ Tr(δ, β) so we would like to choose α in such
a way that the walk from β to α starts with the walk from β to δ. Look at the first step
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step(δ, β) = minCβ \ δ. If α is above the finite set Cβ ∩ δ then step(α, β) = step(δ, β). So
the two walks take the same first step to some β1. Note that such a choice of α is possible
since supX ∩ δ = δ. Actually, all large enough α below δ satisfies this property.

If β1 = δ then we are done. Otherwise, repeat the procedure: take α that is larger than
both Cβ0 ∩ δ and Cβ1 ∩ δ. Now the walk from β to δ and β to α share the first two steps. If
β2 = δ then we are done, otherwise, keep repeating. Note that this process again terminates
in at most |Tr(δ, β)|-many steps.

□

Corollary 3.3.2. There is a set-mapping c : [ω1]
2 → [ω1]

<ω so that c[X]2 =
∪
{c(α, β) :

α < β ∈ X} is all of ω1 for any uncountable X ⊆ ω1.

Proof. Indeed, take a partition of ω1 into stationary sets (Sξ)ξ<ω1
and let c(α, β) = {ξ <

ω1 : Tr(α, β) ∩ Sξ ̸= ∅}. □

This corollary almost shows the negative partition relation we proved in Theorem 3.2.1.
In fact, with some effort, one can find a map t : [ω1]

2 → ω1 so that t(α, β) ∈ Tr(α, β)
and still, for any uncountable X, t[X]2 contains a club. So, combined with the stationary
partition trick, t yields another witness for ω1 ̸→ [ω1]

2
ω1

. Defining this function t is not in
the scope of this course but the proof can be found in [47, Lemma 5.1.4].

There are several directions one can go from here:

1. systematically analyse the basic characteristics of walks (such as the maximal weight
ρ1, the number of steps ρ2 or the last step ρ3);

2. to study more complex colourings using minimal walks and oscillations;

3. apply these colourings in various settings (productivity of the ccc, Banach spaces with
few operators, S-and L-spaces);

4. define ρ-functions abstractly and derive a metric theory on ω1;

5. to derive canonical trees and linear orders from functions associated to walks;

6. look at walks on higher cardinals using □-sequences.

All of this is covered in Todorcevic’s book [47], but we shall stick to one of the least
technical topics which quickly leads to deep results: trees and linear orders. We will see
plenty of the fundamental arguments about minimal walks and some highly non-trivial proofs
about the so-called full code (denoted by ρ0) and the lower trace of the walk.

Exercises and problems

Exercise 3.3.3. Prove that any set of (r− 1)(s− 1) + 1 numbers contains a monotonically
increasing subsequence of length r or a monotonically decreasing subsequence of length s.

Exercise 3.3.4. Show that ω1 with the order topology is not metrizable.
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Exercise 3.3.5. Prove that the Sierpinski colouring witnesses ω1 ̸→ [ω1]
2
2.

Exercise 3.3.6. Suppose that the colouring c witnesses ω1 ̸→ [ω1]
2
ω1

. Show that for any
α < ω1, there is an infinite A ⊂ ω1 so that c ↾ [A]2 is constant α.

Exercise 3.3.7. Prove that any Aronszajn tree has a subtree with the property that each
node has uncountably many extensions.

Problem 3.3.8. Prove that there is a subset T of {t ⊂ Q : max t ∈ Q} which forms an
Aronszajn tree with the end-extension relation. Show that this T must be special.

Problem 3.3.9. Use an Aronszajn tree and Sierpinski’s idea to witness ω1 ̸→ [ω1]
2
3.

Problem 3.3.10. Prove that for any c : ω1 × ω → k with k finite, there are infinite
A ⊂ ω1, B ⊂ ω so that c ↾ A×B is constant.

Problem 3.3.11. Show that if V is a c+-dimensional vector space over Q and c : V → ω
then there is a monochromatic solution to x+ y = z with x, y, z pairwise distinct and non-
zero.

Problem 3.3.12. For any colouring c : P(ω) → ω, there is a monochromatic, non-trivial
solution to X ∪ Y = Z.

3.3.1 The full code of the walk
In the proof of the Expansion Lemma, we did the following: given δ ≤ β, we proved that
for any large enough α < δ, δ ∈ Tr(α, β) and in fact, Tr(δ, β) ⊂ Tr(α, β). We can actually
quantify how large α needs to be: for δ < β, we define

λ(δ, β) = max{maxCξ ∩ δ : ξ ∈ Tr(δ, β)}.

Now, the following fact holds.

Fact 3.3.13. Suppose that δ < β and λ(δ, β) < α < δ. Then Tr(δ, β) ⊂ Tr(α, β) and in
fact,

Tr(α, β) = Tr(δ, β) ∪ Tr(α, δ).

Note that the reverse must hold too: if Tr(δ, β) ⊂ Tr(α, β) then λ(δ, β) < α.

We shall continue with analysing the basic characteristics of minimal walks, the first one
being the full code of the walk denoted by ρ0. Now, ρ0(α, β) is a finite sequence of natural
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numbers that simply records the sizes of the sets Cβi
∩ α along the walk β = β0 > β1 >

· · · > βn = α. That is, define
ρ0 : [ω1]

2 → ω<ω

recursively by
ρ0(α, β) = ⟨|Cβ ∩ α|⟩⌢ρ0(α, step(α, β)).

Here the boundary condition is ρ0(α, α) = ∅.
So, if Cβ(k) denotes the kth element of Cβ in its increasing enumeration then

step(α, β) = Cβ(ρ0(α, β)(0)).

Similarly, βi+1, the i+ 1st element of the walk is simply

βi+1 = Cβi(ρ0(α, β)(i)).

So, given the starting node β, we can recover the minimal walk to α solely from this
finite sequence of natural numbers (and the C-sequence).

We can also rephrase Fact 3.3.13 as follows.

Fact 3.3.14. Suppose that α < δ < β. Then the following are equivalent:

1. δ ∈ Tr(α, β),

2. λ(δ, β) < α,

3. ρ0(α, β) = ρ0(δ, β)
⌢ρ0(α, δ)

Now, a two place function like ρ0 gives rise to a sequence of functions by its fibers: for
β < ω1, we look at ρ0β : β → ω<ω which is defined by

ρ0β(α) = ρ0(α, β).

What can we say about these fibers?

Claim 3.3.15. For any β < ω1, ρ0β : β → ω<ω is injective.

Proof. Suppose that ρ0(α, β) = ρ0(α
′, β) and that their common length is n. If n = 0 then

α = β = α′ so we are done. Let (βi)i<n and (β′
i)i<n denote the trace for the two walks from

β to α and α′. Note that β0 = β = β′
0. We shall prove that βi = β′

i for all i < n by induction.
However, this simply follows as βi+1 = Cβi(ρ0(α, β)(i)) = Cβ′

i
(ρ0(α

′, β)(i)) = β′
i. □

The sequence of maps (ρ0β)β<ω1
is not necessarily coherent but still, the tree

T (ρ0) = {ρ0β ↾ α : α ≤ β < ω1}

will be have many interesting properties. In fact, T (ρ0) is a special Aronszajn tree (ordered
by the subset relation). Special, in this setting, means that T (ρ0) is a countable union of
antichains (i.e., pairwise incomparable nodes). The latter is equivalent to the existence of a
strictly increasing map a : T (ρ0) → Q [44].

One of our main goals will be to see how to turn T (ρ0) into a Countryman line i.e., an
uncountable linear order C(ρ0) with the property that the square of C(ρ0) is the union of
countably many chains.
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3.3.2 The simplified lower trace and T (ρ0)

To understand the tree T (ρ0), we need to see how the fibers ρ0α and ρ0β interact. That is,
lets understand how two walks with the same destination, one from α to ζ and one from β
to ζ, behave. These walks will start out with disjoint initial segments, then meet at some
point ξ and then follow the same steps down to ζ; these points ξ will be critical. Define the
simplified lower trace as follows: for α < β < ω1, let

F (α, β) = {ξ ≤ α : Tr(ξ, α) ∩ Tr(ξ, β) = {ξ}}.

In other words, we collect all those points ξ so that the walks from α to ξ and β to ξ
only meet at ξ. This definition is due to W. R. Hudson [19] and lies between Todorcevic’s
original definition of the lower trace and full lower trace (which we will not define at this
point).

So what is the first meeting point of two walks both going down to some ζ? Well, it is
exactly the first element of the simplified lower trace above ζ.

Claim 3.3.16. For any ζ < α < β, if ξ = min(F (α, β) \ ζ) then

ρ0(ζ, α) = ρ0(ξ, α) ∪ ρ0(ζ, ξ)

and
ρ0(ζ, β) = ρ0(ξ, β) ∪ ρ0(ζ, ξ).

Proof. Suppose that δ = maxTr(ζ, α) ∩ Tr(ζ, β). Then δ ∈ F (α, β) \ ζ. Also, note that ζ
and so ξ as well must be above λ(δ, α) and λ(δ, β). If ζ ≤ ξ < δ then δ ∈ Tr(ξ, α)∩Tr(ξ, β),
a contradiction to ξ ∈ F (α, β). □

It is also easy to see now that the simplified lower trace is finite.

Claim 3.3.17. For any α < β < ω1, F (α, β) is finite.

Proof. Suppose that F (α, β) has some accumulation point δ ≤ α. Now, we can find ξ ∈
F (α, β) ∩ δ so that ξ is above λ(δ, α) and λ(δ, β). However, this means that δ ∈ Tr(ξ, α) ∩
Tr(ξ, β) = {ξ}, a contradiction. □

Using the above, we shall prove that T (ρ0) has countable levels.4

Theorem 3.3.18. T (ρ0) is an Aronszajn-tree.

Proof. We need that T (ρ0) has countable levels and no uncountable chains. The latter we
know already: since the fibers ρ0β are all 1-1, an uncountable chain through T (ρ0) would
give a 1-1 map from ω1 to the countable set ω<ω.

Now, to show that all levels are countable, we need that for any fixed α < ω1, the set

{ρ0β ↾ α : α ≤ β < ω1}

is countable. We will prove that the simplified lower trace F (α, β) and the behaviour of ρ0β
on this finite set completely determines ρ0β ↾ α.

4Unlike the case of building trees from coherent sequences, this is not automatic now.
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Claim 3.3.19. Suppose that α ≤ β < β′, F (α, β) = F (α, β′) and if we denote the latter set
by F , ρ0β ↾ F = ρ0β′ ↾ F . Then

ρ0β ↾ α = ρ0β′ ↾ α.

Proof. Suppose that ζ < α and let ξ = min(F \ ζ). Then

ρ0(ζ, β) = ρ0(ξ, β)
⌢ρ0(ζ, ξ) (3.3.1)

= ρ0(ξ, β
′)⌢ρ0(ζ, ξ) (3.3.2)

= ρ0(ζ, β
′). (3.3.3)

Indeed, we just applied Claim 3.3.16 twice. That is, ρ0β ↾ α = ρ0β′ ↾ α. □

Since there are only countably many choices for the finite set F (from [α + 1]<ω) and
the restriction ρ0β ↾ F , the αth level in T (ρ0) must be countable. In turn, we proved that
T (ρ0) is an Aronszajn tree.

⊠

The simplified lower trace also satisfies the following triangle inequality which is useful
in many applications.

Claim 3.3.20. If ζ < α < β then F (ζ, α) ⊂ F (ζ, β) ∪ F (α, β).

We omit the proof for now.

Now, we would actually like to prove that T (ρ0) is special. First, the set ω<ω can be
regarded as a copy of the rationals. More precisely, define the right lexicographic ordering
<ℓ on ω<ω as follows: s <ℓ t if s ⊇ t or s(j) < t(j) for the minimal j so that s(j) ̸= t(j).

Now, ∅ is the <ℓ-largest element of ω<ω and for any s ∈ ω<ω, the sequence of successors
(s⌢ < n >)n∈ω will be a <ℓ-increasing sequence that converges to s. In turn,

(ω<ω, <ℓ) ∼= (0, 1] ∩Q

with the usual order. Following [47], and for notational simplicity, we shall denote this set
by Qr.

Now, we prove that all the fibers of ρ0 define monotone increasing maps into Qr.

Claim 3.3.21. For any β < ω1, ρ0β : β → ω<ω is monotone increasing.

Proof. Let α < α′ < β. If ρ0(α, β) ⊇ ρ0(α
′, β) then ρ0(α, β) <ℓ ρ0(α

′, β) as desired.
Let (βi)i<n and (β′

i)i<n′ denote the trace for the two walks from β to α and α′. If j is
the first place where ρ0(α, β) and ρ0(α

′, β) differ then βj = β′
j and but βj+1 < α′. In turn,

ρ0(α, β)(j) = |Cβj
∩ α|< |Cβj

∩ α′|= |Cβ′
j
∩ α′|= ρ0(α

′, β)(j).

So ρ0(α, β) <ℓ ρ0(α
′, β). □

Let us also show that T (ρ0) does not branch at limit levels, which follows from the next
claim.

Claim 3.3.22. For any β < β′, {ξ < β : ρ0(ξ, β) = ρ0(ξ, β
′)} is closed in β.

41



Proof. Suppose that δ is an accumulation point of E = {ξ < β : ρ0(ξ, β) = ρ0(ξ, β
′)}.

So, we can pick ξ ∈ E ∩ δ which is larger than both λ(δ, β) and λ(δ, β′). Now ρ0(ξ, β) =
ρ0(δ, β)

⌢ρ0(ξ, δ) and ρ0(ξ, β
′) = ρ0(δ, β

′)⌢ρ0(ξ, δ). Since ρ0(ξ, β) = ρ0(ξ, β
′) we must have

ρ0(δ, β) = ρ0(δ, β
′) as well. So δ ∈ E, as desired.

□

It clearly follows now that if ρ0β ↾ α = ρ0β′ ↾ α then ρ0β(α) = ρ0β′(α) and so ρ0β ↾
α+ 1 = ρ0β′ ↾ α+ 1. Also, note that for any limit α,

ρ0β(α) = sup
<ℓ

ρ0β ↾ α.

Indeed, if ξ is the n+1st element of Cα then ρ0(ξ, β) = ρ0(α, β)
⌢⟨n⟩ and the latter sequence

increasingly converges to ρ0(α, β).

Corollary 3.3.23. T (ρ0) is special.

Proof. We can define a monotone map f from T (ρ0) to Qr as follows: if t ∈ T (ρ0) of level
α and t is terminal then let f(t) = 1. If t is not terminal then pick any β > α so that
t = ρ0β ↾ α and let f(t) = ρβ(α). Claim 3.3.22 shows that f(t) is well defined (it does
not matter which β we choose, we get the same value). Now, suppose that t < t′ are non
terminal nodes and let f(t) = ρ0β(α) and f(t) = ρ0β′(α′). We can assume that β = β′ and
so f(t) < f(t′) by Claim 3.3.21.

⊠

3.4 Countryman lines
Look at the tree T (ρ0) which consists of functions from a countable ordinal to ω<ω i.e., well
ordered sequences from Qr. The latter set is linearly ordered by the right lexicographical
order <ℓ. So, we can repeat the lexicographic construction and turn the tree T (ρ0) itself
into a linear order: let s <ℓ t if s ⊃ t or s(δ) <ℓ t(δ) in ωω for δ = min{ξ : s(ξ) ̸= t(ξ)}. We
shall denote the set {ρ0β : β < ω1} with this lexicographic linear order by C(ρ0).

Finally, we arrived at the main result of this chapter. Note that for any linear order L, L2

can be regarded as a partial order: (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′. To see an example,
consider L = R with the usual order. Looking at the poset L2 with this coordinate-wise
order, we see that {(x, x) : x ∈ R} is an uncountable chain and {(x,−x) : x ∈ R} is an
uncountable antichain; indeed if x < x′ then −x′ < −x so no two elements of the latter set
are comparable.

Theorem 3.4.1. C(ρ0) is a Countryman-line i.e., the square of C(ρ0) is the union of
countably many chains.

It is quite surprising such objects can exist: the only trivial chains we see in the square
are the diagonal and the horizontal/vertical lines which do not really help a countable cover.
Yet somehow, the square can be covered by countably many chains. Let us also point out
two further facts (without a proof at this point):

• Any Countryman line is necessarily an Aronszajn line i.e., has no uncountable real
suborder or copy of ±ω1.
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• If C is Countryman then C and −C have no common uncountable suborder.

Note that if C is a Countryman line then so does −C.

Proof of Theorem 3.4.1. First of all, C = C(ρ0) can be regarded as a linear order on ω1 by
the map α 7→ ρ0α. To show that C2 is the union of countably many chains, we need to
assign an invariant σ(α, β) to all pairs α < β ∈ ω1 so that

1. all the invariants come from a fixed countable set, and

2. pairs with the same invariant are comparable in C2: if σ(α, β) = σ(α′, β′) then

ρ0α <ℓ ρ0α′ ⇔ ρ0β <ℓ ρ0β′ .

The above will achieve that {(α, β) : α < β ∈ ω1} is the union of countably many chains (the
part of C2 above the diagonal). The latter set is order isomorphic to {(β, α) : α < β ∈ ω1}
(the lower half of C2) so its the union of countably many chains as well. All that is left of
C2 is the diagonal {(α, α) : α ∈ ω1} which is clearly a chain.

Following this plan (and keeping in mind the proof of T (ρ0) being Aronszajn), σ will
record the behaviour of ρ0α and ρ0β on the finite set F (α, β) i.e., σ = σ(α, β) is defined to
be

(i) a finite sequence of pairs form ω<ω,

(ii) the length of σ is n = |F (α, β)|,

(iii) if i < n and ξ is the ith element of F (α, β) then

σ(i) = (ρ0(ξ, α), ρ0(ξ, β)).

Now, assume that σ(α, β) = σ(α′, β′) with common value σ. Let n denote the common
size of F = F (α, β) and F ′ = F (α′, β′) and let {ξi : i < n} and {ξ′i : i < n} be their
increasing enumeration. Assume that j is minimal so that ξj ̸= ξ′j and we shall assume that
ξj < ξ′j (we did not assume anything about the ordering between α, β and α′, β′ so we do
not loose any generality by assuming ξj < ξ′j here). Recall that

ρ0α(ξi) = ρ0α′(ξ′i) and ρ0β(ξi) = ρ0β′(ξ′i)

for all i < n (by our assumption on the invariant σ).
The bulk of proving the theorem is in the following claim.

Claim 3.4.2. ∆(α, α′) = ∆(β, β′) and this common value falls between ξj−1 = ξ′j−1 and ξj.

Proof. First, lets walk from α′ to ξj . Using that ξ′j = minF ′ \ ξj ,

ρ0(ξj , α
′) = ρ0(ξ

′
j , α

′)⌢ρ0(ξj , ξ′j) (3.4.1)
= σ(j)(0)⌢ρ0(ξj , ξ′j) (3.4.2)
= ρ0(ξj , α)

⌢ρ0(ξj , ξ′j) ̸= ρ0(ξj , α). (3.4.3)

So ∆(α, α′) ≤ ξj .
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Similarly, now walking from β′ to ξj we see that

ρ0(ξj , β
′) = ρ0(ξ

′
j , β

′)⌢ρ0(ξj , ξ′j) (3.4.4)
= σ(j)(1)⌢ρ0(ξj , ξ′j) (3.4.5)
= ρ0(ξj , β)

⌢ρ0(ξj , ξ′j) ̸= ρ0(ξj , β). (3.4.6)

So ∆(β, β′) ≤ ξj .
On the other hand, if ζ ≤ ξj−1 = ξ′j−1 the there is some k < j so that

ξk−1 = ξ′k−1 < ζ ≤ ξk = ξ′k.

Note that
minF \ ζ = ξk = ξ′k = minF ′ \ ζ

so, walking from α to ζ, the full code is

ρ0(ζ, α) = ρ0(ξk, α)
⌢ρ0(ζ, ξk) (3.4.7)

= σ(k)(0)⌢ρ0(ζ, ξk) (3.4.8)
= ρ0(ξ

′
k, α

′)⌢ρ0(ζ, ξ′k) (3.4.9)
= ρ0(ζ, α

′). (3.4.10)

In turn, ∆(α, α′) ≥ ξj−1.
Similarly for β,

ρ0(ζ, β) = ρ0(ξk, β)
⌢ρ0(ζ, ξk) (3.4.11)

= σ(k)(1)⌢ρ0(ζ, ξk) (3.4.12)
= ρ0(ξ

′
k, β

′)⌢ρ0(ζ, ξ′k) (3.4.13)
= ρ0(ζ, β

′). (3.4.14)

In turn, ∆(β, β′) ≥ ξj−1.
So let δ1 = ∆(α, α′) and let δ2 = ∆(β, β′). We proved already that δ1, δ2 ∈ (ξj−1, ξj ].

Note that the walks from α to δ1 and α′ to δ1 give different full codes i.e.,

ρ0(ξj , α)
⌢ρ0(δ1, ξj) = ρ0(δ1, α) (3.4.15)

̸= ρ0(δ1, α
′) = ρ0(ξ

′
j , α

′)⌢ρ0(δ1, ξ′j) (3.4.16)

Both sequences start out with σ(j)(0), so it must be that ρ0(δ1, ξj) ̸= ρ0(δ1, ξ
′
j). This in

turn, implies that if we walk from β and β′ to δ1 then

ρ0(δ1, β) = ρ0(ξj , β)
⌢ρ0(δ1, ξj) (3.4.17)

̸= ρ0(ξ
′
j , β

′)⌢ρ0(δ1, ξ′j) = ρ0(δ1, β
′). (3.4.18)

This shows that δ2 ≤ δ1 since ρ0β and ρ0β′ already differ on δ1. A symmetrical argument
proves that δ1 ≤ δ2 (first walk from β, β′ to δ2 to see that ρ0(δ2, ξj) ̸= ρ0(δ2, ξ

′
j) which in

turn, will imply that ρ0α(δ2) ̸= ρ0α′(δ2)). So, we showed that δ1 = δ2, as desired.
□
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Let δ denote this common value ∆(α, α′) = ∆(β, β′). Looking at the walks to δ and
applying the Main Claim 3.3.16, we see that

ρ0(δ, α) = ρ0(ξj , α)
⌢ρ0(δ, ξj) (3.4.19)

= σ(j)(0)⌢ρ0(δ, ξj) (3.4.20)

and

ρ0(δ, α
′) = ρ0(ξ

′
j , α

′)⌢ρ0(δ, ξ′j) (3.4.21)
= σ(j)(0)⌢ρ0(δ, ξ′j). (3.4.22)

So, if we know that the relation <ℓ between ρ0α and ρ0α′ is decided on the final segments
after σ(j)(0) i.e.,

ρ0(δ, α) <ℓ ρ0(δ, α
′) ⇔ ρ0(δ, ξj) <ℓ ρ0(δ, ξ

′
j). (3.4.23)

Similarly, looking at β, β′ instead of α, α′,

ρ0(δ, β) = ρ0(ξj , β)
⌢ρ0(δ, ξj) (3.4.24)

= σ(j)(1)⌢ρ0(δ, ξj) (3.4.25)

and

ρ0(δ, β
′) = ρ0(ξ

′
j , β

′)⌢ρ0(δ, ξ′j) (3.4.26)
= σ(j)(1)⌢ρ0(δ, ξ′j). (3.4.27)

Since ρ0(δ, β) and ρ0(δ, β
′) have the common initial segment σ(j)(1), their lexicographic

relation is decided by the relation between ρ0(δ, ξj) and ρ0(δ, ξ
′
j). That is,

ρ0(δ, β) <ℓ ρ0(δ, β
′) ⇔ ρ0(δ, ξj) <ℓ ρ0(δ, ξ

′
j). (3.4.28)

Combining the above, we see that

ρ0(δ, α) <ℓ ρ0(δ, α
′) ⇔ ρ0(δ, β) <ℓ ρ0(δ, β

′) (3.4.29)

as desired.
⊠

Finally, instead of (ρ0β)β∈ω1
(which was 1-1 but not necessarily coherent), one can use

any coherent sequence of finite-to-one maps to get Countryman lines [47].

Theorem 3.4.3. Suppose that aα : α → ω is finite-to-one and aα =∗ aβ ↾ α for all
α < β < ω1. Then (T (a), <ℓ) is a Countryman line.

As before, the proof depends on defining an adequate variant of the simplified lower
trace now based on the coherent sequence. Let us emphasize again that ρ0 is not necessarily
coherent so the above result on C(ρ0) is independent of this latter theorem.
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Exercises and problems

Exercise 3.4.4. Suppose that P is a partial order and any antichain in P has finite size at
most k. Show that P is the union of at most k chains given that all its finite subsets satisfy
this property.

Let L be a Countryman line i.e., a linear order which is uncountable but L2 is the union
of countably many chains (partially ordered by the coordinate-wise order). Without knowing
whether such things could exist, let’s prove a few things.

Exercise 3.4.5. Show that L has no uncountable well-ordered or reverse well-ordered subset.

Problem 3.4.6. Show that L has no uncountable suborder isomorphic to a set of reals.

Problem 3.4.7. Show that L and its reverse −L has no common uncountable suborder.

The maximal weight is an important characteristic of minimal walks: define

ρ1 : [ω1]
2 → ω

by
ρ1(α, β) = max{|Cξ ∩ α|: ξ ∈ Tr(α, β)}.

In other words, ρ1(α, β) = max ρ0(α, β).

Problem 3.4.8 (Finite-to-one property). Show that for any β < ω1 and n < ω, the set

{α < β : ρ1(α, β) ≤ n}

is finite.

Problem 3.4.9 (Coherence of max. weight). Show that for any α < β < ω1, the set

{ξ < α : ρ1(ξ, β) ̸= ρ1(ξ, α)}

is finite.

The number of steps is another characteristic of minimal walks: define

ρ2 : [ω1]
2 → ω

by
ρ2(α, β) = |Tr(α, β)|−1.

Problem 3.4.10 (Semi-coherence of number of steps). Show that for any α < β < ω1,

sup
ξ<α

|ρ2(ξ, β)− ρ2(ξ, α)|< ∞.
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3.4.1 The basis problem for uncountable linear orders
Recall that any infinite linear order contains a copy of ω or its reverse. In other words, the
class of infinite linear orders has a 2-element basis. In this section, we focus on the class of
uncountable linear orders and analyse if there is a small basis i.e., is there a small set B of
uncountable linear orders so that any uncountable linear order L will embed some element
of B. There is always a basis of size 2ℵ1 but can we do better?

First, let’s find a lower bound for the size of a basis. We say that two uncountable linear
orders L,K are orthogonal if they have no common uncountable linear orders. For example,
ω1 and −ω1 are orthogonal or C and −C for any Countryman line C. Recall that Aronszajn
lines by definition are linear orders which are orthogonal both to ±ω1 and R.

So, there are three groups of pairwise orthogonal uncountable linear orders:

1. the two-element class of ω1 and −ω1,

2. subsets of R, and

3. Aronszajn lines.

In principle, R can have a 1-element basis but we need at least 2 orders from the Aron-
szajn lines (because a Countryman line and its reverse are orthogonal). So any basis must
have at least 5 elements.

We shall see that under certain assumptions (like the Proper Forcing Axiom or PFA, in
short) this is possible and there is indeed a 5-element basis to all uncountable linear orders.
On the under hand, under CH, there is no basis of size < 2ℵ1 even for the real suborders.

Models of PFA

The first clue that a small basis is conceivable was Baumgartner’s following theorem from
1973.

Theorem 3.4.11. [5] Under PFA, any two ℵ1-dense sets of reals are isomorphic.5

This implies that any set of reals of size ℵ1 forms a 1-element basis for uncountable
separable orders. The above theorem can be achieved by ccc forcing over a model of CH as
well, so no large cardinals are required for this result. However, the proof of this theorem is
far from standard and makes an elaborate and ingenious use of elementary submodels. The
naive forcing that approximates an order isomorphism by finite conditions easily fails to be
ccc. So one needs to space out these approximations (by elementary submodels) to allow
the amalgamation arguments to work.

It was later proved that MAℵ1 does not suffice to deduce the above result [2].

After the discovery of Countryman lines, it was a long standing open problem of Shelah
if the Aronszajn orders can have a 2-element basis. First, Todorcevic proved that already
under MAℵ1 , the Countryman line C(ρ0) is very special.

Theorem 3.4.12. Under MAℵ1
, any Countryman line embeds a copy of C(ρ0) or its re-

verse.
5ℵ1-dense means that any non-empty interval has size ℵ1.
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So Countryman lines, which are certain special Aronszajn lines, have a 2-element basis
(under MAℵ1

). How about other Aronszajn lines? Well, it turns out that consistently, any
Aronszajn order must contain a Countryman suborder and in fact a copy of C(ρ0) or its
reverse. Indeed, Shelah’s problem was resolved by Justin Moore in 2006 and in turn, he
proved the consistency of the 5-element basis.

Theorem 3.4.13. [34] Assume PFA. If X is any set of reals of size ℵ1 and C is a Coun-
tryman line then {±ω1,±C,X} forms a 5-element basis for uncountable linear orders.

It is not known if the large cardinal assumption hidden in PFA can be removed from the
consistency of the 5-element basis result. It is known that a Mahlo cardinal suffices though.

Moore’s proof hinges on an interesting combinatorial lemma about Aronszajn trees.

Theorem 3.4.14. Suppose PFA. Then there is an Aronszajn tree T so that for any K ⊂ T ,
there is an uncountable antichain A ⊂ T so that either ∧(A) ⊂ K or ∧(A) ∩K = ∅.

Here, the tree T consist of functions from countable ordinals to ω and for s, t ∈ T , s ∧ t
is their longest common initial part. The notation ∧(A) stands for {s∧ t : s ̸= t ∈ A}. Very
roughly, the theorem says that in this particular Aronszajn tree, we have a weak measure
over arbitrary subsets.

Models of CH

Under CH, one can construct many orthogonal linear orders:

1. [38, Sierpinski, 1932] there are 2ℵ1 many pairwise orthogonal suborders of the reals;

2. [1, Abraham-Shelah, 1985] there are 2ℵ1 many pairwise orthogonal Aronszajn lines.

In fact, the former result essentially follows from the first theorem we proved in the class
about rigid suborders while the Abraham-Shelah result is somewhat more involved. In any
case, there is no chance of finding a small basis by any reasonable measure under CH.

Minimal linear orders

If you have a basis for the uncountable linear orders consisting of pairwise orthogonal ele-
ments then they must all be minimal i.e., they embed into all their uncountable suborders.

For example, ω and −ω are the only countably infinite minimal linear orders. Similarly,
regardless of the set theoretic axioms, ±ω1 are always minimal. Under PFA, by Baum-
gartner’s result, any ℵ1-dense set of reals is minimal. Similarly, Countryman lines are also
minimal under PFA.

Under CH, however, no uncountable set of reals is minimal. Moreover, J. Moore proved
that there are models of CH where the only uncountable minimal orders are ±ω1 [33].
His argument splits into two parts: characterizing minimal Aronszajn orders using ladder
system uniformization on trees and then iterating a non-trivial set of forcings to uniformize
certain colourings while preserving CH. Such arguments appeared in a very different setting
in Shelah’s work on the Whitehead problem.

48



The basis problem for uncountable topological spaces

It is an easy exercise to show that any infinite, Hausdorff topological space embeds D(ω),
the countably infinite discrete space. So we have a 1-element basis for all infinite topological
spaces. How about uncountable spaces? We need to restrict our attention to hope for a
reasonable solution but not much as the following beautiful problem of G. Gruenhage is still
open.

Problem 3.4.15. [16] Is it consistent that any uncountable, first-countable and regular
space contains either a copy of D(ω1), a fixed subset of R or a fixed subset of the Sorgenfrey
line.

That is, can we have a 3-element basis for uncountable, first-countable regular spaces?
Recall that the Sorgenfrey line is the topology on R generated by the half open intervals (a, b]
for a < b ∈ R. Again, PFA (or Martin’s Maximum, a strengthening of PFA) is a reasonable
candidate to settle this problem. The assumption of first-countability cannot be dropped as
Moore’s L-space construction gives 2ℵ1 -many pairwise orthogonal (0-dimensional, Hausdorff)
topological spaces [32].

Exercises and problems

Exercise 3.4.16. Suppose that X ⊂ R has size ℵ1. Show that there is a countable A ⊂ X
so that X \A is ℵ1-dense.

Exercise 3.4.17. Suppose that L is a linear order so that L and −L has no common infinite
suborder. Prove that either L or −L is well ordered.

Exercise 3.4.18. Prove that a Countryman line L cannot be ccc i.e., there must be an
uncountable collection of pairwise disjoint non-empty intervals in L.

Problem 3.4.19. Show that for any cardinal κ, there is a linear order of size κ which has
more than κ initial segments.

Problem 3.4.20. Use the Continuum Hypothesis e.g., 2ℵ0 = ℵ1 to construct a universal
linear order L of size ℵ1 inside (ωω, <∗). That is, L has size ℵ1 and embeds any linear order
of size ℵ1.

We use the usual notation from the lectures regarding minimal walks along a C-sequence
on ω1.

Exercise 3.4.21. Prove that for any α < β, max(F (α, β) ∩ α) = λ(α, β).

Problem 3.4.22. Prove that for any ζ < α < β, F (ζ, α) ⊂ F (ζ, β) ∪ F (α, β).

Finally, some questions about partial orders.
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Problem 3.4.23. Let P be a partial order and let σP denote the set of well-ordered subsets
of P ordered by end-extension. Show that there is no strictly increasing map from σP to P .

Problem 3.4.24. Show that there is a poset of size c in which every chain and anti-chain
is countable

Problem 3.4.25. Assume that S, T ⊂ ω1 so that S \T is stationary. Let σS and σT denote
the set of closed subsets of S and T , respectively. Prove that there is no embedding of σS
into σT .

Problem 3.4.26. Using the previous problem, show that there are 2ℵ1-many pairwise non-
embedable partial orders of size c.
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Chapter 4

Construction schemes

In this chapter, we review various ideas to construct a large object by one small piece or local
approximation at a time. First, we look at a recent technique using finite approximations;
as the simplest demonstration, we use this method to construct a coherent sequence of 1-1
maps. Then we shall see two other techniques (Davies trees and Kurepa families) that use
countable approximating sets. Finally, we look at a new version of the Davies tree technique
which uses countably closed elementary models of size continuum. We will re-prove some
of the results about almost disjoint families and give a simple proof of a deep topological
Ramsey result of. W. Weiss [49]: consistently, any Hausdorff space X has a colouring f
with c colours so that f [C] = c on all copies C of the Cantor set in X.

4.1 Finite approximations
The first tool we review is a new technique due to S. Todorcevic [48] and we follow the ex-
position by F. Lopez [29]. This is a general framework for building combinatorial structures
on ω1 by gluing together larger and larger finite pieces each resembling the final object. The
arguments will be similar to classical ccc forcing arguments that use finite conditions and
amalgamations of ∆-systems.

4.1.1 Todorcevic’s construction scheme
A construction scheme on ω1 is a family F ⊂ [ω1]

<ω with the following properties:

1. F is cofinal i.e., for any finite E ⊂ ω1 there is F ∈ F so that E ⊂ F ;

2. F =
∪

k<ω Fk so that |F |= mk for all F ∈ Fk and m0 = 1;

3. if E,F ∈ Fk then E ∩ F ⊑ E,F ;

4. for any F ∈ Fk with k ≥ 1 there is a unique decomposition F =
∪

i<nk
Fi so that

(a) Fi ∈ Fk−1,
(b) there is an R(F ) of size rk so that (Fi)i<nk

forms an increasing ∆-system with
root R(F ):

R(F ) < F0 \R(F ) < F1 \R(F ) < · · · < Fnk−1
\R(F ).

51



The latter is called the canonical decomposition of F . Note that we must have

mk = rk + nk(mk−1 − rk)

for all k < ω. We call the sequences m̄, n̄, r̄ the type of the construction scheme.

Construction schemes can be used to build various gaps, trees and topological and Banach
spaces. Moreover, they exist in ZFC.

Theorem 4.1.1. [48] For any type m̄, n̄, r̄ that satisfies mk = rk + nk(mk−1 − rk), there is
a construction scheme F of that type.

We will not prove this theorem but continue with some basic properties of construction
schemes and a simple application.

First, let’s try to understand better how these finite sets interact.

Lemma 4.1.2. If F ∈ Fk, E ∈ Fl and l ≤ k then E ∩ F ⊑ E.

Proof. This is a double induction first on k and then on l. For l = k, the claim always holds
by the definition of construction schemes; similarly, for l = 0 we have nothing to prove. Now,
assume F =

∪
Fi ∈ Fk and E ∈ Fl with l < k. We know by induction that E ∩ Fi ⊑ E

for all i < nk. So there could be at most one i < nk so that E ∩ Fi \ R(F ) ̸= ∅. In turn,
E ∩ Fi ⊑ E as desired.

Corollary 4.1.3. Suppose that F ∈ Fk, E ∈ Fl and F has canonical decomposition ∪Fi.

1. If E ⊂ F and l < k then E ⊂ Fi for some i < nk; if l = k − 1 then E = Fi.

2. If k = l and φE,F : E → F is the unique order preserving map from E to F then
φE,F (F ↾ E) = F ↾ F .

Here, F ↾ E = {K ∈ F : K ⊆ E}. So the finite structures (E,F ↾ E,<) and (F,F ↾
F,<) are isomorphic.

4.1.2 Coherent maps from construction schemes
Our goal is to demonstrate this method very briefly without getting too technical. So we
construct something that we are familiar with already: a coherent sequence ρα : α → ω of
1-1 maps.

The idea is that each infinite map ρα : α → ω will be approximated by finite 1-1 maps

ρFα : F ∩ α → Nk

where α ∈ F ∈ Fk. In the end, we would like to take

ρα =
∪

α∈F∈F
ρFα .

In order for this to work, we assume the following:

1. If F ∈ Fk, E ∈ Fl and l < k then
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(a) ρFα ↾ E = ρEα ,
(b) if β ∈ F and ξ < α < β so that ρFα (ξ) ̸= ρEα (ξ) then ξ ∈ E.

2. If E,F ∈ Fk and β = φEF (α) then

ρEα = ρFβ ◦ φEF .

Let’s prove first that such a collection of finite maps gives the desired (ρα) sequence.
First, why is ρα =

∪
α∈F∈F ρFα well defined? Assume that F ∈ Fk, E ∈ Fl with l ≤ k and

ξ < α ∈ E ∩ F . Find E′ ⊃ E so that E′ ∈ Fk as well. Now, φE′F must fix both α and ξ so
ρEα (ξ) = ρE

′

α (ξ) = ρFα (ξ).
Each ρα must be 1-1 since it is the union of 1-1 maps. Moreover, F is cofinal so dom ρα =

α. Finally, suppose that there is an infinite ξ0 < ξ1 < . . . below α < β so that ρα(ξn) ̸=
ρβ(ξn) for all n < ω. Find some E ∈ F so that α, β ∈ E and some ξN not in E. There
is a larger F ⊇ E so that ξN ∈ F already. But now ρFα (ξN ) ̸= ρFβ (ξN ) but ξN /∈ E, a
contradiction to our construction.

So we are left to prove that the finite approximations (ρFα )α∈F∈F exist. We’ll do this
by induction on Fk. Since each F ∈ F0 is a singleton, the maps ρFα must be empty simply.
Now assume that (ρFα )α∈F∈Fk−1

are all constructed and take some F ∈ Fk with canonical
decomposition

∪
Fi.

If α ∈ Fj then on one hand, we need that ρFα ↾ Fj = ρ
Fj
α . How do we extend this to

F ∩ α? We need to define ρFα (ξ) for ξ ∈ Fi \R(F ) for i < j. We simply set

ρFα (ξ) = Nk−1 + |F ∩ ξ|.

So, Nk = Nk−1+ |F |. First, note that ρFα will be clearly 1-1. Moreover, if α ∈ Fi, β ∈ Fj

for i < j then ρFα (ξ) ̸= ρFβ (ξ) implies that ξ ∈ Fi. It follows that all our properties are
preserved.

4.1.3 Capturing construction schemes
Using some additional assumptions, one can have construction schemes with some additional
properties that allow much control over arbitrary uncountable subsets of the limit structures.

We say that a construction scheme F is n-capturing if for any uncountable ∆-system
(sξ)ξ<ω1

of finite subsets of ω1 with root s, there is ξ0 < · · · < ξn−1 ∈ ω1 and an F = ∪Fi ∈ F
so that s ⊂ R(F ), sξi \ s ⊂ Fi \R(F ) and

φFiFj
(si) = sj .

A construction scheme is capturing if it is n-capturing for all n < ω.

Theorem 4.1.4. If there is a 3-capturing construction scheme then there is a Suslin-tree.

In particular, MAℵ1
is not consistent with capturing construction schemes.

Theorem 4.1.5. If ℵ1 Cohen reals are added to any model or if ♢ holds then there are
capturing construction schemes.

It is known that CH is not necessarily enough to imply the existence of capturing con-
struction schemes. Finally, we mention that capturing can be used to construct Banach
spaces with very tight control over their biorthogonal systems. Let us also remark that
capturing construction schemes are related to Velleman’s theory of simplified morasses.
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4.2 Countable approximations
Solutions to combinatorial problems often follow the same head-on approach: enumerate
certain objectives and then inductively meet these goals. Imagine that you are asked to
color the points of a topological space with red and blue so that both colors appear on any
copy of the Cantor-space in X. So, one lists the Cantor-subspaces and inductively declares
one point red and one point blue from each; this idea, due to Berstein, works perfectly if X
is small i.e. size at most the continuum. However, for larger spaces, we might run into the
following problem: after continuum many steps, we could have accidentally covered some
Cantor-subspace with red points only. So, how can we avoid such a roadblock?

The methods to meet the goals in the above simple solution scheme vary from prob-
lem to problem, however the techniques for finding the right enumeration of infinitely or
uncountably many objectives frequently involve the same idea. In particular, a recurring
feature is to write our set of objectives X as a union of smaller pieces ⟨Xα : α < κ⟩ so that
each Xα resembles the original structure X . This is what we refer to as a filtration. In
various situations, we need the filtration to consist of countable sets; in others, we require
that Xα ⊆ Xβ for α < β < κ. In the modern literature, the sequence ⟨Xα : α < κ⟩ is
more than often defined by intersecting X with an increasing chain of countable elementary
submodels; in turn, elementarity allows properties of X to reflect.

The introduction of elementary submodels to solving combinatorial problems was truly
revolutionary. It provided deeper insight and simplified proofs to otherwise technical results.
Nonetheless, note that any set X which is covered by an increasing family of countable sets
must have size at most ℵ1, a rather serious limitation even when considering problems arising
from the reals. Indeed, this is one of the reasons that the assumption 2ℵ0 = ℵ1, i.e. the
Continuum Hypothesis, is so ubiquitous when dealing with uncountable structures.

On the other hand, several results which seemingly require the use of CH can actually be
proved without any extra assumptions. So now the question is, how can we define reasonable
filtrations by countable sets to cover structures of size bigger than ℵ1? It turns out that one
can relax the assumption of the filtration being increasing in a way which still allows many
of our usual arguments for chains to go through. This is done by using a tree of elementary
submodels rather than chains, an idea which we believe originally appeared in a paper of R.
O. Davies [6] in the 1960s.

4.2.1 Trees of countable elementary submodels
The simple idea is that we can always cover a structure of size κ with a continuous chain
of elementary submodels of size < κ so lets see what happens if we repeat this process
and cover each elementary submodel again with chains of smaller submodels, and those
submodels with chains of even smaller submodels and so on . . . The following result is a
simple version of [31, Lemma 3.17]:

Theorem 4.2.1. Suppose that κ is cardinal, x is a set. Then there is a large enough cardinal
θ and a sequence of ⟨Mα : α < κ⟩ of elementary submodels of H(θ) so that

(I) |Mα|= ω and x ∈ Mα for all α < κ,

(II) κ ⊂
∪

α<κ Mα, and
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(III) for every β < κ there is mβ ∈ N and models Nβ,j ≺ H(θ) such that x ∈ Nβ,j for
j < mβ and ∪

{Mα : α < β} =
∪

{Nβ,j : j < mβ}.

We will refer to such a sequence of models as a Davies-tree for κ over x in the future
(and we will see shortly why they are called trees). The cardinal κ will denote the size of
the structures that we deal with (e.g. the size of R2) while the set x contains the objects
relevant to the particular situation (e.g. a set of lines).

Note that if the sequence ⟨Mα : α < κ⟩ is increasing then
∪
{Mα : α < β} is also an

elementary submodel of H(θ) for each β < κ; as we said already, there is no way to cover
a set of size bigger than ω1 with an increasing chain of countable sets. Theorem 4.2.1 says
that we can cover by countable elementary submodels and almost maintain the property
that the initial segments

∪
{Mα : α < β} are submodels. Indeed, each initial segment is the

union of finitely many submodels by condition (3) while these models still contain everything
relevant (denoted by x above) as well.

Proof of Theorem 4.2.1. Let θ be large enough so that κ, x ∈ H(θ). We recursively construct
a tree T of finite sequences of ordinals and elementary submodels M(a) for a ∈ T . Let ∅ ∈ T
and let M(∅) be an elementary submodel of size κ so that

• x ∈ M(∅),

• κ ⊂ M(∅).

Suppose that we defined a tree T ′ and corresponding models M(a) for a ∈ T ′. Fix a ∈ T ′

and suppose that M(a) is uncountable. Find a continuous, increasing sequence of elementary
submodels ⟨M(a⌢ξ)⟩ξ<ζ so that

• x ∈ M(a⌢ξ) for all ξ < ζ,

• M(a⌢ξ) has size strictly less than M(a), and

• M(a) =
∪
{M(a⌢ξ) : ξ < ζ}.

We extend T ′ with {a⌢ξ : ξ < ζ} and iterate this procedure to get T .

M(∅)

M(0) M(1) . . . M(α) . . . M(β) . . .

M(α⌢0) M(α⌢1) . . . M(α⌢γ) . . .

It is easy to see that this process produces a downwards closed subtree T of Ord<ω and
if a ∈ T is a terminal node then M(a) is countable. Let us well order {M(a) : a ∈ T is a
terminal node} by the lexicographical ordering <lex.

First, note that the order type of <lex is κ since {M(a) : a ∈ T is a terminal node} has
size κ and each M(a) has < κ many <lex-predecessors.

55



We wish to show that if b ∈ T is terminal then
∪
{M(a) : a<lexb, a ∈ T is a terminal

node} is the union of finitely many submodels containing x. Suppose that |b|= m ∈ N and
write

Nb,j =
∪

{M((b ↾ j − 1)⌢ξ) : ξ < b(j − 1)}

for j = 1 . . .m. It is clear that Nb,j is an elementary submodel as a union of an increasing
chain. Also, if a<lexb then M(a) ⊂ Nb,j must hold where j = min{i ≤ n : a(i) ̸= b(i)}. So∪

{M(a) : a <lex b is terminal} =
∪

{Nb,j : j < m}

as desired.

Remarks. Note that this proof shows that if κ = ℵn then every initial segment in the
lexicographical ordering is the union of n elementary submodels (the tree T has height n).

In the future, when working with a sequence of elementary submodels ⟨Mα : α < κ⟩, we
use the notation

M<β =
∪

{Mα : α < β}

for β < κ.

4.2.2 Paradoxical covers of the plane
Theorem 4.2.2. R2 can be covered by countably many rotated graphs of functions.

Proof. Fix distinct lines ℓi for i < ω through the origin. As before, our goal is to find sets
Ai so that R2 =

∪
{Ai : i < ω} and if ℓ ⊥ ℓi then |Ai ∩ ℓ|≤ 1.

Let κ = c and take a Davies-tree ⟨Mα : α < κ⟩ for κ over {κ,R2, r, ℓi : i < ω} where
r : κ → R2 is onto. So, if ξ ∈ κ ∩Mα then r(ξ) ∈ R2 ∩Mα. In turn, R2 ⊆

∪
{Mα : α < κ}.

By induction on β < κ, we will distribute the points in R2 ∩ M<β among the sets Ai

while making sure that if ℓ ⊥ ℓi then |Ai ∩ ℓ|≤ 1. In a general step, we list the countable
set R2 ∩Mβ \M<β as {tn : n < ω}. Suppose we were able to put tk into Aik for k < n and
we consider tn.

Recall that M<β can be written as
∪
{Nβ,j : j < mβ} for some finite mβ where each

Nβ,j is an elementary submodel containing {κ,R2, r, ℓi : i < ω}. In turn, R2 ∩M<β is the
union of mβ many sets which are closed under constructibility using the lines {ℓi : i < ω}.
This means that there could be at most mβ many i ∈ ω \ {ik : k < n} which is bad for tn
i.e. such i so that the line ℓ(tn, i) through tn which is perpendicular to ℓi already meets Ai.
Indeed, otherwise we can find a single j < mβ and i ̸= i′ ∈ ω \ {ik : k < n} so that the line
ℓ(tn, i) meets Ai ∩Nβ,j already and ℓ(tn, i

′) meets Ai′ ∩Nβ,j already. However, this means
that tn is constructible from R2∩Nβ,j so tn ∈ Nβ,j as well. This contradicts tn ∈ Mβ \M<β .

So select any in ∈ ω \ {ik : k < n} which is not bad for tn and put tn into Ain . This
finishes the induction and hence the proof of the theorem.

The next application, similarly to Davies’ result, produces a covering of the plane with
small sets. However, this argument makes crucial use of the fact that a set of size ℵm (for
m ∈ N) can be covered by a Davies-tree such that the initial segments are expressed as the
union of m elementary submodels.
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Definition 4.2.3. We say that A ⊂ R2 is a cloud around a point a ∈ R2 iff every line ℓ
through a intersects A in a finite set.

Note that one or two clouds cannot cover the plane; indeed, if Ai is a cloud around ai
for i < 2 then the line ℓ through a0 and a1 intersects A0 ∪ A1 in a finite set. How about
three or more clouds? The answer comes from a truly surprising result of P. Komjáth and
J. H. Schmerl:

Theorem 4.2.4 ([23] and [36]). The following are equivalent for each m ∈ N:

1. 2ω ≤ ℵm,

2. R2 is covered by at most m+ 2 clouds.

Moreover, R2 is always covered by countably many clouds.

We only prove (1) implies (2) and follow Komjáth’s original argument for CH. The fact
that countably many clouds always cover R2 can be proved by a simple modification of the
proof below.

Proof. Fix m ∈ ω and suppose that the continuum is at most ℵm. In turn, there is a
Davies-tree ⟨Mα : α < ℵm⟩ for c over R2 so that M<α =

∪
{Nα,j : j < m} for every α < ℵm.

Fix m+ 2 points {ak : k < m+ 2} in R2 in general position (i.e. no three are collinear).
Let Lk denote the set of lines through ak and let L =

∪
{Lk : k < m + 2}. We will define

clouds Ak around ak by defining a map F : L → [R2]<ω such that F (ℓ) ∈ [ℓ]<ω and letting

Ak = {ak} ∪
∪

{F (ℓ) : ℓ ∈ Lk}

for k < m+ 2. We have to make sure that for every x ∈ R2 there is ℓ ∈ L so that x ∈ F (ℓ).
Now, let Lα = (L ∩ Mα) \ M<α for α < ℵm. We define F on Lα for each α < ℵm

independently so fix an α < ℵm. List Lα \ L′ as {ℓα,i : i < ω} where L′ is the set of
(
m+2
2

)
lines determined {ak : k < m+ 2}. We let

F (ℓα,i) =
∪

{ℓ ∩ ℓα,i : ℓ ∈ L′ ∪ {ℓα,i′ : i′ < i}}

for i < ω.
We claim that this definition works: fix a point x ∈ R2 and we will show that there is

ℓ ∈ L with x ∈ F (ℓ). Find the unique α < ℵm such that x ∈ Mα \ M<α. It is easy to
see that ∪L′ is covered by our clouds hence we suppose x /∈

∪
L′. Let ℓk denote the line

through x and ak.

Observation 4.2.5. |M<α ∩ {ℓk : k < m+ 2}|≤ m.

Proof. Suppose that this is not true. Then (by the pigeon hole principle) there is j < m
such that |Nα,j ∩ {ℓk : k < m+2}|≥ 2 and in particular the intersection of any two of these
lines, the point x, is in Nα,j ⊂ M<α. This contradicts the minimality of α.

We achieved that
|{ℓk : k < m+ 2} ∩ (Lα \ L′)|≥ 2

i.e. there is i′ < i < ω such that ℓα,i′ , ℓα,i ∈ {ℓk : k < m+ 2}. Hence x ∈ F (lα,j) is covered
by one of the clouds.
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4.3 Uncountable approximations
Our main goal in this section is to show that, under certain assumptions, one can a sequence
of countably closed elementary submodels, each of size c, which is reminiscent of Davies-trees
while the corresponding models cover structures of size > c+; note that this covering would
not be possible by an increasing chain of models of size c.

4.3.1 High Davies-trees
So, what is it exactly that we aim to show? We say that a high Davies-tree for κ over x is
a sequence ⟨Mα : α < κ⟩ of elementary submodels of H(θ) for some large enough regular θ
such that

(I) [Mα]
ω ⊂ Mα, |Mα|= c and x ∈ Mα for all α < κ,

(II) [κ]
ω ⊂

∪
α<κ Mα, and

(III) for each β < κ there are Nβ,j ≺ H(θ) with [Nβ,j ]
ω ⊂ Nβ,j and x ∈ Nβ,j for j < ω

such that ∪
{Mα : α < β} =

∪
{Nβ,j : j < ω}.

Now, a high Davies-tree is really similar to the Davies-trees we used so far, only that
we work with countably closed models of size c (instead of countable ones) and the initial
segments M<β are countable unions of such models (instead of finite unions). Furthermore,
we require that the models cover [κ]

ω instead of κ itself. This is because our applications
typically require to deal with all countable subsets of a large structure.

One can immediately see that (II) implies that κω = κ and so high Davies-trees might
not exist for some κ. Nonetheless, a very similar tree-argument to the proof of Theorem
4.2.1 shows that high Davies-trees do exist for the finite successors of c i.e. for κ < c+ω. We
will not repeat that proof here but present a significantly stronger result.

As mentioned already, some extra set theoretic assumptions will be necessary to prove
the existence of high Davies-trees for cardinals above c+ω so let us recall two notions. We
say that □µ holds for a singular µ iff there is a sequence ⟨Cα : α < µ+⟩ so that Cα is a closed
and unbounded subset of α of size < µ and Cα = α ∩ Cβ whenever α is an accumulation
point of Cβ . □µ is known as Jensen’s square principle; R. Jensen proved that □µ holds for
all uncountable µ in the constructible universe L.

Furthermore, a cardinal µ is said to be ω-inaccessible iff νω < µ for all ν < µ. Now, our
main theorem is the following:

Theorem 4.3.1. There is a high Davies-tree ⟨Mα : α < κ⟩ for κ over x whenever

1. κ = κω, and

2. µ is ω-inaccessible, µω = µ+ and □µ holds for all µ with c < µ < κ and cf(µ) = ω.

Moreover, the high Davies-tree ⟨Mα : α < κ⟩ can be constructed so that

3. ⟨Mα : α < β⟩ ∈ Mβ for all β < κ, and

4.
∪
{Mα : α < κ} is also a countably closed elementary submodel of H(θ).
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We will say that ⟨Mα : α < κ⟩ is a sage Davies-tree if it is a high Davies-tree satisfying
the extra properties (3) and (4) above. Recall that we have been working with the structure
(H(θ),∈) so far. However, if one wishes to do so, it can be supposed that the models Mα

and Nα,j are submodels of (H(θ),∈,◁) where ◁ is some well-order on H(θ). These extra
assumptions can be quite useful e.g. the well order ◁ can be used to make uniform choices in
a construction of say topological spaces and hence the same construction can be reproduced
by any model with the appropriate parameters.

Finally, let us remark that if one only aims to construct high Davies-trees (which are not
necessary sage) then slightly weaker assumptions than (1) and (2) suffice.

In order to state a rough corollary, recall that (1) and (2) are satisfied by all κ with
uncountable cofinality in the constructible universe. Hence:

Corollary 4.3.2. If V = L then there is a sage Davies-tree for κ over x for any cardinal κ
with uncountable cofinality.

On the other hand, high Davies-trees might not exist at all.

Theorem 4.3.3. Consistently, relative to a supercompact cardinal, GCH holds and there
are no high Davies-trees for any κ ≥ ℵω+1.

4.3.2 Coloring topological spaces
Our first application concerns a truly classical result due to F. Bernstein: there is a coloring
of R with two colors such that no uncountable Borel set is monochromatic. In other words,
the family of Borel sets in R has chromatic number 2. Indeed, list all the uncountable Borel
sets as {Bα : α < c} and inductively pick distinct xβ , yβ ∈ Bβ \ {xα, yα : α < β}. This can
be done since each Bβ contains a Cantor subspace and so has size continuum. Now any map
f : R → 2 that sends {xα : α < c} to 0 and {yα : α < c} to 1 is as desired.

Now, let C(X) denote the set of Cantor subspaces of an arbitrary topological space
(X, τ). Can we extend Berstein’s theorem to general topological spaces? The above simple
argument certainly fails if there are more than c many Cantor subspaces.

Theorem 4.3.4. Suppose that (X, τ) is a topological space of size κ. If there is a high
Davies-tree for κ over (X, τ) then there is a coloring f : X → c so that f [C] = c for any
C ∈ C(X).

Hence, if |X|< c+ω or, more generally, κ satisfies the assumptions of Theorem 4.3.1 then
such colorings exist.

Proof. Let ⟨Mα : α < κ⟩ be a high Davies-tree for κ over X. In turn, X and [X]ω are
covered by

∪
{Mα : α < κ}. We let Cα = C(X) ∩ Mα \ M<α, Xα = X ∩ Mα \ M<α and

X<α = X ∩M<α.

Claim 4.3.5. Suppose that C ∈ C(X) and C ∩ X<α is uncountable. Then there is a
D ∈ M<α ∩ C(X) such that D ⊆ C.

Proof. Indeed, M<α =
∪
{Nα,j : j < ω} and each Nα,j is ω-closed. So there must be an

j < ω such that C ∩Nα,j is uncountable. Find A ⊆ C ∩Nα,j which is countable and dense
in C ∩ Nα,j . Note that A must be an element of Nα,j as well and hence, the uncountable
closure Ā of A is an element of Nα,j (since τ ∈ Nα,j). Now, we can pick D ⊆ Ā ⊆ C such
that D ∈ Nα,j ∩ C(X) ⊆ M<α ∩ C(X).
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We define fα : Xα → c so that fα[C] = c for any C ∈ Cα so that C ∩X<α is countable.
This can be done just like Berstein’s original theorem; indeed let

C∗
α = {C ∩Xα : C ∈ Cα, |C ∩X<α|≤ ω}.∪

C∗
α ⊆ X ∩Mα and if C∗

α ̸= ∅ then |
∪
C∗
α|= c. Moreover, |C∗

α|≤ c and C∗
α is c-uniform i.e.

each element has size c. So, we can use the same induction as Berstein to find fα.
We claim that f =

∪
{fα : α < κ} satisfies the requirements. Indeed, suppose that

C ∈ C(X) and let α be minimal so that D ⊆ C for some D ∈ Cα. Claim 4.3.5 implies that
C ∩X<α is countable and hence c = fα[D] ⊆ f [C].
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